xref: /openbmc/qemu/include/exec/memory.h (revision 37662d85)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/memop.h"
23 #include "exec/ramlist.h"
24 #include "qemu/bswap.h"
25 #include "qemu/queue.h"
26 #include "qemu/int128.h"
27 #include "qemu/range.h"
28 #include "qemu/notify.h"
29 #include "qom/object.h"
30 #include "qemu/rcu.h"
31 
32 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
33 
34 #define MAX_PHYS_ADDR_SPACE_BITS 62
35 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
36 
37 #define TYPE_MEMORY_REGION "memory-region"
38 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION,
39                          TYPE_MEMORY_REGION)
40 
41 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region"
42 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass;
43 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass,
44                      IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION)
45 
46 #define TYPE_RAM_DISCARD_MANAGER "ram-discard-manager"
47 typedef struct RamDiscardManagerClass RamDiscardManagerClass;
48 typedef struct RamDiscardManager RamDiscardManager;
49 DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass,
50                      RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER);
51 
52 #ifdef CONFIG_FUZZ
53 void fuzz_dma_read_cb(size_t addr,
54                       size_t len,
55                       MemoryRegion *mr);
56 #else
57 static inline void fuzz_dma_read_cb(size_t addr,
58                                     size_t len,
59                                     MemoryRegion *mr)
60 {
61     /* Do Nothing */
62 }
63 #endif
64 
65 /* Possible bits for global_dirty_log_{start|stop} */
66 
67 /* Dirty tracking enabled because migration is running */
68 #define GLOBAL_DIRTY_MIGRATION  (1U << 0)
69 
70 /* Dirty tracking enabled because measuring dirty rate */
71 #define GLOBAL_DIRTY_DIRTY_RATE (1U << 1)
72 
73 /* Dirty tracking enabled because dirty limit */
74 #define GLOBAL_DIRTY_LIMIT      (1U << 2)
75 
76 #define GLOBAL_DIRTY_MASK  (0x7)
77 
78 extern unsigned int global_dirty_tracking;
79 
80 typedef struct MemoryRegionOps MemoryRegionOps;
81 
82 struct ReservedRegion {
83     Range range;
84     unsigned type;
85 };
86 
87 /**
88  * struct MemoryRegionSection: describes a fragment of a #MemoryRegion
89  *
90  * @mr: the region, or %NULL if empty
91  * @fv: the flat view of the address space the region is mapped in
92  * @offset_within_region: the beginning of the section, relative to @mr's start
93  * @size: the size of the section; will not exceed @mr's boundaries
94  * @offset_within_address_space: the address of the first byte of the section
95  *     relative to the region's address space
96  * @readonly: writes to this section are ignored
97  * @nonvolatile: this section is non-volatile
98  * @unmergeable: this section should not get merged with adjacent sections
99  */
100 struct MemoryRegionSection {
101     Int128 size;
102     MemoryRegion *mr;
103     FlatView *fv;
104     hwaddr offset_within_region;
105     hwaddr offset_within_address_space;
106     bool readonly;
107     bool nonvolatile;
108     bool unmergeable;
109 };
110 
111 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
112 
113 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
114 typedef enum {
115     IOMMU_NONE = 0,
116     IOMMU_RO   = 1,
117     IOMMU_WO   = 2,
118     IOMMU_RW   = 3,
119 } IOMMUAccessFlags;
120 
121 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
122 
123 struct IOMMUTLBEntry {
124     AddressSpace    *target_as;
125     hwaddr           iova;
126     hwaddr           translated_addr;
127     hwaddr           addr_mask;  /* 0xfff = 4k translation */
128     IOMMUAccessFlags perm;
129 };
130 
131 /*
132  * Bitmap for different IOMMUNotifier capabilities. Each notifier can
133  * register with one or multiple IOMMU Notifier capability bit(s).
134  *
135  * Normally there're two use cases for the notifiers:
136  *
137  *   (1) When the device needs accurate synchronizations of the vIOMMU page
138  *       tables, it needs to register with both MAP|UNMAP notifies (which
139  *       is defined as IOMMU_NOTIFIER_IOTLB_EVENTS below).
140  *
141  *       Regarding to accurate synchronization, it's when the notified
142  *       device maintains a shadow page table and must be notified on each
143  *       guest MAP (page table entry creation) and UNMAP (invalidation)
144  *       events (e.g. VFIO). Both notifications must be accurate so that
145  *       the shadow page table is fully in sync with the guest view.
146  *
147  *   (2) When the device doesn't need accurate synchronizations of the
148  *       vIOMMU page tables, it needs to register only with UNMAP or
149  *       DEVIOTLB_UNMAP notifies.
150  *
151  *       It's when the device maintains a cache of IOMMU translations
152  *       (IOTLB) and is able to fill that cache by requesting translations
153  *       from the vIOMMU through a protocol similar to ATS (Address
154  *       Translation Service).
155  *
156  *       Note that in this mode the vIOMMU will not maintain a shadowed
157  *       page table for the address space, and the UNMAP messages can cover
158  *       more than the pages that used to get mapped.  The IOMMU notifiee
159  *       should be able to take care of over-sized invalidations.
160  */
161 typedef enum {
162     IOMMU_NOTIFIER_NONE = 0,
163     /* Notify cache invalidations */
164     IOMMU_NOTIFIER_UNMAP = 0x1,
165     /* Notify entry changes (newly created entries) */
166     IOMMU_NOTIFIER_MAP = 0x2,
167     /* Notify changes on device IOTLB entries */
168     IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04,
169 } IOMMUNotifierFlag;
170 
171 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
172 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP
173 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \
174                             IOMMU_NOTIFIER_DEVIOTLB_EVENTS)
175 
176 struct IOMMUNotifier;
177 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
178                             IOMMUTLBEntry *data);
179 
180 struct IOMMUNotifier {
181     IOMMUNotify notify;
182     IOMMUNotifierFlag notifier_flags;
183     /* Notify for address space range start <= addr <= end */
184     hwaddr start;
185     hwaddr end;
186     int iommu_idx;
187     QLIST_ENTRY(IOMMUNotifier) node;
188 };
189 typedef struct IOMMUNotifier IOMMUNotifier;
190 
191 typedef struct IOMMUTLBEvent {
192     IOMMUNotifierFlag type;
193     IOMMUTLBEntry entry;
194 } IOMMUTLBEvent;
195 
196 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
197 #define RAM_PREALLOC   (1 << 0)
198 
199 /* RAM is mmap-ed with MAP_SHARED */
200 #define RAM_SHARED     (1 << 1)
201 
202 /* Only a portion of RAM (used_length) is actually used, and migrated.
203  * Resizing RAM while migrating can result in the migration being canceled.
204  */
205 #define RAM_RESIZEABLE (1 << 2)
206 
207 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
208  * zero the page and wake waiting processes.
209  * (Set during postcopy)
210  */
211 #define RAM_UF_ZEROPAGE (1 << 3)
212 
213 /* RAM can be migrated */
214 #define RAM_MIGRATABLE (1 << 4)
215 
216 /* RAM is a persistent kind memory */
217 #define RAM_PMEM (1 << 5)
218 
219 
220 /*
221  * UFFDIO_WRITEPROTECT is used on this RAMBlock to
222  * support 'write-tracking' migration type.
223  * Implies ram_state->ram_wt_enabled.
224  */
225 #define RAM_UF_WRITEPROTECT (1 << 6)
226 
227 /*
228  * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge
229  * pages if applicable) is skipped: will bail out if not supported. When not
230  * set, the OS will do the reservation, if supported for the memory type.
231  */
232 #define RAM_NORESERVE (1 << 7)
233 
234 /* RAM that isn't accessible through normal means. */
235 #define RAM_PROTECTED (1 << 8)
236 
237 /* RAM is an mmap-ed named file */
238 #define RAM_NAMED_FILE (1 << 9)
239 
240 /* RAM is mmap-ed read-only */
241 #define RAM_READONLY (1 << 10)
242 
243 /* RAM FD is opened read-only */
244 #define RAM_READONLY_FD (1 << 11)
245 
246 /* RAM can be private that has kvm guest memfd backend */
247 #define RAM_GUEST_MEMFD   (1 << 12)
248 
249 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
250                                        IOMMUNotifierFlag flags,
251                                        hwaddr start, hwaddr end,
252                                        int iommu_idx)
253 {
254     n->notify = fn;
255     n->notifier_flags = flags;
256     n->start = start;
257     n->end = end;
258     n->iommu_idx = iommu_idx;
259 }
260 
261 /*
262  * Memory region callbacks
263  */
264 struct MemoryRegionOps {
265     /* Read from the memory region. @addr is relative to @mr; @size is
266      * in bytes. */
267     uint64_t (*read)(void *opaque,
268                      hwaddr addr,
269                      unsigned size);
270     /* Write to the memory region. @addr is relative to @mr; @size is
271      * in bytes. */
272     void (*write)(void *opaque,
273                   hwaddr addr,
274                   uint64_t data,
275                   unsigned size);
276 
277     MemTxResult (*read_with_attrs)(void *opaque,
278                                    hwaddr addr,
279                                    uint64_t *data,
280                                    unsigned size,
281                                    MemTxAttrs attrs);
282     MemTxResult (*write_with_attrs)(void *opaque,
283                                     hwaddr addr,
284                                     uint64_t data,
285                                     unsigned size,
286                                     MemTxAttrs attrs);
287 
288     enum device_endian endianness;
289     /* Guest-visible constraints: */
290     struct {
291         /* If nonzero, specify bounds on access sizes beyond which a machine
292          * check is thrown.
293          */
294         unsigned min_access_size;
295         unsigned max_access_size;
296         /* If true, unaligned accesses are supported.  Otherwise unaligned
297          * accesses throw machine checks.
298          */
299          bool unaligned;
300         /*
301          * If present, and returns #false, the transaction is not accepted
302          * by the device (and results in machine dependent behaviour such
303          * as a machine check exception).
304          */
305         bool (*accepts)(void *opaque, hwaddr addr,
306                         unsigned size, bool is_write,
307                         MemTxAttrs attrs);
308     } valid;
309     /* Internal implementation constraints: */
310     struct {
311         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
312          * will be rounded upwards and a partial result will be returned.
313          */
314         unsigned min_access_size;
315         /* If nonzero, specifies the maximum size implemented.  Larger sizes
316          * will be done as a series of accesses with smaller sizes.
317          */
318         unsigned max_access_size;
319         /* If true, unaligned accesses are supported.  Otherwise all accesses
320          * are converted to (possibly multiple) naturally aligned accesses.
321          */
322         bool unaligned;
323     } impl;
324 };
325 
326 typedef struct MemoryRegionClass {
327     /* private */
328     ObjectClass parent_class;
329 } MemoryRegionClass;
330 
331 
332 enum IOMMUMemoryRegionAttr {
333     IOMMU_ATTR_SPAPR_TCE_FD
334 };
335 
336 /*
337  * IOMMUMemoryRegionClass:
338  *
339  * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
340  * and provide an implementation of at least the @translate method here
341  * to handle requests to the memory region. Other methods are optional.
342  *
343  * The IOMMU implementation must use the IOMMU notifier infrastructure
344  * to report whenever mappings are changed, by calling
345  * memory_region_notify_iommu() (or, if necessary, by calling
346  * memory_region_notify_iommu_one() for each registered notifier).
347  *
348  * Conceptually an IOMMU provides a mapping from input address
349  * to an output TLB entry. If the IOMMU is aware of memory transaction
350  * attributes and the output TLB entry depends on the transaction
351  * attributes, we represent this using IOMMU indexes. Each index
352  * selects a particular translation table that the IOMMU has:
353  *
354  *   @attrs_to_index returns the IOMMU index for a set of transaction attributes
355  *
356  *   @translate takes an input address and an IOMMU index
357  *
358  * and the mapping returned can only depend on the input address and the
359  * IOMMU index.
360  *
361  * Most IOMMUs don't care about the transaction attributes and support
362  * only a single IOMMU index. A more complex IOMMU might have one index
363  * for secure transactions and one for non-secure transactions.
364  */
365 struct IOMMUMemoryRegionClass {
366     /* private: */
367     MemoryRegionClass parent_class;
368 
369     /* public: */
370     /**
371      * @translate:
372      *
373      * Return a TLB entry that contains a given address.
374      *
375      * The IOMMUAccessFlags indicated via @flag are optional and may
376      * be specified as IOMMU_NONE to indicate that the caller needs
377      * the full translation information for both reads and writes. If
378      * the access flags are specified then the IOMMU implementation
379      * may use this as an optimization, to stop doing a page table
380      * walk as soon as it knows that the requested permissions are not
381      * allowed. If IOMMU_NONE is passed then the IOMMU must do the
382      * full page table walk and report the permissions in the returned
383      * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
384      * return different mappings for reads and writes.)
385      *
386      * The returned information remains valid while the caller is
387      * holding the big QEMU lock or is inside an RCU critical section;
388      * if the caller wishes to cache the mapping beyond that it must
389      * register an IOMMU notifier so it can invalidate its cached
390      * information when the IOMMU mapping changes.
391      *
392      * @iommu: the IOMMUMemoryRegion
393      *
394      * @hwaddr: address to be translated within the memory region
395      *
396      * @flag: requested access permission
397      *
398      * @iommu_idx: IOMMU index for the translation
399      */
400     IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
401                                IOMMUAccessFlags flag, int iommu_idx);
402     /**
403      * @get_min_page_size:
404      *
405      * Returns minimum supported page size in bytes.
406      *
407      * If this method is not provided then the minimum is assumed to
408      * be TARGET_PAGE_SIZE.
409      *
410      * @iommu: the IOMMUMemoryRegion
411      */
412     uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
413     /**
414      * @notify_flag_changed:
415      *
416      * Called when IOMMU Notifier flag changes (ie when the set of
417      * events which IOMMU users are requesting notification for changes).
