1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef MEMORY_H 15 #define MEMORY_H 16 17 #ifndef CONFIG_USER_ONLY 18 19 #include "exec/cpu-common.h" 20 #include "exec/hwaddr.h" 21 #include "exec/memattrs.h" 22 #include "exec/memop.h" 23 #include "exec/ramlist.h" 24 #include "qemu/bswap.h" 25 #include "qemu/queue.h" 26 #include "qemu/int128.h" 27 #include "qemu/range.h" 28 #include "qemu/notify.h" 29 #include "qom/object.h" 30 #include "qemu/rcu.h" 31 32 #define RAM_ADDR_INVALID (~(ram_addr_t)0) 33 34 #define MAX_PHYS_ADDR_SPACE_BITS 62 35 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 36 37 #define TYPE_MEMORY_REGION "memory-region" 38 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION, 39 TYPE_MEMORY_REGION) 40 41 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region" 42 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass; 43 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass, 44 IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION) 45 46 #define TYPE_RAM_DISCARD_MANAGER "qemu:ram-discard-manager" 47 typedef struct RamDiscardManagerClass RamDiscardManagerClass; 48 typedef struct RamDiscardManager RamDiscardManager; 49 DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass, 50 RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER); 51 52 #ifdef CONFIG_FUZZ 53 void fuzz_dma_read_cb(size_t addr, 54 size_t len, 55 MemoryRegion *mr); 56 #else 57 static inline void fuzz_dma_read_cb(size_t addr, 58 size_t len, 59 MemoryRegion *mr) 60 { 61 /* Do Nothing */ 62 } 63 #endif 64 65 /* Possible bits for global_dirty_log_{start|stop} */ 66 67 /* Dirty tracking enabled because migration is running */ 68 #define GLOBAL_DIRTY_MIGRATION (1U << 0) 69 70 /* Dirty tracking enabled because measuring dirty rate */ 71 #define GLOBAL_DIRTY_DIRTY_RATE (1U << 1) 72 73 /* Dirty tracking enabled because dirty limit */ 74 #define GLOBAL_DIRTY_LIMIT (1U << 2) 75 76 #define GLOBAL_DIRTY_MASK (0x7) 77 78 extern unsigned int global_dirty_tracking; 79 80 typedef struct MemoryRegionOps MemoryRegionOps; 81 82 struct ReservedRegion { 83 Range range; 84 unsigned type; 85 }; 86 87 /** 88 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion 89 * 90 * @mr: the region, or %NULL if empty 91 * @fv: the flat view of the address space the region is mapped in 92 * @offset_within_region: the beginning of the section, relative to @mr's start 93 * @size: the size of the section; will not exceed @mr's boundaries 94 * @offset_within_address_space: the address of the first byte of the section 95 * relative to the region's address space 96 * @readonly: writes to this section are ignored 97 * @nonvolatile: this section is non-volatile 98 * @unmergeable: this section should not get merged with adjacent sections 99 */ 100 struct MemoryRegionSection { 101 Int128 size; 102 MemoryRegion *mr; 103 FlatView *fv; 104 hwaddr offset_within_region; 105 hwaddr offset_within_address_space; 106 bool readonly; 107 bool nonvolatile; 108 bool unmergeable; 109 }; 110 111 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 112 113 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 114 typedef enum { 115 IOMMU_NONE = 0, 116 IOMMU_RO = 1, 117 IOMMU_WO = 2, 118 IOMMU_RW = 3, 119 } IOMMUAccessFlags; 120 121 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0)) 122 123 struct IOMMUTLBEntry { 124 AddressSpace *target_as; 125 hwaddr iova; 126 hwaddr translated_addr; 127 hwaddr addr_mask; /* 0xfff = 4k translation */ 128 IOMMUAccessFlags perm; 129 }; 130 131 /* 132 * Bitmap for different IOMMUNotifier capabilities. Each notifier can 133 * register with one or multiple IOMMU Notifier capability bit(s). 134 * 135 * Normally there're two use cases for the notifiers: 136 * 137 * (1) When the device needs accurate synchronizations of the vIOMMU page 138 * tables, it needs to register with both MAP|UNMAP notifies (which 139 * is defined as IOMMU_NOTIFIER_IOTLB_EVENTS below). 