418      * Optional method -- need not be provided if the IOMMU does not
419      * need to know exactly which events must be notified.
420      *
421      * @iommu: the IOMMUMemoryRegion
422      *
423      * @old_flags: events which previously needed to be notified
424      *
425      * @new_flags: events which now need to be notified
426      *
427      * Returns 0 on success, or a negative errno; in particular
428      * returns -EINVAL if the new flag bitmap is not supported by the
429      * IOMMU memory region. In case of failure, the error object
430      * must be created
431      */
432     int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
433                                IOMMUNotifierFlag old_flags,
434                                IOMMUNotifierFlag new_flags,
435                                Error **errp);
436     /**
437      * @replay:
438      *
439      * Called to handle memory_region_iommu_replay().
440      *
441      * The default implementation of memory_region_iommu_replay() is to
442      * call the IOMMU translate method for every page in the address space
443      * with flag == IOMMU_NONE and then call the notifier if translate
444      * returns a valid mapping. If this method is implemented then it
445      * overrides the default behaviour, and must provide the full semantics
446      * of memory_region_iommu_replay(), by calling @notifier for every
447      * translation present in the IOMMU.
448      *
449      * Optional method -- an IOMMU only needs to provide this method
450      * if the default is inefficient or produces undesirable side effects.
451      *
452      * Note: this is not related to record-and-replay functionality.
453      */
454     void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
455 
456     /**
457      * @get_attr:
458      *
459      * Get IOMMU misc attributes. This is an optional method that
460      * can be used to allow users of the IOMMU to get implementation-specific
461      * information. The IOMMU implements this method to handle calls
462      * by IOMMU users to memory_region_iommu_get_attr() by filling in
463      * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
464      * the IOMMU supports. If the method is unimplemented then
465      * memory_region_iommu_get_attr() will always return -EINVAL.
466      *
467      * @iommu: the IOMMUMemoryRegion
468      *
469      * @attr: attribute being queried
470      *
471      * @data: memory to fill in with the attribute data
472      *
473      * Returns 0 on success, or a negative errno; in particular
474      * returns -EINVAL for unrecognized or unimplemented attribute types.
475      */
476     int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
477                     void *data);
478 
479     /**
480      * @attrs_to_index:
481      *
482      * Return the IOMMU index to use for a given set of transaction attributes.
483      *
484      * Optional method: if an IOMMU only supports a single IOMMU index then
485      * the default implementation of memory_region_iommu_attrs_to_index()
486      * will return 0.
487      *
488      * The indexes supported by an IOMMU must be contiguous, starting at 0.
489      *
490      * @iommu: the IOMMUMemoryRegion
491      * @attrs: memory transaction attributes
492      */
493     int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
494 
495     /**
496      * @num_indexes:
497      *
498      * Return the number of IOMMU indexes this IOMMU supports.
499      *
500      * Optional method: if this method is not provided, then
501      * memory_region_iommu_num_indexes() will return 1, indicating that
502      * only a single IOMMU index is supported.
503      *
504      * @iommu: the IOMMUMemoryRegion
505      */
506     int (*num_indexes)(IOMMUMemoryRegion *iommu);
507 
508     /**
509      * @iommu_set_page_size_mask:
510      *
511      * Restrict the page size mask that can be supported with a given IOMMU
512      * memory region. Used for example to propagate host physical IOMMU page
513      * size mask limitations to the virtual IOMMU.
514      *
515      * Optional method: if this method is not provided, then the default global
516      * page mask is used.
517      *
518      * @iommu: the IOMMUMemoryRegion
519      *
520      * @page_size_mask: a bitmask of supported page sizes. At least one bit,
521      * representing the smallest page size, must be set. Additional set bits
522      * represent supported block sizes. For example a host physical IOMMU that
523      * uses page tables with a page size of 4kB, and supports 2MB and 4GB
524      * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate
525      * block sizes is specified with mask 0xfffffffffffff000.
526      *
527      * Returns 0 on success, or a negative error. In case of failure, the error
528      * object must be created.
529      */
530      int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu,
531                                      uint64_t page_size_mask,
532                                      Error **errp);
533     /**
534      * @iommu_set_iova_ranges:
535      *
536      * Propagate information about the usable IOVA ranges for a given IOMMU
537      * memory region. Used for example to propagate host physical device
538      * reserved memory region constraints to the virtual IOMMU.
539      *
540      * Optional method: if this method is not provided, then the default IOVA
541      * aperture is used.
542      *
543      * @iommu: the IOMMUMemoryRegion
544      *
545      * @iova_ranges: list of ordered IOVA ranges (at least one range)
546      *
547      * Returns 0 on success, or a negative error. In case of failure, the error
548      * object must be created.
549      */
550      int (*iommu_set_iova_ranges)(IOMMUMemoryRegion *iommu,
551                                   GList *iova_ranges,
552                                   Error **errp);
553 };
554 
555 typedef struct RamDiscardListener RamDiscardListener;
556 typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl,
557                                  MemoryRegionSection *section);
558 typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl,
559                                  MemoryRegionSection *section);
560 
561 struct RamDiscardListener {
562     /*
563      * @notify_populate:
564      *
565      * Notification that previously discarded memory is about to get populated.
566      * Listeners are able to object. If any listener objects, already
567      * successfully notified listeners are notified about a discard again.
568      *
569      * @rdl: the #RamDiscardListener getting notified
570      * @section: the #MemoryRegionSection to get populated. The section
571      *           is aligned within the memory region to the minimum granularity
572      *           unless it would exceed the registered section.
573      *
574      * Returns 0 on success. If the notification is rejected by the listener,
575      * an error is returned.
576      */
577     NotifyRamPopulate notify_populate;
578 
579     /*
580      * @notify_discard:
581      *
582      * Notification that previously populated memory was discarded successfully
583      * and listeners should drop all references to such memory and prevent
584      * new population (e.g., unmap).
585      *
586      * @rdl: the #RamDiscardListener getting notified
587      * @section: the #MemoryRegionSection to get populated. The section
588      *           is aligned within the memory region to the minimum granularity
589      *           unless it would exceed the registered section.
590      */
591     NotifyRamDiscard notify_discard;
592 
593     /*
594      * @double_discard_supported:
595      *
596      * The listener suppors getting @notify_discard notifications that span
597      * already discarded parts.
598      */
599     bool double_discard_supported;
600 
601     MemoryRegionSection *section;
602     QLIST_ENTRY(RamDiscardListener) next;
603 };
604 
605 static inline void ram_discard_listener_init(RamDiscardListener *rdl,
606                                              NotifyRamPopulate populate_fn,
607                                              NotifyRamDiscard discard_fn,
608                                              bool double_discard_supported)
609 {
610     rdl->notify_populate = populate_fn;
611     rdl->notify_discard = discard_fn;
612     rdl->double_discard_supported = double_discard_supported;
613 }
614 
615 typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque);
616 typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque);
617 
618 /*
619  * RamDiscardManagerClass:
620  *
621  * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion
622  * regions are currently populated to be used/accessed by the VM, notifying
623  * after parts were discarded (freeing up memory) and before parts will be
624  * populated (consuming memory), to be used/accessed by the VM.
625  *
626  * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the
627  * #MemoryRegion isn't mapped into an address space yet (either directly
628  * or via an alias); it cannot change while the #MemoryRegion is
629  * mapped into an address space.
630  *
631  * The #RamDiscardManager is intended to be used by technologies that are
632  * incompatible with discarding of RAM (e.g., VFIO, which may pin all
633  * memory inside a #MemoryRegion), and require proper coordination to only
634  * map the currently populated parts, to hinder parts that are expected to
635  * remain discarded from silently getting populated and consuming memory.
636  * Technologies that support discarding of RAM don't have to bother and can
637  * simply map the whole #MemoryRegion.
638  *
639  * An example #RamDiscardManager is virtio-mem, which logically (un)plugs
640  * memory within an assigned RAM #MemoryRegion, coordinated with the VM.
641  * Logically unplugging memory consists of discarding RAM. The VM agreed to not
642  * access unplugged (discarded) memory - especially via DMA. virtio-mem will
643  * properly coordinate with listeners before memory is plugged (populated),
644  * and after memory is unplugged (discarded).
645  *
646  * Listeners are called in multiples of the minimum granularity (unless it
647  * would exceed the registered range) and changes are aligned to the minimum
648  * granularity within the #MemoryRegion. Listeners have to prepare for memory
649  * becoming discarded in a different granularity than it was populated and the
650  * other way around.
651  */
652 struct RamDiscardManagerClass {
653     /* private */
654     InterfaceClass parent_class;
655 
656     /* public */
657 
658     /**
659      * @get_min_granularity:
660      *
661      * Get the minimum granularity in which listeners will get notified
662      * about changes within the #MemoryRegion via the #RamDiscardManager.
663      *
664      * @rdm: the #RamDiscardManager
665      * @mr: the #MemoryRegion
666      *
667      * Returns the minimum granularity.
668      */
669     uint64_t (*get_min_granularity)(const RamDiscardManager *rdm,
670                                     const MemoryRegion *mr);
671 
672     /**
673      * @is_populated:
674      *
675      * Check whether the given #MemoryRegionSection is completely populated
676      * (i.e., no parts are currently discarded) via the #RamDiscardManager.
677      * There are no alignment requirements.
678      *
679      * @rdm: the #RamDiscardManager
680      * @section: the #MemoryRegionSection
681      *
682      * Returns whether the given range is completely populated.
683      */
684     bool (*is_populated)(const RamDiscardManager *rdm,
685                          const MemoryRegionSection *section);
686 
687     /**
688      * @replay_populated:
689      *
690      * Call the #ReplayRamPopulate callback for all populated parts within the
691      * #MemoryRegionSection via the #RamDiscardManager.
692      *
693      * In case any call fails, no further calls are made.
694      *
695      * @rdm: the #RamDiscardManager
696      * @section: the #MemoryRegionSection
697      * @replay_fn: the #ReplayRamPopulate callback
698      * @opaque: pointer to forward to the callback
699      *
700      * Returns 0 on success, or a negative error if any notification failed.
701      */
702     int (*replay_populated)(const RamDiscardManager *rdm,
703                             MemoryRegionSection *section,
704                             ReplayRamPopulate replay_fn, void *opaque);
705 
706     /**
707      * @replay_discarded:
708      *
709      * Call the #ReplayRamDiscard callback for all discarded parts within the
710      * #MemoryRegionSection via the #RamDiscardManager.
711      *
712      * @rdm: the #RamDiscardManager
713      * @section: the #MemoryRegionSection
714      * @replay_fn: the #ReplayRamDiscard callback
715      * @opaque: pointer to forward to the callback
716      */
717     void (*replay_discarded)(const RamDiscardManager *rdm,
718                              MemoryRegionSection *section,
719                              ReplayRamDiscard replay_fn, void *opaque);
720 
721     /**
722      * @register_listener:
723      *
724      * Register a #RamDiscardListener for the given #MemoryRegionSection and
725      * immediately notify the #RamDiscardListener about all populated parts
726      * within the #MemoryRegionSection via the #RamDiscardManager.
727      *
728      * In case any notification fails, no further notifications are triggered
729      * and an error is logged.
730      *
731      * @rdm: the #RamDiscardManager
732      * @rdl: the #RamDiscardListener
733      * @section: the #MemoryRegionSection
734      */
735     void (*register_listener)(RamDiscardManager *rdm,
736                               RamDiscardListener *rdl,
737                               MemoryRegionSection *section);
738 
739     /**
740      * @unregister_listener:
741      *
742      * Unregister a previously registered #RamDiscardListener via the
743      * #RamDiscardManager after notifying the #RamDiscardListener about all
744      * populated parts becoming unpopulated within the registered
745      * #MemoryRegionSection.
746      *
747      * @rdm: the #RamDiscardManager
748      * @rdl: the #RamDiscardListener
749      */
750     void (*unregister_listener)(RamDiscardManager *rdm,
751                                 RamDiscardListener *rdl);
752 };
753 
754 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
755                                                  const MemoryRegion *mr);
756 
757 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
758                                       const MemoryRegionSection *section);
759 
760 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
761                                          MemoryRegionSection *section,
762                                          ReplayRamPopulate replay_fn,
763                                          void *opaque);
764 
765 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
766                                           MemoryRegionSection *section,
767                                           ReplayRamDiscard replay_fn,
768                                           void *opaque);
769 
770 void ram_discard_manager_register_listener(RamDiscardManager *rdm,
771                                            RamDiscardListener *rdl,
772                                            MemoryRegionSection *section);
773 
774 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
775                                              RamDiscardListener *rdl);
776 
777 bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr,
778                           ram_addr_t *ram_addr, bool *read_only,
779                           bool *mr_has_discard_manager);
780 
781 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
782 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
783 
784 /** MemoryRegion:
785  *
786  * A struct representing a memory region.