140 * 141 * Regarding to accurate synchronization, it's when the notified 142 * device maintains a shadow page table and must be notified on each 143 * guest MAP (page table entry creation) and UNMAP (invalidation) 144 * events (e.g. VFIO). Both notifications must be accurate so that 145 * the shadow page table is fully in sync with the guest view. 146 * 147 * (2) When the device doesn't need accurate synchronizations of the 148 * vIOMMU page tables, it needs to register only with UNMAP or 149 * DEVIOTLB_UNMAP notifies. 150 * 151 * It's when the device maintains a cache of IOMMU translations 152 * (IOTLB) and is able to fill that cache by requesting translations 153 * from the vIOMMU through a protocol similar to ATS (Address 154 * Translation Service). 155 * 156 * Note that in this mode the vIOMMU will not maintain a shadowed 157 * page table for the address space, and the UNMAP messages can cover 158 * more than the pages that used to get mapped. The IOMMU notifiee 159 * should be able to take care of over-sized invalidations. 160 */ 161 typedef enum { 162 IOMMU_NOTIFIER_NONE = 0, 163 /* Notify cache invalidations */ 164 IOMMU_NOTIFIER_UNMAP = 0x1, 165 /* Notify entry changes (newly created entries) */ 166 IOMMU_NOTIFIER_MAP = 0x2, 167 /* Notify changes on device IOTLB entries */ 168 IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04, 169 } IOMMUNotifierFlag; 170 171 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP) 172 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP 173 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \ 174 IOMMU_NOTIFIER_DEVIOTLB_EVENTS) 175 176 struct IOMMUNotifier; 177 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier, 178 IOMMUTLBEntry *data); 179 180 struct IOMMUNotifier { 181 IOMMUNotify notify; 182 IOMMUNotifierFlag notifier_flags; 183 /* Notify for address space range start <= addr <= end */ 184 hwaddr start; 185 hwaddr end; 186 int iommu_idx; 187 QLIST_ENTRY(IOMMUNotifier) node; 188 }; 189 typedef struct IOMMUNotifier IOMMUNotifier; 190 191 typedef struct IOMMUTLBEvent { 192 IOMMUNotifierFlag type; 193 IOMMUTLBEntry entry; 194 } IOMMUTLBEvent; 195 196 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ 197 #define RAM_PREALLOC (1 << 0) 198 199 /* RAM is mmap-ed with MAP_SHARED */ 200 #define RAM_SHARED (1 << 1) 201 202 /* Only a portion of RAM (used_length) is actually used, and migrated. 203 * Resizing RAM while migrating can result in the migration being canceled. 204 */ 205 #define RAM_RESIZEABLE (1 << 2) 206 207 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically 208 * zero the page and wake waiting processes. 209 * (Set during postcopy) 210 */ 211 #define RAM_UF_ZEROPAGE (1 << 3) 212 213 /* RAM can be migrated */ 214 #define RAM_MIGRATABLE (1 << 4) 215 216 /* RAM is a persistent kind memory */ 217 #define RAM_PMEM (1 << 5) 218 219 220 /* 221 * UFFDIO_WRITEPROTECT is used on this RAMBlock to 222 * support 'write-tracking' migration type. 223 * Implies ram_state->ram_wt_enabled. 224 */ 225 #define RAM_UF_WRITEPROTECT (1 << 6) 226 227 /* 228 * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge 229 * pages if applicable) is skipped: will bail out if not supported. When not 230 * set, the OS will do the reservation, if supported for the memory type. 231 */ 232 #define RAM_NORESERVE (1 << 7) 233 234 /* RAM that isn't accessible through normal means. */ 235 #define RAM_PROTECTED (1 << 8) 236 237 /* RAM is an mmap-ed named file */ 238 #define RAM_NAMED_FILE (1 << 9) 239 240 /* RAM is mmap-ed read-only */ 241 #define RAM_READONLY (1 << 10) 242 243 /* RAM FD is opened read-only */ 244 #define RAM_READONLY_FD (1 << 11) 245 246 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn, 247 IOMMUNotifierFlag flags, 248 hwaddr start, hwaddr end, 249 int iommu_idx) 250 { 251 n->notify = fn; 252 n->notifier_flags = flags; 253 n->start = start; 254 n->end = end; 255 n->iommu_idx = iommu_idx; 256 } 257 258 /* 259 * Memory region callbacks 260 */ 261 struct MemoryRegionOps { 262 /* Read from the memory region. @addr is relative to @mr; @size is 263 * in bytes. */ 264 uint64_t (*read)(void *opaque, 265 hwaddr addr, 266 unsigned size); 267 /* Write to the memory region. @addr is relative to @mr; @size is 268 * in bytes. */ 269 void (*write)(void *opaque, 270 hwaddr addr, 271 uint64_t data, 272 unsigned size); 273 274 MemTxResult (*read_with_attrs)(void *opaque, 275 hwaddr addr, 276 uint64_t *data, 277 unsigned size, 278 MemTxAttrs attrs); 279 MemTxResult (*write_with_attrs)(void *opaque, 280 hwaddr addr, 281 uint64_t data, 282 unsigned size, 283 MemTxAttrs attrs); 284 285 enum device_endian endianness; 286 /* Guest-visible constraints: */ 287 struct { 288 /* If nonzero, specify bounds on access sizes beyond which a machine 289 * check is thrown. 290 */ 291 unsigned min_access_size; 292 unsigned max_access_size; 293 /* If true, unaligned accesses are supported. Otherwise unaligned 294 * accesses throw machine checks. 295 */ 296 bool unaligned; 297 /* 298 * If present, and returns #false, the transaction is not accepted 299 * by the device (and results in machine dependent behaviour such 300 * as a machine check exception). 301 */ 302 bool (*accepts)(void *opaque, hwaddr addr, 303 unsigned size, bool is_write, 304 MemTxAttrs attrs); 305 } valid; 306 /* Internal implementation constraints: */ 307 struct { 308 /* If nonzero, specifies the minimum size implemented. Smaller sizes 309 * will be rounded upwards and a partial result will be returned. 310 */ 311 unsigned min_access_size; 312 /* If nonzero, specifies the maximum size implemented. Larger sizes 313 * will be done as a series of accesses with smaller sizes. 314 */ 315 unsigned max_access_size; 316 /* If true, unaligned accesses are supported. Otherwise all accesses 317 * are converted to (possibly multiple) naturally aligned accesses. 318 */ 319 bool unaligned; 320 } impl; 321 }; 322 323 typedef struct MemoryRegionClass { 324 /* private */ 325 ObjectClass parent_class; 326 } MemoryRegionClass; 327 328 329 enum IOMMUMemoryRegionAttr { 330 IOMMU_ATTR_SPAPR_TCE_FD 331 }; 332 333 /* 334 * IOMMUMemoryRegionClass: 335 * 336 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION 337 * and provide an implementation of at least the @translate method here 338 * to handle requests to the memory region. Other methods are optional. 339 * 340 * The IOMMU implementation must use the IOMMU notifier infrastructure 341 * to report whenever mappings are changed, by calling 342 * memory_region_notify_iommu() (or, if necessary, by calling 343 * memory_region_notify_iommu_one() for each registered notifier). 344 * 345 * Conceptually an IOMMU provides a mapping from input address 346 * to an output TLB entry. If the IOMMU is aware of memory transaction 347 * attributes and the output TLB entry depends on the transaction 348 * attributes, we represent this using IOMMU indexes. Each index 349 * selects a particular translation table that the IOMMU has: 350 * 351 * @attrs_to_index returns the IOMMU index for a set of transaction attributes 352 * 353 * @translate takes an input address and an IOMMU index 354 * 355 * and the mapping returned can only depend on the input address and the 356 * IOMMU index. 357 * 358 * Most IOMMUs don't care about the transaction attributes and support 359 * only a single IOMMU index. A more complex IOMMU might have one index 360 * for secure transactions and one for non-secure transactions. 361 */ 362 struct IOMMUMemoryRegionClass { 363 /* private: */ 364 MemoryRegionClass parent_class; 365 366 /* public: */ 367 /** 368 * @translate: 369 * 370 * Return a TLB entry that contains a given address. 371 * 372 * The IOMMUAccessFlags indicated via @flag are optional and may 373 * be specified as IOMMU_NONE to indicate that the caller needs 374 * the full translation information for both reads and writes. If 375 * the access flags are specified then the IOMMU implementation 376 * may use this as an optimization, to stop doing a page table 377 * walk as soon as it knows that the requested permissions are not 378 * allowed. If IOMMU_NONE is passed then the IOMMU must do the 379 * full page table walk and report the permissions in the returned 380 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not 381 * return different mappings for reads and writes.) 382 * 383 * The returned information remains valid while the caller is 384 * holding the big QEMU lock or is inside an RCU critical section; 385 * if the caller wishes to cache the mapping beyond that it must 386 * register an IOMMU notifier so it can invalidate its cached 387 * information when the IOMMU mapping changes. 