787  */
788 struct MemoryRegion {
789     Object parent_obj;
790 
791     /* private: */
792 
793     /* The following fields should fit in a cache line */
794     bool romd_mode;
795     bool ram;
796     bool subpage;
797     bool readonly; /* For RAM regions */
798     bool nonvolatile;
799     bool rom_device;
800     bool flush_coalesced_mmio;
801     bool unmergeable;
802     uint8_t dirty_log_mask;
803     bool is_iommu;
804     RAMBlock *ram_block;
805     Object *owner;
806     /* owner as TYPE_DEVICE. Used for re-entrancy checks in MR access hotpath */
807     DeviceState *dev;
808 
809     const MemoryRegionOps *ops;
810     void *opaque;
811     MemoryRegion *container;
812     int mapped_via_alias; /* Mapped via an alias, container might be NULL */
813     Int128 size;
814     hwaddr addr;
815     void (*destructor)(MemoryRegion *mr);
816     uint64_t align;
817     bool terminates;
818     bool ram_device;
819     bool enabled;
820     bool warning_printed; /* For reservations */
821     uint8_t vga_logging_count;
822     MemoryRegion *alias;
823     hwaddr alias_offset;
824     int32_t priority;
825     QTAILQ_HEAD(, MemoryRegion) subregions;
826     QTAILQ_ENTRY(MemoryRegion) subregions_link;
827     QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
828     const char *name;
829     unsigned ioeventfd_nb;
830     MemoryRegionIoeventfd *ioeventfds;
831     RamDiscardManager *rdm; /* Only for RAM */
832 
833     /* For devices designed to perform re-entrant IO into their own IO MRs */
834     bool disable_reentrancy_guard;
835 };
836 
837 struct IOMMUMemoryRegion {
838     MemoryRegion parent_obj;
839 
840     QLIST_HEAD(, IOMMUNotifier) iommu_notify;
841     IOMMUNotifierFlag iommu_notify_flags;
842 };
843 
844 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
845     QLIST_FOREACH((n), &(mr)->iommu_notify, node)
846 
847 #define MEMORY_LISTENER_PRIORITY_MIN            0
848 #define MEMORY_LISTENER_PRIORITY_ACCEL          10
849 #define MEMORY_LISTENER_PRIORITY_DEV_BACKEND    10
850 
851 /**
852  * struct MemoryListener: callbacks structure for updates to the physical memory map
853  *
854  * Allows a component to adjust to changes in the guest-visible memory map.
855  * Use with memory_listener_register() and memory_listener_unregister().
856  */
857 struct MemoryListener {
858     /**
859      * @begin:
860      *
861      * Called at the beginning of an address space update transaction.
862      * Followed by calls to #MemoryListener.region_add(),
863      * #MemoryListener.region_del(), #MemoryListener.region_nop(),
864      * #MemoryListener.log_start() and #MemoryListener.log_stop() in
865      * increasing address order.
866      *
867      * @listener: The #MemoryListener.
868      */
869     void (*begin)(MemoryListener *listener);
870 
871     /**
872      * @commit:
873      *
874      * Called at the end of an address space update transaction,
875      * after the last call to #MemoryListener.region_add(),
876      * #MemoryListener.region_del() or #MemoryListener.region_nop(),
877      * #MemoryListener.log_start() and #MemoryListener.log_stop().
878      *
879      * @listener: The #MemoryListener.
880      */
881     void (*commit)(MemoryListener *listener);
882 
883     /**
884      * @region_add:
885      *
886      * Called during an address space update transaction,
887      * for a section of the address space that is new in this address space
888      * space since the last transaction.
889      *
890      * @listener: The #MemoryListener.
891      * @section: The new #MemoryRegionSection.
892      */
893     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
894 
895     /**
896      * @region_del:
897      *
898      * Called during an address space update transaction,
899      * for a section of the address space that has disappeared in the address
900      * space since the last transaction.
901      *
902      * @listener: The #MemoryListener.
903      * @section: The old #MemoryRegionSection.
904      */
905     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
906 
907     /**
908      * @region_nop:
909      *
910      * Called during an address space update transaction,
911      * for a section of the address space that is in the same place in the address
912      * space as in the last transaction.
913      *
914      * @listener: The #MemoryListener.
915      * @section: The #MemoryRegionSection.
916      */
917     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
918 
919     /**
920      * @log_start:
921      *
922      * Called during an address space update transaction, after
923      * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
924      * #MemoryListener.region_nop(), if dirty memory logging clients have
925      * become active since the last transaction.
926      *
927      * @listener: The #MemoryListener.
928      * @section: The #MemoryRegionSection.
929      * @old: A bitmap of dirty memory logging clients that were active in
930      * the previous transaction.
931      * @new: A bitmap of dirty memory logging clients that are active in
932      * the current transaction.
933      */
934     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
935                       int old, int new);
936 
937     /**
938      * @log_stop:
939      *
940      * Called during an address space update transaction, after
941      * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
942      * #MemoryListener.region_nop() and possibly after
943      * #MemoryListener.log_start(), if dirty memory logging clients have
944      * become inactive since the last transaction.
945      *
946      * @listener: The #MemoryListener.
947      * @section: The #MemoryRegionSection.
948      * @old: A bitmap of dirty memory logging clients that were active in
949      * the previous transaction.
950      * @new: A bitmap of dirty memory logging clients that are active in
951      * the current transaction.
952      */
953     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
954                      int old, int new);
955 
956     /**
957      * @log_sync:
958      *
959      * Called by memory_region_snapshot_and_clear_dirty() and
960      * memory_global_dirty_log_sync(), before accessing QEMU's "official"
961      * copy of the dirty memory bitmap for a #MemoryRegionSection.
962      *
963      * @listener: The #MemoryListener.
964      * @section: The #MemoryRegionSection.
965      */
966     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
967 
968     /**
969      * @log_sync_global:
970      *
971      * This is the global version of @log_sync when the listener does
972      * not have a way to synchronize the log with finer granularity.
973      * When the listener registers with @log_sync_global defined, then
974      * its @log_sync must be NULL.  Vice versa.
975      *
976      * @listener: The #MemoryListener.
977      * @last_stage: The last stage to synchronize the log during migration.
978      * The caller should guarantee that the synchronization with true for
979      * @last_stage is triggered for once after all VCPUs have been stopped.
980      */
981     void (*log_sync_global)(MemoryListener *listener, bool last_stage);
982 
983     /**
984      * @log_clear:
985      *
986      * Called before reading the dirty memory bitmap for a
987      * #MemoryRegionSection.
988      *
989      * @listener: The #MemoryListener.
990      * @section: The #MemoryRegionSection.
991      */
992     void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
993 
994     /**
995      * @log_global_start:
996      *
997      * Called by memory_global_dirty_log_start(), which
998      * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
999      * the address space.  #MemoryListener.log_global_start() is also
1000      * called when a #MemoryListener is added, if global dirty logging is
1001      * active at that time.
1002      *
1003      * @listener: The #MemoryListener.
1004      */
1005     void (*log_global_start)(MemoryListener *listener);
1006 
1007     /**
1008      * @log_global_stop:
1009      *
1010      * Called by memory_global_dirty_log_stop(), which
1011      * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
1012      * the address space.
1013      *
1014      * @listener: The #MemoryListener.
1015      */
1016     void (*log_global_stop)(MemoryListener *listener);
1017 
1018     /**
1019      * @log_global_after_sync:
1020      *
1021      * Called after reading the dirty memory bitmap
1022      * for any #MemoryRegionSection.
1023      *
1024      * @listener: The #MemoryListener.
1025      */
1026     void (*log_global_after_sync)(MemoryListener *listener);
1027 
1028     /**
1029      * @eventfd_add:
1030      *
1031      * Called during an address space update transaction,
1032      * for a section of the address space that has had a new ioeventfd
1033      * registration since the last transaction.
1034      *
1035      * @listener: The #MemoryListener.
1036      * @section: The new #MemoryRegionSection.
1037      * @match_data: The @match_data parameter for the new ioeventfd.
1038      * @data: The @data parameter for the new ioeventfd.
1039      * @e: The #EventNotifier parameter for the new ioeventfd.
1040      */
1041     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
1042                         bool match_data, uint64_t data, EventNotifier *e);
1043 
1044     /**
1045      * @eventfd_del:
1046      *
1047      * Called during an address space update transaction,
1048      * for a section of the address space that has dropped an ioeventfd
1049      * registration since the last transaction.
1050      *
1051      * @listener: The #MemoryListener.
1052      * @section: The new #MemoryRegionSection.
1053      * @match_data: The @match_data parameter for the dropped ioeventfd.
1054      * @data: The @data parameter for the dropped ioeventfd.
1055      * @e: The #EventNotifier parameter for the dropped ioeventfd.
1056      */
1057     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
1058                         bool match_data, uint64_t data, EventNotifier *e);
1059 
1060     /**
1061      * @coalesced_io_add:
1062      *
1063      * Called during an address space update transaction,
1064      * for a section of the address space that has had a new coalesced
1065      * MMIO range registration since the last transaction.
1066      *
1067      * @listener: The #MemoryListener.
1068      * @section: The new #MemoryRegionSection.
1069      * @addr: The starting address for the coalesced MMIO range.
1070      * @len: The length of the coalesced MMIO range.
1071      */
1072     void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
1073                                hwaddr addr, hwaddr len);
1074 
1075     /**
1076      * @coalesced_io_del:
1077      *
1078      * Called during an address space update transaction,
1079      * for a section of the address space that has dropped a coalesced
1080      * MMIO range since the last transaction.
1081      *
1082      * @listener: The #MemoryListener.
1083      * @section: The new #MemoryRegionSection.
1084      * @addr: The starting address for the coalesced MMIO range.
1085      * @len: The length of the coalesced MMIO range.
1086      */
1087     void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
1088                                hwaddr addr, hwaddr len);
1089     /**
1090      * @priority:
1091      *
1092      * Govern the order in which memory listeners are invoked. Lower priorities
1093      * are invoked earlier for "add" or "start" callbacks, and later for "delete"
1094      * or "stop" callbacks.
1095      */
1096     unsigned priority;
1097 
1098     /**
1099      * @name:
1100      *
1101      * Name of the listener.  It can be used in contexts where we'd like to
1102      * identify one memory listener with the rest.
1103      */
1104     const char *name;
1105 
1106     /* private: */
1107     AddressSpace *address_space;
1108     QTAILQ_ENTRY(MemoryListener) link;
1109     QTAILQ_ENTRY(MemoryListener) link_as;
1110 };
1111 
1112 /**
1113  * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects
1114  */
1115 struct AddressSpace {
1116     /* private: */
1117     struct rcu_head rcu;
1118     char *name;
1119     MemoryRegion *root;
1120 
1121     /* Accessed via RCU.  */
1122     struct FlatView *current_map;
1123 
1124     int ioeventfd_nb;
1125     int ioeventfd_notifiers;
1126     struct MemoryRegionIoeventfd *ioeventfds;
1127     QTAILQ_HEAD(, MemoryListener) listeners;
1128     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
1129 };
1130 
1131 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
1132 typedef struct FlatRange FlatRange;
1133 
1134 /* Flattened global view of current active memory hierarchy.  Kept in sorted
1135  * order.
1136  */
1137 struct FlatView {
1138     struct rcu_head rcu;
1139     unsigned ref;
1140     FlatRange *ranges;
1141     unsigned nr;
1142     unsigned nr_allocated;
1143     struct AddressSpaceDispatch *dispatch;
1144     MemoryRegion *root;
1145 };
1146 
1147 static inline FlatView *address_space_to_flatview(AddressSpace *as)
1148 {
1149     return qatomic_rcu_read(&as->current_map);
1150 }
1151 
1152 /**
1153  * typedef flatview_cb: callback for flatview_for_each_range()
1154  *
1155  * @start: start address of the range within the FlatView
1156  * @len: length of the range in bytes
1157  * @mr: MemoryRegion covering this range
1158  * @offset_in_region: offset of the first byte of the range within @mr
1159  * @opaque: data pointer passed to flatview_for_each_range()
1160  *
1161  * Returns: true to stop the iteration, false to keep going.
1162  */
1163 typedef bool (*flatview_cb)(Int128 start,
1164                             Int128 len,
1165                             const MemoryRegion *mr,
1166                             hwaddr offset_in_region,
1167                             void *opaque);
1168 
1169 /**
1170  * flatview_for_each_range: Iterate through a FlatView
1171  * @fv: the FlatView to iterate through
1172  * @cb: function to call for each range
1173  * @opaque: opaque data pointer to pass to @cb
1174  *
1175  * A FlatView is made up of a list of non-overlapping ranges, each of
1176  * which is a slice of a MemoryRegion. This function iterates through
1177  * each range in @fv, calling @cb. The callback function can terminate
1178  * iteration early by returning 'true'.
1179  */
1180 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque);
1181 
1182 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
1183                                           MemoryRegionSection *b)
1184 {
1185     return a->mr == b->mr &&
1186            a->fv == b->fv &&
1187            a->offset_within_region == b->offset_within_region &&
1188            a->offset_within_address_space == b->offset_within_address_space &&
1189            int128_eq(a->size, b->size) &&
1190            a->readonly == b->readonly &&
1191            a->nonvolatile == b->nonvolatile;
1192 }
1193 
1194 /**
1195  * memory_region_section_new_copy: Copy a memory region section
1196  *
1197  * Allocate memory for a new copy, copy the memory region section, and
1198  * properly take a reference on all relevant members.
1199  *
1200  * @s: the #MemoryRegionSection to copy
1201  */
1202 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s);
1203 
1204 /**
1205  * memory_region_section_new_copy: Free a copied memory region section
1206  *
1207  * Free a copy of a memory section created via memory_region_section_new_copy().
1208  * properly dropping references on all relevant members.
1209  *
1210  * @s: the #MemoryRegionSection to copy
1211  */
1212 void memory_region_section_free_copy(MemoryRegionSection *s);
1213 
1214 /**
1215  * memory_region_init: Initialize a memory region
1216  *
1217  * The region typically acts as a container for other memory regions.  Use
1218  * memory_region_add_subregion() to add subregions.
1219  *
1220  * @mr: the #MemoryRegion to be initialized
1221  * @owner: the object that tracks the region's reference count
1222  * @name: used for debugging; not visible to the user or ABI
1223  * @size: size of the region; any subregions beyond this size will be clipped
1224  */
1225 void memory_region_init(MemoryRegion *mr,
1226                         Object *owner,
1227                         const char *name,
1228                         uint64_t size);
1229 
1230 /**
1231  * memory_region_ref: Add 1 to a memory region's reference count
1232  *
1233  * Whenever memory regions are accessed outside the BQL, they need to be
1234  * preserved against hot-unplug.  MemoryRegions actually do not have their
1235  * own reference count; they piggyback on a QOM object, their "owner".