388 * 389 * @iommu: the IOMMUMemoryRegion 390 * 391 * @hwaddr: address to be translated within the memory region 392 * 393 * @flag: requested access permission 394 * 395 * @iommu_idx: IOMMU index for the translation 396 */ 397 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr, 398 IOMMUAccessFlags flag, int iommu_idx); 399 /** 400 * @get_min_page_size: 401 * 402 * Returns minimum supported page size in bytes. 403 * 404 * If this method is not provided then the minimum is assumed to 405 * be TARGET_PAGE_SIZE. 406 * 407 * @iommu: the IOMMUMemoryRegion 408 */ 409 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu); 410 /** 411 * @notify_flag_changed: 412 * 413 * Called when IOMMU Notifier flag changes (ie when the set of 414 * events which IOMMU users are requesting notification for changes). 415 * Optional method -- need not be provided if the IOMMU does not 416 * need to know exactly which events must be notified. 417 * 418 * @iommu: the IOMMUMemoryRegion 419 * 420 * @old_flags: events which previously needed to be notified 421 * 422 * @new_flags: events which now need to be notified 423 * 424 * Returns 0 on success, or a negative errno; in particular 425 * returns -EINVAL if the new flag bitmap is not supported by the 426 * IOMMU memory region. In case of failure, the error object 427 * must be created 428 */ 429 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu, 430 IOMMUNotifierFlag old_flags, 431 IOMMUNotifierFlag new_flags, 432 Error **errp); 433 /** 434 * @replay: 435 * 436 * Called to handle memory_region_iommu_replay(). 437 * 438 * The default implementation of memory_region_iommu_replay() is to 439 * call the IOMMU translate method for every page in the address space 440 * with flag == IOMMU_NONE and then call the notifier if translate 441 * returns a valid mapping. If this method is implemented then it 442 * overrides the default behaviour, and must provide the full semantics 443 * of memory_region_iommu_replay(), by calling @notifier for every 444 * translation present in the IOMMU. 445 * 446 * Optional method -- an IOMMU only needs to provide this method 447 * if the default is inefficient or produces undesirable side effects. 448 * 449 * Note: this is not related to record-and-replay functionality. 450 */ 451 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier); 452 453 /** 454 * @get_attr: 455 * 456 * Get IOMMU misc attributes. This is an optional method that 457 * can be used to allow users of the IOMMU to get implementation-specific 458 * information. The IOMMU implements this method to handle calls 459 * by IOMMU users to memory_region_iommu_get_attr() by filling in 460 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that 461 * the IOMMU supports. If the method is unimplemented then 462 * memory_region_iommu_get_attr() will always return -EINVAL. 463 * 464 * @iommu: the IOMMUMemoryRegion 465 * 466 * @attr: attribute being queried 467 * 468 * @data: memory to fill in with the attribute data 469 * 470 * Returns 0 on success, or a negative errno; in particular 471 * returns -EINVAL for unrecognized or unimplemented attribute types. 472 */ 473 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr, 474 void *data); 475 476 /** 477 * @attrs_to_index: 478 * 479 * Return the IOMMU index to use for a given set of transaction attributes. 480 * 481 * Optional method: if an IOMMU only supports a single IOMMU index then 482 * the default implementation of memory_region_iommu_attrs_to_index() 483 * will return 0. 484 * 485 * The indexes supported by an IOMMU must be contiguous, starting at 0. 486 * 487 * @iommu: the IOMMUMemoryRegion 488 * @attrs: memory transaction attributes 489 */ 490 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs); 491 492 /** 493 * @num_indexes: 494 * 495 * Return the number of IOMMU indexes this IOMMU supports. 496 * 497 * Optional method: if this method is not provided, then 498 * memory_region_iommu_num_indexes() will return 1, indicating that 499 * only a single IOMMU index is supported. 