1236  * This function adds a reference to the owner.
1237  *
1238  * All MemoryRegions must have an owner if they can disappear, even if the
1239  * device they belong to operates exclusively under the BQL.  This is because
1240  * the region could be returned at any time by memory_region_find, and this
1241  * is usually under guest control.
1242  *
1243  * @mr: the #MemoryRegion
1244  */
1245 void memory_region_ref(MemoryRegion *mr);
1246 
1247 /**
1248  * memory_region_unref: Remove 1 to a memory region's reference count
1249  *
1250  * Whenever memory regions are accessed outside the BQL, they need to be
1251  * preserved against hot-unplug.  MemoryRegions actually do not have their
1252  * own reference count; they piggyback on a QOM object, their "owner".
1253  * This function removes a reference to the owner and possibly destroys it.
1254  *
1255  * @mr: the #MemoryRegion
1256  */
1257 void memory_region_unref(MemoryRegion *mr);
1258 
1259 /**
1260  * memory_region_init_io: Initialize an I/O memory region.
1261  *
1262  * Accesses into the region will cause the callbacks in @ops to be called.
1263  * if @size is nonzero, subregions will be clipped to @size.
1264  *
1265  * @mr: the #MemoryRegion to be initialized.
1266  * @owner: the object that tracks the region's reference count
1267  * @ops: a structure containing read and write callbacks to be used when
1268  *       I/O is performed on the region.
1269  * @opaque: passed to the read and write callbacks of the @ops structure.
1270  * @name: used for debugging; not visible to the user or ABI
1271  * @size: size of the region.
1272  */
1273 void memory_region_init_io(MemoryRegion *mr,
1274                            Object *owner,
1275                            const MemoryRegionOps *ops,
1276                            void *opaque,
1277                            const char *name,
1278                            uint64_t size);
1279 
1280 /**
1281  * memory_region_init_ram_nomigrate:  Initialize RAM memory region.  Accesses
1282  *                                    into the region will modify memory
1283  *                                    directly.
1284  *
1285  * @mr: the #MemoryRegion to be initialized.
1286  * @owner: the object that tracks the region's reference count
1287  * @name: Region name, becomes part of RAMBlock name used in migration stream
1288  *        must be unique within any device
1289  * @size: size of the region.
1290  * @errp: pointer to Error*, to store an error if it happens.
1291  *
1292  * Note that this function does not do anything to cause the data in the
1293  * RAM memory region to be migrated; that is the responsibility of the caller.
1294  *
1295  * Return: true on success, else false setting @errp with error.
1296  */
1297 bool memory_region_init_ram_nomigrate(MemoryRegion *mr,
1298                                       Object *owner,
1299                                       const char *name,
1300                                       uint64_t size,
1301                                       Error **errp);
1302 
1303 /**
1304  * memory_region_init_ram_flags_nomigrate:  Initialize RAM memory region.
1305  *                                          Accesses into the region will
1306  *                                          modify memory directly.
1307  *
1308  * @mr: the #MemoryRegion to be initialized.
1309  * @owner: the object that tracks the region's reference count
1310  * @name: Region name, becomes part of RAMBlock name used in migration stream
1311  *        must be unique within any device
1312  * @size: size of the region.
1313  * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE,
1314  *             RAM_GUEST_MEMFD.
1315  * @errp: pointer to Error*, to store an error if it happens.
1316  *
1317  * Note that this function does not do anything to cause the data in the
1318  * RAM memory region to be migrated; that is the responsibility of the caller.
1319  *
1320  * Return: true on success, else false setting @errp with error.
1321  */
1322 bool memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1323                                             Object *owner,
1324                                             const char *name,
1325                                             uint64_t size,
1326                                             uint32_t ram_flags,
1327                                             Error **errp);
1328 
1329 /**
1330  * memory_region_init_resizeable_ram:  Initialize memory region with resizable
1331  *                                     RAM.  Accesses into the region will
1332  *                                     modify memory directly.  Only an initial
1333  *                                     portion of this RAM is actually used.
1334  *                                     Changing the size while migrating
1335  *                                     can result in the migration being
1336  *                                     canceled.
1337  *
1338  * @mr: the #MemoryRegion to be initialized.
1339  * @owner: the object that tracks the region's reference count
1340  * @name: Region name, becomes part of RAMBlock name used in migration stream
1341  *        must be unique within any device
1342  * @size: used size of the region.
1343  * @max_size: max size of the region.
1344  * @resized: callback to notify owner about used size change.
1345  * @errp: pointer to Error*, to store an error if it happens.
1346  *
1347  * Note that this function does not do anything to cause the data in the
1348  * RAM memory region to be migrated; that is the responsibility of the caller.
1349  *
1350  * Return: true on success, else false setting @errp with error.
1351  */
1352 bool memory_region_init_resizeable_ram(MemoryRegion *mr,
1353                                        Object *owner,
1354                                        const char *name,
1355                                        uint64_t size,
1356                                        uint64_t max_size,
1357                                        void (*resized)(const char*,
1358                                                        uint64_t length,
1359                                                        void *host),
1360                                        Error **errp);
1361 #ifdef CONFIG_POSIX
1362 
1363 /**
1364  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
1365  *                                    mmap-ed backend.
1366  *
1367  * @mr: the #MemoryRegion to be initialized.
1368  * @owner: the object that tracks the region's reference count
1369  * @name: Region name, becomes part of RAMBlock name used in migration stream
1370  *        must be unique within any device
1371  * @size: size of the region.
1372  * @align: alignment of the region base address; if 0, the default alignment
1373  *         (getpagesize()) will be used.
1374  * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1375  *             RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY,
1376  *             RAM_READONLY_FD, RAM_GUEST_MEMFD
1377  * @path: the path in which to allocate the RAM.
1378  * @offset: offset within the file referenced by path
1379  * @errp: pointer to Error*, to store an error if it happens.
1380  *
1381  * Note that this function does not do anything to cause the data in the
1382  * RAM memory region to be migrated; that is the responsibility of the caller.
1383  *
1384  * Return: true on success, else false setting @errp with error.
1385  */
1386 bool memory_region_init_ram_from_file(MemoryRegion *mr,
1387                                       Object *owner,
1388                                       const char *name,
1389                                       uint64_t size,
1390                                       uint64_t align,
1391                                       uint32_t ram_flags,
1392                                       const char *path,
1393                                       ram_addr_t offset,
1394                                       Error **errp);
1395 
1396 /**
1397  * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
1398  *                                  mmap-ed backend.
1399  *
1400  * @mr: the #MemoryRegion to be initialized.
1401  * @owner: the object that tracks the region's reference count
1402  * @name: the name of the region.
1403  * @size: size of the region.
1404  * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1405  *             RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY,
1406  *             RAM_READONLY_FD, RAM_GUEST_MEMFD
1407  * @fd: the fd to mmap.
1408  * @offset: offset within the file referenced by fd
1409  * @errp: pointer to Error*, to store an error if it happens.
1410  *
1411  * Note that this function does not do anything to cause the data in the
1412  * RAM memory region to be migrated; that is the responsibility of the caller.
1413  *
1414  * Return: true on success, else false setting @errp with error.
1415  */
1416 bool memory_region_init_ram_from_fd(MemoryRegion *mr,
1417                                     Object *owner,
1418                                     const char *name,
1419                                     uint64_t size,
1420                                     uint32_t ram_flags,
1421                                     int fd,
1422                                     ram_addr_t offset,
1423                                     Error **errp);
1424 #endif
1425 
1426 /**
1427  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
1428  *                              user-provided pointer.  Accesses into the
1429  *                              region will modify memory directly.
1430  *
1431  * @mr: the #MemoryRegion to be initialized.
1432  * @owner: the object that tracks the region's reference count
1433  * @name: Region name, becomes part of RAMBlock name used in migration stream
1434  *        must be unique within any device
1435  * @size: size of the region.
1436  * @ptr: memory to be mapped; must contain at least @size bytes.
1437  *
1438  * Note that this function does not do anything to cause the data in the
1439  * RAM memory region to be migrated; that is the responsibility of the caller.
1440  */
1441 void memory_region_init_ram_ptr(MemoryRegion *mr,
1442                                 Object *owner,
1443                                 const char *name,
1444                                 uint64_t size,
1445                                 void *ptr);
1446 
1447 /**
1448  * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
1449  *                                     a user-provided pointer.
1450  *
1451  * A RAM device represents a mapping to a physical device, such as to a PCI
1452  * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
1453  * into the VM address space and access to the region will modify memory
1454  * directly.  However, the memory region should not be included in a memory
1455  * dump (device may not be enabled/mapped at the time of the dump), and
1456  * operations incompatible with manipulating MMIO should be avoided.  Replaces
1457  * skip_dump flag.
1458  *
1459  * @mr: the #MemoryRegion to be initialized.
1460  * @owner: the object that tracks the region's reference count
1461  * @name: the name of the region.
1462  * @size: size of the region.
1463  * @ptr: memory to be mapped; must contain at least @size bytes.
1464  *
1465  * Note that this function does not do anything to cause the data in the
1466  * RAM memory region to be migrated; that is the responsibility of the caller.
1467  * (For RAM device memory regions, migrating the contents rarely makes sense.)
1468  */
1469 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1470                                        Object *owner,
1471                                        const char *name,
1472                                        uint64_t size,
1473                                        void *ptr);
1474 
1475 /**
1476  * memory_region_init_alias: Initialize a memory region that aliases all or a
1477  *                           part of another memory region.
1478  *
1479  * @mr: the #MemoryRegion to be initialized.
1480  * @owner: the object that tracks the region's reference count
1481  * @name: used for debugging; not visible to the user or ABI
1482  * @orig: the region to be referenced; @mr will be equivalent to
1483  *        @orig between @offset and @offset + @size - 1.
1484  * @offset: start of the section in @orig to be referenced.
1485  * @size: size of the region.
1486  */
1487 void memory_region_init_alias(MemoryRegion *mr,
1488                               Object *owner,
1489                               const char *name,
1490                               MemoryRegion *orig,
1491                               hwaddr offset,
1492                               uint64_t size);
1493 
1494 /**
1495  * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
1496  *
1497  * This has the same effect as calling memory_region_init_ram_nomigrate()
1498  * and then marking the resulting region read-only with
1499  * memory_region_set_readonly().
1500  *
1501  * Note that this function does not do anything to cause the data in the
1502  * RAM side of the memory region to be migrated; that is the responsibility
1503  * of the caller.
1504  *
1505  * @mr: the #MemoryRegion to be initialized.
1506  * @owner: the object that tracks the region's reference count
1507  * @name: Region name, becomes part of RAMBlock name used in migration stream
1508  *        must be unique within any device
1509  * @size: size of the region.
1510  * @errp: pointer to Error*, to store an error if it happens.
1511  *
1512  * Return: true on success, else false setting @errp with error.
1513  */
1514 bool memory_region_init_rom_nomigrate(MemoryRegion *mr,
1515                                       Object *owner,
1516                                       const char *name,
1517                                       uint64_t size,
1518                                       Error **errp);
1519 
1520 /**
1521  * memory_region_init_rom_device_nomigrate:  Initialize a ROM memory region.
1522  *                                 Writes are handled via callbacks.
1523  *
1524  * Note that this function does not do anything to cause the data in the
1525  * RAM side of the memory region to be migrated; that is the responsibility
1526  * of the caller.
1527  *
1528  * @mr: the #MemoryRegion to be initialized.
1529  * @owner: the object that tracks the region's reference count
1530  * @ops: callbacks for write access handling (must not be NULL).
1531  * @opaque: passed to the read and write callbacks of the @ops structure.
1532  * @name: Region name, becomes part of RAMBlock name used in migration stream
1533  *        must be unique within any device
1534  * @size: size of the region.
1535  * @errp: pointer to Error*, to store an error if it happens.
1536  *
1537  * Return: true on success, else false setting @errp with error.
1538  */
1539 bool memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1540                                              Object *owner,
1541                                              const MemoryRegionOps *ops,
1542                                              void *opaque,
1543                                              const char *name,
1544                                              uint64_t size,
1545                                              Error **errp);
1546 
1547 /**
1548  * memory_region_init_iommu: Initialize a memory region of a custom type
1549  * that translates addresses
1550  *
1551  * An IOMMU region translates addresses and forwards accesses to a target
1552  * memory region.
1553  *
1554  * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
1555  * @_iommu_mr should be a pointer to enough memory for an instance of
1556  * that subclass, @instance_size is the size of that subclass, and
1557  * @mrtypename is its name. This function will initialize @_iommu_mr as an
1558  * instance of the subclass, and its methods will then be called to handle
1559  * accesses to the memory region. See the documentation of
1560  * #IOMMUMemoryRegionClass for further details.
1561  *
1562  * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
1563  * @instance_size: the IOMMUMemoryRegion subclass instance size
1564  * @mrtypename: the type name of the #IOMMUMemoryRegion
1565  * @owner: the object that tracks the region's reference count
1566  * @name: used for debugging; not visible to the user or ABI
1567  * @size: size of the region.
1568  */
1569 void memory_region_init_iommu(void *_iommu_mr,
1570                               size_t instance_size,
1571                               const char *mrtypename,
1572                               Object *owner,
1573                               const char *name,
1574                               uint64_t size);
1575 
1576 /**
1577  * memory_region_init_ram - Initialize RAM memory region.  Accesses into the
1578  *                          region will modify memory directly.
1579  *
1580  * @mr: the #MemoryRegion to be initialized
1581  * @owner: the object that tracks the region's reference count (must be
1582  *         TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
1583  * @name: name of the memory region
1584  * @size: size of the region in bytes
1585  * @errp: pointer to Error*, to store an error if it happens.
1586  *
1587  * This function allocates RAM for a board model or device, and
1588  * arranges for it to be migrated (by calling vmstate_register_ram()
1589  * if @owner is a DeviceState, or vmstate_register_ram_global() if
1590  * @owner is NULL).
1591  *
1592  * TODO: Currently we restrict @owner to being either NULL (for
1593  * global RAM regions with no owner) or devices, so that we can
1594  * give the RAM block a unique name for migration purposes.
1595  * We should lift this restriction and allow arbitrary Objects.
1596  * If you pass a non-NULL non-device @owner then we will assert.
1597  *
1598  * Return: true on success, else false setting @errp with error.
1599  */
1600 bool memory_region_init_ram(MemoryRegion *mr,
1601                             Object *owner,
1602                             const char *name,
1603                             uint64_t size,
1604                             Error **errp);
1605 
1606 /**
1607  * memory_region_init_rom: Initialize a ROM memory region.
1608  *
1609  * This has the same effect as calling memory_region_init_ram()
1610  * and then marking the resulting region read-only with
1611  * memory_region_set_readonly(). This includes arranging for the
1612  * contents to be migrated.
1613  *
1614  * TODO: Currently we restrict @owner to being either NULL (for
1615  * global RAM regions with no owner) or devices, so that we can
1616  * give the RAM block a unique name for migration purposes.
1617  * We should lift this restriction and allow arbitrary Objects.
1618  * If you pass a non-NULL non-device @owner then we will assert.
1619  *
1620  * @mr: the #MemoryRegion to be initialized.
1621  * @owner: the object that tracks the region's reference count
1622  * @name: Region name, becomes part of RAMBlock name used in migration stream
1623  *        must be unique within any device
1624  * @size: size of the region.
1625  * @errp: pointer to Error*, to store an error if it happens.
1626  *
1627  * Return: true on success, else false setting @errp with error.
1628  */
1629 bool memory_region_init_rom(MemoryRegion *mr,
1630                             Object *owner,
1631                             const char *name,
1632                             uint64_t size,
1633                             Error **errp);
1634 
1635 /**
1636  * memory_region_init_rom_device:  Initialize a ROM memory region.
1637  *                                 Writes are handled via callbacks.
1638  *
1639  * This function initializes a memory region backed by RAM for reads
1640  * and callbacks for writes, and arranges for the RAM backing to
1641  * be migrated (by calling vmstate_register_ram()
1642  * if @owner is a DeviceState, or vmstate_register_ram_global() if
1643  * @owner is NULL).
1644  *
1645  * TODO: Currently we restrict @owner to being either NULL (for
1646  * global RAM regions with no owner) or devices, so that we can
1647  * give the RAM block a unique name for migration purposes.
1648  * We should lift this restriction and allow arbitrary Objects.
1649  * If you pass a non-NULL non-device @owner then we will assert.
1650  *
1651  * @mr: the #MemoryRegion to be initialized.
1652  * @owner: the object that tracks the region's reference count
1653  * @ops: callbacks for write access handling (must not be NULL).
1654  * @opaque: passed to the read and write callbacks of the @ops structure.
1655  * @name: Region name, becomes part of RAMBlock name used in migration stream
1656  *        must be unique within any device
1657  * @size: size of the region.
1658  * @errp: pointer to Error*, to store an error if it happens.
1659  *
1660  * Return: true on success, else false setting @errp with error.
1661  */
1662 bool memory_region_init_rom_device(MemoryRegion *mr,
1663                                    Object *owner,
1664                                    const MemoryRegionOps *ops,
1665                                    void *opaque,
1666                                    const char *name,
1667                                    uint64_t size,
1668                                    Error **errp);
1669 
1670 
1671 /**
1672  * memory_region_owner: get a memory region's owner.
1673  *
1674  * @mr: the memory region being queried.
1675  */
1676 Object *memory_region_owner(MemoryRegion *mr);
1677 
1678 /**
1679  * memory_region_size: get a memory region's size.
1680  *
1681  * @mr: the memory region being queried.
1682  */
1683 uint64_t memory_region_size(MemoryRegion *mr);
1684 
1685 /**
1686  * memory_region_is_ram: check whether a memory region is random access
1687  *
1688  * Returns %true if a memory region is random access.
1689  *
1690  * @mr: the memory region being queried
1691  */
1692 static inline bool memory_region_is_ram(MemoryRegion *mr)
1693 {
1694     return mr->ram;
1695 }
1696 
1697 /**
1698  * memory_region_is_ram_device: check whether a memory region is a ram device
1699  *
1700  * Returns %true if a memory region is a device backed ram region
1701  *
1702  * @mr: the memory region being queried
1703  */
1704 bool memory_region_is_ram_device(MemoryRegion *mr);
1705 
1706 /**
1707  * memory_region_is_romd: check whether a memory region is in ROMD mode
1708  *
1709  * Returns %true if a memory region is a ROM device and currently set to allow
1710  * direct reads.
1711  *
1712  * @mr: the memory region being queried
1713  */
1714 static inline bool memory_region_is_romd(MemoryRegion *mr)
1715 {
1716     return mr->rom_device && mr->romd_mode;
1717 }
1718 
1719 /**
1720  * memory_region_is_protected: check whether a memory region is protected
1721  *
1722  * Returns %true if a memory region is protected RAM and cannot be accessed
1723  * via standard mechanisms, e.g. DMA.
1724  *
1725  * @mr: the memory region being queried
1726  */
1727 bool memory_region_is_protected(MemoryRegion *mr);
1728 
1729 /**
1730  * memory_region_has_guest_memfd: check whether a memory region has guest_memfd
1731  *     associated
1732  *
1733  * Returns %true if a memory region's ram_block has valid guest_memfd assigned.
1734  *
1735  * @mr: the memory region being queried
1736  */
1737 bool memory_region_has_guest_memfd(MemoryRegion *mr);
1738 
1739 /**
1740  * memory_region_get_iommu: check whether a memory region is an iommu
1741  *
1742  * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1743  * otherwise NULL.
1744  *
1745  * @mr: the memory region being queried
1746  */
1747 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1748 {
1749     if (mr->alias) {
1750         return memory_region_get_iommu(mr->alias);
1751     }
1752     if (mr->is_iommu) {
1753         return (IOMMUMemoryRegion *) mr;
1754     }
1755     return NULL;
1756 }
1757 
1758 /**
1759  * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1760  *   if an iommu or NULL if not
1761  *
1762  * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1763  * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1764  *
1765  * @iommu_mr: the memory region being queried
1766  */
1767 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1768         IOMMUMemoryRegion *iommu_mr)
1769 {
1770     return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1771 }
1772 
1773 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1774 
1775 /**
1776  * memory_region_iommu_get_min_page_size: get minimum supported page size
1777  * for an iommu
1778  *
1779  * Returns minimum supported page size for an iommu.
1780  *
1781  * @iommu_mr: the memory region being queried
1782  */
1783 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1784 
1785 /**
1786  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1787  *
1788  * Note: for any IOMMU implementation, an in-place mapping change
1789  * should be notified with an UNMAP followed by a MAP.
1790  *
1791  * @iommu_mr: the memory region that was changed
1792  * @iommu_idx: the IOMMU index for the translation table which has changed
1793  * @event: TLB event with the new entry in the IOMMU translation table.
1794  *         The entry replaces all old entries for the same virtual I/O address
1795  *         range.
1796  */
1797 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1798                                 int iommu_idx,
1799                                 IOMMUTLBEvent event);
1800 
1801 /**
1802  * memory_region_notify_iommu_one: notify a change in an IOMMU translation
1803  *                           entry to a single notifier
1804  *
1805  * This works just like memory_region_notify_iommu(), but it only
1806  * notifies a specific notifier, not all of them.
1807  *
1808  * @notifier: the notifier to be notified
1809  * @event: TLB event with the new entry in the IOMMU translation table.
1810  *         The entry replaces all old entries for the same virtual I/O address
1811  *         range.
1812  */
1813 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1814                                     IOMMUTLBEvent *event);
1815 
1816 /**
1817  * memory_region_unmap_iommu_notifier_range: notify a unmap for an IOMMU
1818  *                                           translation that covers the
1819  *                                           range of a notifier
1820  *
1821  * @notifier: the notifier to be notified
1822  */
1823 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier);
1824 
1825 
1826 /**
1827  * memory_region_register_iommu_notifier: register a notifier for changes to
1828  * IOMMU translation entries.
1829  *
1830  * Returns 0 on success, or a negative errno otherwise. In particular,
1831  * -EINVAL indicates that at least one of the attributes of the notifier
1832  * is not supported (flag/range) by the IOMMU memory region. In case of error
1833  * the error object must be created.
1834  *
1835  * @mr: the memory region to observe
1836  * @n: the IOMMUNotifier to be added; the notify callback receives a
1837  *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1838  *     ceases to be valid on exit from the notifier.
1839  * @errp: pointer to Error*, to store an error if it happens.
1840  */
1841 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1842                                           IOMMUNotifier *n, Error **errp);
1843 
1844 /**
1845  * memory_region_iommu_replay: replay existing IOMMU translations to
1846  * a notifier with the minimum page granularity returned by
1847  * mr->iommu_ops->get_page_size().
1848  *
1849  * Note: this is not related to record-and-replay functionality.
1850  *
1851  * @iommu_mr: the memory region to observe
1852  * @n: the notifier to which to replay iommu mappings
1853  */
1854 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1855 
1856 /**
1857  * memory_region_unregister_iommu_notifier: unregister a notifier for
1858  * changes to IOMMU translation entries.
1859  *
1860  * @mr: the memory region which was observed and for which notity_stopped()
1861  *      needs to be called
1862  * @n: the notifier to be removed.
1863  */
1864 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1865                                              IOMMUNotifier *n);
1866 
1867 /**
1868  * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1869  * defined on the IOMMU.
1870  *
1871  * Returns 0 on success, or a negative errno otherwise. In particular,
1872  * -EINVAL indicates that the IOMMU does not support the requested
1873  * attribute.
1874  *
1875  * @iommu_mr: the memory region
1876  * @attr: the requested attribute
1877  * @data: a pointer to the requested attribute data
1878  */
1879 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1880                                  enum IOMMUMemoryRegionAttr attr,
1881                                  void *data);
1882 
1883 /**
1884  * memory_region_iommu_attrs_to_index: return the IOMMU index to
1885  * use for translations with the given memory transaction attributes.
1886  *
1887  * @iommu_mr: the memory region
1888  * @attrs: the memory transaction attributes
1889  */
1890 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1891                                        MemTxAttrs attrs);
1892 
1893 /**
1894  * memory_region_iommu_num_indexes: return the total number of IOMMU
1895  * indexes that this IOMMU supports.
1896  *
1897  * @iommu_mr: the memory region
1898  */
1899 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1900 
1901 /**
1902  * memory_region_iommu_set_page_size_mask: set the supported page
1903  * sizes for a given IOMMU memory region
1904  *
1905  * @iommu_mr: IOMMU memory region
1906  * @page_size_mask: supported page size mask
1907  * @errp: pointer to Error*, to store an error if it happens.
1908  */
1909 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1910                                            uint64_t page_size_mask,
1911                                            Error **errp);
1912 
1913 /**
1914  * memory_region_iommu_set_iova_ranges - Set the usable IOVA ranges
1915  * for a given IOMMU MR region
1916  *
1917  * @iommu: IOMMU memory region
1918  * @iova_ranges: list of ordered IOVA ranges (at least one range)
1919  * @errp: pointer to Error*, to store an error if it happens.
1920  */
1921 int memory_region_iommu_set_iova_ranges(IOMMUMemoryRegion *iommu,
1922                                         GList *iova_ranges,
1923                                         Error **errp);
1924 
1925 /**
1926  * memory_region_name: get a memory region's name
1927  *
1928  * Returns the string that was used to initialize the memory region.
1929  *
1930  * @mr: the memory region being queried
1931  */
1932 const char *memory_region_name(const MemoryRegion *mr);
1933 
1934 /**
1935  * memory_region_is_logging: return whether a memory region is logging writes
1936  *
1937  * Returns %true if the memory region is logging writes for the given client
1938  *
1939  * @mr: the memory region being queried
1940  * @client: the client being queried
1941  */
1942 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1943 
1944 /**
1945  * memory_region_get_dirty_log_mask: return the clients for which a
1946  * memory region is logging writes.
1947  *
1948  * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1949  * are the bit indices.
1950  *
1951  * @mr: the memory region being queried
1952  */
1953 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1954 
1955 /**
1956  * memory_region_is_rom: check whether a memory region is ROM
1957  *
1958  * Returns %true if a memory region is read-only memory.
1959  *
1960  * @mr: the memory region being queried
1961  */
1962 static inline bool memory_region_is_rom(MemoryRegion *mr)
1963 {
1964     return mr->ram && mr->readonly;
1965 }
1966 
1967 /**
1968  * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1969  *
1970  * Returns %true is a memory region is non-volatile memory.
1971  *
1972  * @mr: the memory region being queried
1973  */
1974 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1975 {
1976     return mr->nonvolatile;
1977 }
1978 
1979 /**
1980  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1981  *
1982  * Returns a file descriptor backing a file-based RAM memory region,
1983  * or -1 if the region is not a file-based RAM memory region.
1984  *
1985  * @mr: the RAM or alias memory region being queried.
1986  */
1987 int memory_region_get_fd(MemoryRegion *mr);
1988 
1989 /**
1990  * memory_region_from_host: Convert a pointer into a RAM memory region
1991  * and an offset within it.
1992  *
1993  * Given a host pointer inside a RAM memory region (created with
1994  * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1995  * the MemoryRegion and the offset within it.
1996  *
1997  * Use with care; by the time this function returns, the returned pointer is
1998  * not protected by RCU anymore.  If the caller is not within an RCU critical
1999  * section and does not hold the BQL, it must have other means of
2000  * protecting the pointer, such as a reference to the region that includes
2001  * the incoming ram_addr_t.
2002  *
2003  * @ptr: the host pointer to be converted
2004  * @offset: the offset within memory region
2005  */
2006 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
2007 
2008 /**
2009  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
2010  *
2011  * Returns a host pointer to a RAM memory region (created with
2012  * memory_region_init_ram() or memory_region_init_ram_ptr()).
2013  *
2014  * Use with care; by the time this function returns, the returned pointer is
2015  * not protected by RCU anymore.  If the caller is not within an RCU critical
2016  * section and does not hold the BQL, it must have other means of
2017  * protecting the pointer, such as a reference to the region that includes
2018  * the incoming ram_addr_t.
2019  *
2020  * @mr: the memory region being queried.
2021  */
2022 void *memory_region_get_ram_ptr(MemoryRegion *mr);
2023 
2024 /* memory_region_ram_resize: Resize a RAM region.
2025  *
2026  * Resizing RAM while migrating can result in the migration being canceled.
2027  * Care has to be taken if the guest might have already detected the memory.
2028  *
2029  * @mr: a memory region created with @memory_region_init_resizeable_ram.
2030  * @newsize: the new size the region
2031  * @errp: pointer to Error*, to store an error if it happens.
2032  */
2033 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
2034                               Error **errp);
2035 
2036 /**
2037  * memory_region_msync: Synchronize selected address range of
2038  * a memory mapped region
2039  *
2040  * @mr: the memory region to be msync
2041  * @addr: the initial address of the range to be sync
2042  * @size: the size of the range to be sync
2043  */
2044 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
2045 
2046 /**
2047  * memory_region_writeback: Trigger cache writeback for
2048  * selected address range
2049  *
2050  * @mr: the memory region to be updated
2051  * @addr: the initial address of the range to be written back
2052  * @size: the size of the range to be written back
2053  */
2054 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
2055 
2056 /**
2057  * memory_region_set_log: Turn dirty logging on or off for a region.
2058  *
2059  * Turns dirty logging on or off for a specified client (display, migration).
2060  * Only meaningful for RAM regions.
2061  *
2062  * @mr: the memory region being updated.
2063  * @log: whether dirty logging is to be enabled or disabled.
2064  * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
2065  */
2066 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
2067 
2068 /**
2069  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
2070  *
2071  * Marks a range of bytes as dirty, after it has been dirtied outside
2072  * guest code.
2073  *
2074  * @mr: the memory region being dirtied.
2075  * @addr: the address (relative to the start of the region) being dirtied.
2076  * @size: size of the range being dirtied.
2077  */
2078 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2079                              hwaddr size);
2080 
2081 /**
2082  * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
2083  *
2084  * This function is called when the caller wants to clear the remote
2085  * dirty bitmap of a memory range within the memory region.  This can
2086  * be used by e.g. KVM to manually clear dirty log when
2087  * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
2088  * kernel.
2089  *
2090  * @mr:     the memory region to clear the dirty log upon
2091  * @start:  start address offset within the memory region
2092  * @len:    length of the memory region to clear dirty bitmap
2093  */
2094 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2095                                       hwaddr len);
2096 
2097 /**
2098  * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
2099  *                                         bitmap and clear it.
2100  *
2101  * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
2102  * returns the snapshot.  The snapshot can then be used to query dirty
2103  * status, using memory_region_snapshot_get_dirty.  Snapshotting allows
2104  * querying the same page multiple times, which is especially useful for
2105  * display updates where the scanlines often are not page aligned.
2106  *
2107  * The dirty bitmap region which gets copied into the snapshot (and
2108  * cleared afterwards) can be larger than requested.  The boundaries
2109  * are rounded up/down so complete bitmap longs (covering 64 pages on
2110  * 64bit hosts) can be copied over into the bitmap snapshot.  Which
2111  * isn't a problem for display updates as the extra pages are outside
2112  * the visible area, and in case the visible area changes a full
2113  * display redraw is due anyway.  Should other use cases for this
2114  * function emerge we might have to revisit this implementation
2115  * detail.
2116  *
2117  * Use g_free to release DirtyBitmapSnapshot.
2118  *
2119  * @mr: the memory region being queried.
2120  * @addr: the address (relative to the start of the region) being queried.
2121  * @size: the size of the range being queried.
2122  * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
2123  */
2124 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2125                                                             hwaddr addr,
2126                                                             hwaddr size,
2127                                                             unsigned client);
2128 
2129 /**
2130  * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
2131  *                                   in the specified dirty bitmap snapshot.
2132  *
2133  * @mr: the memory region being queried.
2134  * @snap: the dirty bitmap snapshot
2135  * @addr: the address (relative to the start of the region) being queried.
2136  * @size: the size of the range being queried.
2137  */
2138 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
2139                                       DirtyBitmapSnapshot *snap,
2140                                       hwaddr addr, hwaddr size);
2141 
2142 /**
2143  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
2144  *                            client.
2145  *
2146  * Marks a range of pages as no longer dirty.
2147  *
2148  * @mr: the region being updated.
2149  * @addr: the start of the subrange being cleaned.
2150  * @size: the size of the subrange being cleaned.
2151  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
2152  *          %DIRTY_MEMORY_VGA.
2153  */
2154 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2155                                hwaddr size, unsigned client);
2156 
2157 /**
2158  * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
2159  *                                 TBs (for self-modifying code).
2160  *
2161  * The MemoryRegionOps->write() callback of a ROM device must use this function
2162  * to mark byte ranges that have been modified internally, such as by directly
2163  * accessing the memory returned by memory_region_get_ram_ptr().
2164  *
2165  * This function marks the range dirty and invalidates TBs so that TCG can
2166  * detect self-modifying code.
2167  *
2168  * @mr: the region being flushed.
2169  * @addr: the start, relative to the start of the region, of the range being
2170  *        flushed.
2171  * @size: the size, in bytes, of the range being flushed.
2172  */
2173 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
2174 
2175 /**
2176  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
2177  *
2178  * Allows a memory region to be marked as read-only (turning it into a ROM).
2179  * only useful on RAM regions.
2180  *
2181  * @mr: the region being updated.
2182  * @readonly: whether rhe region is to be ROM or RAM.
2183  */
2184 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
2185 
2186 /**
2187  * memory_region_set_nonvolatile: Turn a memory region non-volatile
2188  *
2189  * Allows a memory region to be marked as non-volatile.
2190  * only useful on RAM regions.
2191  *
2192  * @mr: the region being updated.
2193  * @nonvolatile: whether rhe region is to be non-volatile.
2194  */
2195 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
2196 
2197 /**
2198  * memory_region_rom_device_set_romd: enable/disable ROMD mode
2199  *
2200  * Allows a ROM device (initialized with memory_region_init_rom_device() to
2201  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
2202  * device is mapped to guest memory and satisfies read access directly.
2203  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
2204  * Writes are always handled by the #MemoryRegion.write function.
2205  *
2206  * @mr: the memory region to be updated
2207  * @romd_mode: %true to put the region into ROMD mode
2208  */
2209 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
2210 
2211 /**
2212  * memory_region_set_coalescing: Enable memory coalescing for the region.
2213  *
2214  * Enabled writes to a region to be queued for later processing. MMIO ->write
2215  * callbacks may be delayed until a non-coalesced MMIO is issued.
2216  * Only useful for IO regions.  Roughly similar to write-combining hardware.
2217  *
2218  * @mr: the memory region to be write coalesced
2219  */
2220 void memory_region_set_coalescing(MemoryRegion *mr);
2221 
2222 /**
2223  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
2224  *                               a region.
2225  *
2226  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
2227  * Multiple calls can be issued coalesced disjoint ranges.
2228  *
2229  * @mr: the memory region to be updated.
2230  * @offset: the start of the range within the region to be coalesced.
2231  * @size: the size of the subrange to be coalesced.
2232  */
2233 void memory_region_add_coalescing(MemoryRegion *mr,
2234                                   hwaddr offset,
2235                                   uint64_t size);
2236 
2237 /**
2238  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
2239  *
2240  * Disables any coalescing caused by memory_region_set_coalescing() or
2241  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
2242  * hardware.
2243  *
2244  * @mr: the memory region to be updated.
2245  */
2246 void memory_region_clear_coalescing(MemoryRegion *mr);
2247 
2248 /**
2249  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
2250  *                                    accesses.
2251  *
2252  * Ensure that pending coalesced MMIO request are flushed before the memory
2253  * region is accessed. This property is automatically enabled for all regions
2254  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
2255  *
2256  * @mr: the memory region to be updated.
2257  */
2258 void memory_region_set_flush_coalesced(MemoryRegion *mr);
2259 
2260 /**
2261  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
2262  *                                      accesses.
2263  *
2264  * Clear the automatic coalesced MMIO flushing enabled via
2265  * memory_region_set_flush_coalesced. Note that this service has no effect on
2266  * memory regions that have MMIO coalescing enabled for themselves. For them,
2267  * automatic flushing will stop once coalescing is disabled.
2268  *
2269  * @mr: the memory region to be updated.
2270  */
2271 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
2272 
2273 /**
2274  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
2275  *                            is written to a location.
2276  *
2277  * Marks a word in an IO region (initialized with memory_region_init_io())
2278  * as a trigger for an eventfd event.  The I/O callback will not be called.
2279  * The caller must be prepared to handle failure (that is, take the required
2280  * action if the callback _is_ called).
2281  *
2282  * @mr: the memory region being updated.
2283  * @addr: the address within @mr that is to be monitored
2284  * @size: the size of the access to trigger the eventfd
2285  * @match_data: whether to match against @data, instead of just @addr
2286  * @data: the data to match against the guest write
2287  * @e: event notifier to be triggered when @addr, @size, and @data all match.
2288  **/
2289 void memory_region_add_eventfd(MemoryRegion *mr,
2290                                hwaddr addr,
2291                                unsigned size,
2292                                bool match_data,
2293                                uint64_t data,
2294                                EventNotifier *e);
2295 
2296 /**
2297  * memory_region_del_eventfd: Cancel an eventfd.
2298  *
2299  * Cancels an eventfd trigger requested by a previous
2300  * memory_region_add_eventfd() call.
2301  *
2302  * @mr: the memory region being updated.
2303  * @addr: the address within @mr that is to be monitored
2304  * @size: the size of the access to trigger the eventfd
2305  * @match_data: whether to match against @data, instead of just @addr
2306  * @data: the data to match against the guest write
2307  * @e: event notifier to be triggered when @addr, @size, and @data all match.
2308  */
2309 void memory_region_del_eventfd(MemoryRegion *mr,
2310                                hwaddr addr,
2311                                unsigned size,
2312                                bool match_data,
2313                                uint64_t data,
2314                                EventNotifier *e);
2315 
2316 /**
2317  * memory_region_add_subregion: Add a subregion to a container.
2318  *
2319  * Adds a subregion at @offset.  The subregion may not overlap with other
2320  * subregions (except for those explicitly marked as overlapping).  A region
2321  * may only be added once as a subregion (unless removed with
2322  * memory_region_del_subregion()); use memory_region_init_alias() if you
2323  * want a region to be a subregion in multiple locations.
2324  *
2325  * @mr: the region to contain the new subregion; must be a container
2326  *      initialized with memory_region_init().
2327  * @offset: the offset relative to @mr where @subregion is added.
2328  * @subregion: the subregion to be added.
2329  */
2330 void memory_region_add_subregion(MemoryRegion *mr,
2331                                  hwaddr offset,
2332                                  MemoryRegion *subregion);
2333 /**
2334  * memory_region_add_subregion_overlap: Add a subregion to a container
2335  *                                      with overlap.
2336  *
2337  * Adds a subregion at @offset.  The subregion may overlap with other
2338  * subregions.  Conflicts are resolved by having a higher @priority hide a
2339  * lower @priority. Subregions without priority are taken as @priority 0.
2340  * A region may only be added once as a subregion (unless removed with
2341  * memory_region_del_subregion()); use memory_region_init_alias() if you
2342  * want a region to be a subregion in multiple locations.
2343  *
2344  * @mr: the region to contain the new subregion; must be a container
2345  *      initialized with memory_region_init().
2346  * @offset: the offset relative to @mr where @subregion is added.
2347  * @subregion: the subregion to be added.
2348  * @priority: used for resolving overlaps; highest priority wins.
2349  */
2350 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2351                                          hwaddr offset,
2352                                          MemoryRegion *subregion,
2353                                          int priority);
2354 
2355 /**
2356  * memory_region_get_ram_addr: Get the ram address associated with a memory
2357  *                             region
2358  *
2359  * @mr: the region to be queried
2360  */
2361 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
2362 
2363 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
2364 /**
2365  * memory_region_del_subregion: Remove a subregion.
2366  *
2367  * Removes a subregion from its container.
2368  *
2369  * @mr: the container to be updated.
2370  * @subregion: the region being removed; must be a current subregion of @mr.
2371  */
2372 void memory_region_del_subregion(MemoryRegion *mr,
2373                                  MemoryRegion *subregion);
2374 
2375 /*
2376  * memory_region_set_enabled: dynamically enable or disable a region
2377  *
2378  * Enables or disables a memory region.  A disabled memory region
2379  * ignores all accesses to itself and its subregions.  It does not
2380  * obscure sibling subregions with lower priority - it simply behaves as
2381  * if it was removed from the hierarchy.
2382  *
2383  * Regions default to being enabled.
2384  *
2385  * @mr: the region to be updated
2386  * @enabled: whether to enable or disable the region
2387  */
2388 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
2389 
2390 /*
2391  * memory_region_set_address: dynamically update the address of a region
2392  *
2393  * Dynamically updates the address of a region, relative to its container.
2394  * May be used on regions are currently part of a memory hierarchy.
2395  *
2396  * @mr: the region to be updated
2397  * @addr: new address, relative to container region
2398  */
2399 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
2400 
2401 /*
2402  * memory_region_set_size: dynamically update the size of a region.
2403  *
2404  * Dynamically updates the size of a region.
2405  *
2406  * @mr: the region to be updated
2407  * @size: used size of the region.
2408  */
2409 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
2410 
2411 /*
2412  * memory_region_set_alias_offset: dynamically update a memory alias's offset
2413  *
2414  * Dynamically updates the offset into the target region that an alias points
2415  * to, as if the fourth argument to memory_region_init_alias() has changed.
2416  *
2417  * @mr: the #MemoryRegion to be updated; should be an alias.
2418  * @offset: the new offset into the target memory region
2419  */
2420 void memory_region_set_alias_offset(MemoryRegion *mr,
2421                                     hwaddr offset);
2422 
2423 /*
2424  * memory_region_set_unmergeable: Set a memory region unmergeable
2425  *
2426  * Mark a memory region unmergeable, resulting in the memory region (or
2427  * everything contained in a memory region container) not getting merged when
2428  * simplifying the address space and notifying memory listeners. Consequently,
2429  * memory listeners will never get notified about ranges that are larger than
2430  * the original memory regions.
2431  *
2432  * This is primarily useful when multiple aliases to a RAM memory region are
2433  * mapped into a memory region container, and updates (e.g., enable/disable or
2434  * map/unmap) of individual memory region aliases are not supposed to affect
2435  * other memory regions in the same container.
2436  *
2437  * @mr: the #MemoryRegion to be updated
2438  * @unmergeable: whether to mark the #MemoryRegion unmergeable
2439  */
2440 void memory_region_set_unmergeable(MemoryRegion *mr, bool unmergeable);
2441 
2442 /**
2443  * memory_region_present: checks if an address relative to a @container
2444  * translates into #MemoryRegion within @container
2445  *
2446  * Answer whether a #MemoryRegion within @container covers the address
2447  * @addr.
2448  *
2449  * @container: a #MemoryRegion within which @addr is a relative address
2450  * @addr: the area within @container to be searched
2451  */
2452 bool memory_region_present(MemoryRegion *container, hwaddr addr);
2453 
2454 /**
2455  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
2456  * into another memory region, which does not necessarily imply that it is
2457  * mapped into an address space.
2458  *
2459  * @mr: a #MemoryRegion which should be checked if it's mapped
2460  */
2461 bool memory_region_is_mapped(MemoryRegion *mr);
2462 
2463 /**
2464  * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a
2465  * #MemoryRegion
2466  *
2467  * The #RamDiscardManager cannot change while a memory region is mapped.
2468  *
2469  * @mr: the #MemoryRegion
2470  */
2471 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr);
2472 
2473 /**
2474  * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a
2475  * #RamDiscardManager assigned
2476  *
2477  * @mr: the #MemoryRegion
2478  */
2479 static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr)
2480 {
2481     return !!memory_region_get_ram_discard_manager(mr);
2482 }
2483 
2484 /**
2485  * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a
2486  * #MemoryRegion
2487  *
2488  * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion
2489  * that does not cover RAM, or a #MemoryRegion that already has a
2490  * #RamDiscardManager assigned.
2491  *
2492  * @mr: the #MemoryRegion
2493  * @rdm: #RamDiscardManager to set
2494  */
2495 void memory_region_set_ram_discard_manager(MemoryRegion *mr,
2496                                            RamDiscardManager *rdm);
2497 
2498 /**
2499  * memory_region_find: translate an address/size relative to a
2500  * MemoryRegion into a #MemoryRegionSection.
2501  *
2502  * Locates the first #MemoryRegion within @mr that overlaps the range
2503  * given by @addr and @size.
2504  *
2505  * Returns a #MemoryRegionSection that describes a contiguous overlap.
2506  * It will have the following characteristics:
2507  * - @size = 0 iff no overlap was found
2508  * - @mr is non-%NULL iff an overlap was found
2509  *
2510  * Remember that in the return value the @offset_within_region is
2511  * relative to the returned region (in the .@mr field), not to the
2512  * @mr argument.
2513  *
2514  * Similarly, the .@offset_within_address_space is relative to the
2515  * address space that contains both regions, the passed and the
2516  * returned one.  However, in the special case where the @mr argument
2517  * has no container (and thus is the root of the address space), the
2518  * following will hold:
2519  * - @offset_within_address_space >= @addr
2520  * - @offset_within_address_space + .@size <= @addr + @size
2521  *
2522  * @mr: a MemoryRegion within which @addr is a relative address
2523  * @addr: start of the area within @as to be searched
2524  * @size: size of the area to be searched
2525  */
2526 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2527                                        hwaddr addr, uint64_t size);
2528 
2529 /**
2530  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2531  *
2532  * Synchronizes the dirty page log for all address spaces.
2533  *
2534  * @last_stage: whether this is the last stage of live migration
2535  */
2536 void memory_global_dirty_log_sync(bool last_stage);
2537 
2538 /**
2539  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2540  *
2541  * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
2542  * This function must be called after the dirty log bitmap is cleared, and
2543  * before dirty guest memory pages are read.  If you are using
2544  * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
2545  * care of doing this.
2546  */
2547 void memory_global_after_dirty_log_sync(void);
2548 
2549 /**
2550  * memory_region_transaction_begin: Start a transaction.
2551  *
2552  * During a transaction, changes will be accumulated and made visible
2553  * only when the transaction ends (is committed).
2554  */
2555 void memory_region_transaction_begin(void);
2556 
2557 /**
2558  * memory_region_transaction_commit: Commit a transaction and make changes
2559  *                                   visible to the guest.
2560  */
2561 void memory_region_transaction_commit(void);
2562 
2563 /**
2564  * memory_listener_register: register callbacks to be called when memory
2565  *                           sections are mapped or unmapped into an address
2566  *                           space
2567  *
2568  * @listener: an object containing the callbacks to be called
2569  * @filter: if non-%NULL, only regions in this address space will be observed
2570  */
2571 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
2572 
2573 /**
2574  * memory_listener_unregister: undo the effect of memory_listener_register()
2575  *
2576  * @listener: an object containing the callbacks to be removed
2577  */
2578 void memory_listener_unregister(MemoryListener *listener);
2579 
2580 /**
2581  * memory_global_dirty_log_start: begin dirty logging for all regions
2582  *
2583  * @flags: purpose of starting dirty log, migration or dirty rate
2584  */
2585 void memory_global_dirty_log_start(unsigned int flags);
2586 
2587 /**
2588  * memory_global_dirty_log_stop: end dirty logging for all regions
2589  *
2590  * @flags: purpose of stopping dirty log, migration or dirty rate
2591  */
2592 void memory_global_dirty_log_stop(unsigned int flags);
2593 
2594 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled);
2595 
2596 bool memory_region_access_valid(MemoryRegion *mr, hwaddr addr,
2597                                 unsigned size, bool is_write,
2598                                 MemTxAttrs attrs);
2599 
2600 /**
2601  * memory_region_dispatch_read: perform a read directly to the specified
2602  * MemoryRegion.
2603  *
2604  * @mr: #MemoryRegion to access
2605  * @addr: address within that region
2606  * @pval: pointer to uint64_t which the data is written to
2607  * @op: size, sign, and endianness of the memory operation
2608  * @attrs: memory transaction attributes to use for the access
2609  */
2610 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
2611                                         hwaddr addr,
2612                                         uint64_t *pval,
2613                                         MemOp op,
2614                                         MemTxAttrs attrs);
2615 /**
2616  * memory_region_dispatch_write: perform a write directly to the specified
2617  * MemoryRegion.
2618  *
2619  * @mr: #MemoryRegion to access
2620  * @addr: address within that region
2621  * @data: data to write
2622  * @op: size, sign, and endianness of the memory operation
2623  * @attrs: memory transaction attributes to use for the access
2624  */
2625 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
2626                                          hwaddr addr,
2627                                          uint64_t data,
2628                                          MemOp op,
2629                                          MemTxAttrs attrs);
2630 
2631 /**
2632  * address_space_init: initializes an address space
2633  *
2634  * @as: an uninitialized #AddressSpace
2635  * @root: a #MemoryRegion that routes addresses for the address space
2636  * @name: an address space name.  The name is only used for debugging
2637  *        output.
2638  */
2639 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
2640 
2641 /**
2642  * address_space_destroy: destroy an address space
2643  *
2644  * Releases all resources associated with an address space.  After an address space
2645  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
2646  * as well.
2647  *
2648  * @as: address space to be destroyed
2649  */
2650 void address_space_destroy(AddressSpace *as);
2651 
2652 /**
2653  * address_space_remove_listeners: unregister all listeners of an address space
2654  *
2655  * Removes all callbacks previously registered with memory_listener_register()
2656  * for @as.
2657  *
2658  * @as: an initialized #AddressSpace
2659  */
2660 void address_space_remove_listeners(AddressSpace *as);
2661 
2662 /**
2663  * address_space_rw: read from or write to an address space.
2664  *
2665  * Return a MemTxResult indicating whether the operation succeeded
2666  * or failed (eg unassigned memory, device rejected the transaction,
2667  * IOMMU fault).
2668  *
2669  * @as: #AddressSpace to be accessed
2670  * @addr: address within that address space
2671  * @attrs: memory transaction attributes
2672  * @buf: buffer with the data transferred
2673  * @len: the number of bytes to read or write
2674  * @is_write: indicates the transfer direction
2675  */
2676 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
2677                              MemTxAttrs attrs, void *buf,
2678                              hwaddr len, bool is_write);
2679 
2680 /**
2681  * address_space_write: write to address space.
2682  *
2683  * Return a MemTxResult indicating whether the operation succeeded
2684  * or failed (eg unassigned memory, device rejected the transaction,
2685  * IOMMU fault).
2686  *
2687  * @as: #AddressSpace to be accessed
2688  * @addr: address within that address space
2689  * @attrs: memory transaction attributes
2690  * @buf: buffer with the data transferred
2691  * @len: the number of bytes to write
2692  */
2693 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2694                                 MemTxAttrs attrs,
2695                                 const void *buf, hwaddr len);
2696 
2697 /**
2698  * address_space_write_rom: write to address space, including ROM.
2699  *
2700  * This function writes to the specified address space, but will
2701  * write data to both ROM and RAM. This is used for non-guest
2702  * writes like writes from the gdb debug stub or initial loading
2703  * of ROM contents.
2704  *
2705  * Note that portions of the write which attempt to write data to
2706  * a device will be silently ignored -- only real RAM and ROM will
2707  * be written to.
2708  *
2709  * Return a MemTxResult indicating whether the operation succeeded
2710  * or failed (eg unassigned memory, device rejected the transaction,
2711  * IOMMU fault).
2712  *
2713  * @as: #AddressSpace to be accessed
2714  * @addr: address within that address space
2715  * @attrs: memory transaction attributes
2716  * @buf: buffer with the data transferred
2717  * @len: the number of bytes to write
2718  */
2719 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2720                                     MemTxAttrs attrs,
2721                                     const void *buf, hwaddr len);
2722 
2723 /* address_space_ld*: load from an address space
2724  * address_space_st*: store to an address space
2725  *
2726  * These functions perform a load or store of the byte, word,
2727  * longword or quad to the specified address within the AddressSpace.
2728  * The _le suffixed functions treat the data as little endian;
2729  * _be indicates big endian; no suffix indicates "same endianness
2730  * as guest CPU".
2731  *
2732  * The "guest CPU endianness" accessors are deprecated for use outside
2733  * target-* code; devices should be CPU-agnostic and use either the LE
2734  * or the BE accessors.
2735  *
2736  * @as #AddressSpace to be accessed
2737  * @addr: address within that address space
2738  * @val: data value, for stores
2739  * @attrs: memory transaction attributes
2740  * @result: location to write the success/failure of the transaction;
2741  *   if NULL, this information is discarded
2742  */
2743 
2744 #define SUFFIX
2745 #define ARG1         as
2746 #define ARG1_DECL    AddressSpace *as
2747 #include "exec/memory_ldst.h.inc"
2748 
2749 #define SUFFIX
2750 #define ARG1         as
2751 #define ARG1_DECL    AddressSpace *as
2752 #include "exec/memory_ldst_phys.h.inc"
2753 
2754 struct MemoryRegionCache {
2755     void *ptr;
2756     hwaddr xlat;
2757     hwaddr len;
2758     FlatView *fv;
2759     MemoryRegionSection mrs;
2760     bool is_write;
2761 };
2762 
2763 /* address_space_ld*_cached: load from a cached #MemoryRegion
2764  * address_space_st*_cached: store into a cached #MemoryRegion
2765  *
2766  * These functions perform a load or store of the byte, word,
2767  * longword or quad to the specified address.  The address is
2768  * a physical address in the AddressSpace, but it must lie within
2769  * a #MemoryRegion that was mapped with address_space_cache_init.
2770  *
2771  * The _le suffixed functions treat the data as little endian;
2772  * _be indicates big endian; no suffix indicates "same endianness
2773  * as guest CPU".
2774  *
2775  * The "guest CPU endianness" accessors are deprecated for use outside
2776  * target-* code; devices should be CPU-agnostic and use either the LE
2777  * or the BE accessors.
2778  *
2779  * @cache: previously initialized #MemoryRegionCache to be accessed
2780  * @addr: address within the address space
2781  * @val: data value, for stores
2782  * @attrs: memory transaction attributes
2783  * @result: location to write the success/failure of the transaction;
2784  *   if NULL, this information is discarded
2785  */
2786 
2787 #define SUFFIX       _cached_slow
2788 #define ARG1         cache
2789 #define ARG1_DECL    MemoryRegionCache *cache
2790 #include "exec/memory_ldst.h.inc"
2791 
2792 /* Inline fast path for direct RAM access.  */
2793 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
2794     hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
2795 {
2796     assert(addr < cache->len);
2797     if (likely(cache->ptr)) {
2798         return ldub_p(cache->ptr + addr);
2799     } else {
2800         return address_space_ldub_cached_slow(cache, addr, attrs, result);
2801     }
2802 }
2803 
2804 static inline void address_space_stb_cached(MemoryRegionCache *cache,
2805     hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result)
2806 {
2807     assert(addr < cache->len);
2808     if (likely(cache->ptr)) {
2809         stb_p(cache->ptr + addr, val);
2810     } else {
2811         address_space_stb_cached_slow(cache, addr, val, attrs, result);
2812     }
2813 }
2814 
2815 #define ENDIANNESS   _le
2816 #include "exec/memory_ldst_cached.h.inc"
2817 
2818 #define ENDIANNESS   _be
2819 #include "exec/memory_ldst_cached.h.inc"
2820 
2821 #define SUFFIX       _cached
2822 #define ARG1         cache
2823 #define ARG1_DECL    MemoryRegionCache *cache
2824 #include "exec/memory_ldst_phys.h.inc"
2825 
2826 /* address_space_cache_init: prepare for repeated access to a physical
2827  * memory region
2828  *
2829  * @cache: #MemoryRegionCache to be filled
2830  * @as: #AddressSpace to be accessed
2831  * @addr: address within that address space
2832  * @len: length of buffer
2833  * @is_write: indicates the transfer direction
2834  *
2835  * Will only work with RAM, and may map a subset of the requested range by
2836  * returning a value that is less than @len.  On failure, return a negative
2837  * errno value.
2838  *
2839  * Because it only works with RAM, this function can be used for
2840  * read-modify-write operations.  In this case, is_write should be %true.
2841  *
2842  * Note that addresses passed to the address_space_*_cached functions
2843  * are relative to @addr.
2844  */
2845 int64_t address_space_cache_init(MemoryRegionCache *cache,
2846                                  AddressSpace *as,
2847                                  hwaddr addr,
2848                                  hwaddr len,
2849                                  bool is_write);
2850 
2851 /**
2852  * address_space_cache_init_empty: Initialize empty #MemoryRegionCache
2853  *
2854  * @cache: The #MemoryRegionCache to operate on.
2855  *
2856  * Initializes #MemoryRegionCache structure without memory region attached.
2857  * Cache initialized this way can only be safely destroyed, but not used.
2858  */
2859 static inline void address_space_cache_init_empty(MemoryRegionCache *cache)
2860 {
2861     cache->mrs.mr = NULL;
2862     /* There is no real need to initialize fv, but it makes Coverity happy. */
2863     cache->fv = NULL;
2864 }
2865 
2866 /**
2867  * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2868  *
2869  * @cache: The #MemoryRegionCache to operate on.
2870  * @addr: The first physical address that was written, relative to the
2871  * address that was passed to @address_space_cache_init.
2872  * @access_len: The number of bytes that were written starting at @addr.
2873  */
2874 void address_space_cache_invalidate(MemoryRegionCache *cache,
2875                                     hwaddr addr,
2876                                     hwaddr access_len);
2877 
2878 /**
2879  * address_space_cache_destroy: free a #MemoryRegionCache
2880  *
2881  * @cache: The #MemoryRegionCache whose memory should be released.
2882  */
2883 void address_space_cache_destroy(MemoryRegionCache *cache);
2884 
2885 /* address_space_get_iotlb_entry: translate an address into an IOTLB
2886  * entry. Should be called from an RCU critical section.
2887  */
2888 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2889                                             bool is_write, MemTxAttrs attrs);
2890 
2891 /* address_space_translate: translate an address range into an address space
2892  * into a MemoryRegion and an address range into that section.  Should be
2893  * called from an RCU critical section, to avoid that the last reference
2894  * to the returned region disappears after address_space_translate returns.
2895  *
2896  * @fv: #FlatView to be accessed
2897  * @addr: address within that address space
2898  * @xlat: pointer to address within the returned memory region section's
2899  * #MemoryRegion.
2900  * @len: pointer to length
2901  * @is_write: indicates the transfer direction
2902  * @attrs: memory attributes
2903  */
2904 MemoryRegion *flatview_translate(FlatView *fv,
2905                                  hwaddr addr, hwaddr *xlat,
2906                                  hwaddr *len, bool is_write,
2907                                  MemTxAttrs attrs);
2908 
2909 static inline MemoryRegion *address_space_translate(AddressSpace *as,
2910                                                     hwaddr addr, hwaddr *xlat,
2911                                                     hwaddr *len, bool is_write,
2912                                                     MemTxAttrs attrs)
2913 {
2914     return flatview_translate(address_space_to_flatview(as),
2915                               addr, xlat, len, is_write, attrs);
2916 }
2917 
2918 /* address_space_access_valid: check for validity of accessing an address
2919  * space range
2920  *
2921  * Check whether memory is assigned to the given address space range, and
2922  * access is permitted by any IOMMU regions that are active for the address
2923  * space.
2924  *
2925  * For now, addr and len should be aligned to a page size.  This limitation
2926  * will be lifted in the future.
2927  *
2928  * @as: #AddressSpace to be accessed
2929  * @addr: address within that address space
2930  * @len: length of the area to be checked
2931  * @is_write: indicates the transfer direction
2932  * @attrs: memory attributes
2933  */
2934 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2935                                 bool is_write, MemTxAttrs attrs);
2936 
2937 /* address_space_map: map a physical memory region into a host virtual address
2938  *
2939  * May map a subset of the requested range, given by and returned in @plen.
2940  * May return %NULL and set *@plen to zero(0), if resources needed to perform
2941  * the mapping are exhausted.
2942  * Use only for reads OR writes - not for read-modify-write operations.
2943  * Use cpu_register_map_client() to know when retrying the map operation is
2944  * likely to succeed.
2945  *
2946  * @as: #AddressSpace to be accessed
2947  * @addr: address within that address space
2948  * @plen: pointer to length of buffer; updated on return
2949  * @is_write: indicates the transfer direction
2950  * @attrs: memory attributes
2951  */
2952 void *address_space_map(AddressSpace *as, hwaddr addr,
2953                         hwaddr *plen, bool is_write, MemTxAttrs attrs);
2954 
2955 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2956  *
2957  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
2958  * the amount of memory that was actually read or written by the caller.
2959  *
2960  * @as: #AddressSpace used
2961  * @buffer: host pointer as returned by address_space_map()
2962  * @len: buffer length as returned by address_space_map()
2963  * @access_len: amount of data actually transferred
2964  * @is_write: indicates the transfer direction
2965  */
2966 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2967                          bool is_write, hwaddr access_len);
2968 
2969 
2970 /* Internal functions, part of the implementation of address_space_read.  */
2971 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2972                                     MemTxAttrs attrs, void *buf, hwaddr len);
2973 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2974                                    MemTxAttrs attrs, void *buf,
2975                                    hwaddr len, hwaddr addr1, hwaddr l,
2976                                    MemoryRegion *mr);
2977 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2978 
2979 /* Internal functions, part of the implementation of address_space_read_cached
2980  * and address_space_write_cached.  */
2981 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache,
2982                                            hwaddr addr, void *buf, hwaddr len);
2983 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
2984                                             hwaddr addr, const void *buf,
2985                                             hwaddr len);
2986 
2987 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr);
2988 bool prepare_mmio_access(MemoryRegion *mr);
2989 
2990 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2991 {
2992     if (is_write) {
2993         return memory_region_is_ram(mr) && !mr->readonly &&
2994                !mr->rom_device && !memory_region_is_ram_device(mr);
2995     } else {
2996         return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2997                memory_region_is_romd(mr);
2998     }
2999 }
3000 
3001 /**
3002  * address_space_read: read from an address space.
3003  *
3004  * Return a MemTxResult indicating whether the operation succeeded
3005  * or failed (eg unassigned memory, device rejected the transaction,
3006  * IOMMU fault).  Called within RCU critical section.
3007  *
3008  * @as: #AddressSpace to be accessed
3009  * @addr: address within that address space
3010  * @attrs: memory transaction attributes
3011  * @buf: buffer with the data transferred
3012  * @len: length of the data transferred
3013  */
3014 static inline __attribute__((__always_inline__))
3015 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
3016                                MemTxAttrs attrs, void *buf,
3017                                hwaddr len)
3018 {
3019     MemTxResult result = MEMTX_OK;
3020     hwaddr l, addr1;
3021     void *ptr;
3022     MemoryRegion *mr;
3023     FlatView *fv;
3024 
3025     if (__builtin_constant_p(len)) {
3026         if (len) {
3027             RCU_READ_LOCK_GUARD();
3028             fv = address_space_to_flatview(as);
3029             l = len;
3030             mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3031             if (len == l && memory_access_is_direct(mr, false)) {
3032                 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3033                 memcpy(buf, ptr, len);
3034             } else {
3035                 result = flatview_read_continue(fv, addr, attrs, buf, len,
3036                                                 addr1, l, mr);
3037             }
3038         }
3039     } else {
3040         result = address_space_read_full(as, addr, attrs, buf, len);
3041     }
3042     return result;
3043 }
3044 
3045 /**
3046  * address_space_read_cached: read from a cached RAM region
3047  *
3048  * @cache: Cached region to be addressed
3049  * @addr: address relative to the base of the RAM region
3050  * @buf: buffer with the data transferred
3051  * @len: length of the data transferred
3052  */
3053 static inline MemTxResult
3054 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
3055                           void *buf, hwaddr len)
3056 {
3057     assert(addr < cache->len && len <= cache->len - addr);
3058     fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr);
3059     if (likely(cache->ptr)) {
3060         memcpy(buf, cache->ptr + addr, len);
3061         return MEMTX_OK;
3062     } else {
3063         return address_space_read_cached_slow(cache, addr, buf, len);
3064     }
3065 }
3066 
3067 /**
3068  * address_space_write_cached: write to a cached RAM region
3069  *
3070  * @cache: Cached region to be addressed
3071  * @addr: address relative to the base of the RAM region
3072  * @buf: buffer with the data transferred
3073  * @len: length of the data transferred
3074  */
3075 static inline MemTxResult
3076 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
3077                            const void *buf, hwaddr len)
3078 {
3079     assert(addr < cache->len && len <= cache->len - addr);
3080     if (likely(cache->ptr)) {
3081         memcpy(cache->ptr + addr, buf, len);
3082         return MEMTX_OK;
3083     } else {
3084         return address_space_write_cached_slow(cache, addr, buf, len);
3085     }
3086 }
3087 
3088 /**
3089  * address_space_set: Fill address space with a constant byte.
3090  *
3091  * Return a MemTxResult indicating whether the operation succeeded
3092  * or failed (eg unassigned memory, device rejected the transaction,
3093  * IOMMU fault).
3094  *
3095  * @as: #AddressSpace to be accessed
3096  * @addr: address within that address space
3097  * @c: constant byte to fill the memory
3098  * @len: the number of bytes to fill with the constant byte
3099  * @attrs: memory transaction attributes
3100  */
3101 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
3102                               uint8_t c, hwaddr len, MemTxAttrs attrs);
3103 
3104 #ifdef NEED_CPU_H
3105 /* enum device_endian to MemOp.  */
3106 static inline MemOp devend_memop(enum device_endian end)
3107 {
3108     QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
3109                       DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
3110 
3111 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
3112     /* Swap if non-host endianness or native (target) endianness */
3113     return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
3114 #else
3115     const int non_host_endianness =
3116         DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
3117 
3118     /* In this case, native (target) endianness needs no swap.  */
3119     return (end == non_host_endianness) ? MO_BSWAP : 0;
3120 #endif
3121 }
3122 #endif
3123 
3124 /*
3125  * Inhibit technologies that require discarding of pages in RAM blocks, e.g.,
3126  * to manage the actual amount of memory consumed by the VM (then, the memory
3127  * provided by RAM blocks might be bigger than the desired memory consumption).
3128  * This *must* be set if:
3129  * - Discarding parts of a RAM blocks does not result in the change being
3130  *   reflected in the VM and the pages getting freed.
3131  * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous
3132  *   discards blindly.
3133  * - Discarding parts of a RAM blocks will result in integrity issues (e.g.,
3134  *   encrypted VMs).
3135  * Technologies that only temporarily pin the current working set of a
3136  * driver are fine, because we don't expect such pages to be discarded
3137  * (esp. based on guest action like balloon inflation).
3138  *
3139  * This is *not* to be used to protect from concurrent discards (esp.,
3140  * postcopy).
3141  *
3142  * Returns 0 if successful. Returns -EBUSY if a technology that relies on
3143  * discards to work reliably is active.
3144  */
3145 int ram_block_discard_disable(bool state);
3146 
3147 /*
3148  * See ram_block_discard_disable(): only disable uncoordinated discards,
3149  * keeping coordinated discards (via the RamDiscardManager) enabled.
3150  */
3151 int ram_block_uncoordinated_discard_disable(bool state);
3152 
3153 /*
3154  * Inhibit technologies that disable discarding of pages in RAM blocks.
3155  *
3156  * Returns 0 if successful. Returns -EBUSY if discards are already set to
3157  * broken.
3158  */
3159 int ram_block_discard_require(bool state);
3160 
3161 /*
3162  * See ram_block_discard_require(): only inhibit technologies that disable
3163  * uncoordinated discarding of pages in RAM blocks, allowing co-existence with
3164  * technologies that only inhibit uncoordinated discards (via the
3165  * RamDiscardManager).
3166  */
3167 int ram_block_coordinated_discard_require(bool state);
3168 
3169 /*
3170  * Test if any discarding of memory in ram blocks is disabled.
3171  */
3172 bool ram_block_discard_is_disabled(void);
3173 
3174 /*
3175  * Test if any discarding of memory in ram blocks is required to work reliably.
3176  */
3177 bool ram_block_discard_is_required(void);
3178 
3179 #endif
3180 
3181 #endif
3182