500 * 501 * @iommu: the IOMMUMemoryRegion 502 */ 503 int (*num_indexes)(IOMMUMemoryRegion *iommu); 504 505 /** 506 * @iommu_set_page_size_mask: 507 * 508 * Restrict the page size mask that can be supported with a given IOMMU 509 * memory region. Used for example to propagate host physical IOMMU page 510 * size mask limitations to the virtual IOMMU. 511 * 512 * Optional method: if this method is not provided, then the default global 513 * page mask is used. 514 * 515 * @iommu: the IOMMUMemoryRegion 516 * 517 * @page_size_mask: a bitmask of supported page sizes. At least one bit, 518 * representing the smallest page size, must be set. Additional set bits 519 * represent supported block sizes. For example a host physical IOMMU that 520 * uses page tables with a page size of 4kB, and supports 2MB and 4GB 521 * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate 522 * block sizes is specified with mask 0xfffffffffffff000. 523 * 524 * Returns 0 on success, or a negative error. In case of failure, the error 525 * object must be created. 526 */ 527 int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu, 528 uint64_t page_size_mask, 529 Error **errp); 530 /** 531 * @iommu_set_iova_ranges: 532 * 533 * Propagate information about the usable IOVA ranges for a given IOMMU 534 * memory region. Used for example to propagate host physical device 535 * reserved memory region constraints to the virtual IOMMU. 536 * 537 * Optional method: if this method is not provided, then the default IOVA 538 * aperture is used. 539 * 540 * @iommu: the IOMMUMemoryRegion 541 * 542 * @iova_ranges: list of ordered IOVA ranges (at least one range) 543 * 544 * Returns 0 on success, or a negative error. In case of failure, the error 545 * object must be created. 546 */ 547 int (*iommu_set_iova_ranges)(IOMMUMemoryRegion *iommu, 548 GList *iova_ranges, 549 Error **errp); 550 }; 551 552 typedef struct RamDiscardListener RamDiscardListener; 553 typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl, 554 MemoryRegionSection *section); 555 typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl, 556 MemoryRegionSection *section); 557 558 struct RamDiscardListener { 559 /* 560 * @notify_populate: 561 * 562 * Notification that previously discarded memory is about to get populated. 563 * Listeners are able to object. If any listener objects, already 564 * successfully notified listeners are notified about a discard again. 565 * 566 * @rdl: the #RamDiscardListener getting notified 567 * @section: the #MemoryRegionSection to get populated. The section 568 * is aligned within the memory region to the minimum granularity 569 * unless it would exceed the registered section. 570 * 571 * Returns 0 on success. If the notification is rejected by the listener, 572 * an error is returned. 573 */ 574 NotifyRamPopulate notify_populate; 575 576 /* 577 * @notify_discard: 578 * 579 * Notification that previously populated memory was discarded successfully 580 * and listeners should drop all references to such memory and prevent 581 * new population (e.g., unmap). 582 * 583 * @rdl: the #RamDiscardListener getting notified 584 * @section: the #MemoryRegionSection to get populated. The section 585 * is aligned within the memory region to the minimum granularity 586 * unless it would exceed the registered section. 587 */ 588 NotifyRamDiscard notify_discard; 589 590 /* 591 * @double_discard_supported: 592 * 593 * The listener suppors getting @notify_discard notifications that span 594 * already discarded parts. 595 */ 596 bool double_discard_supported; 597 598 MemoryRegionSection *section; 599 QLIST_ENTRY(RamDiscardListener) next; 600 }; 601 602 static inline void ram_discard_listener_init(RamDiscardListener *rdl, 603 NotifyRamPopulate populate_fn, 604 NotifyRamDiscard discard_fn, 605 bool double_discard_supported) 606 { 607 rdl->notify_populate = populate_fn; 608 rdl->notify_discard = discard_fn; 609 rdl->double_discard_supported = double_discard_supported; 610 } 611 612 typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque); 613 typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque); 614 615 /* 616 * RamDiscardManagerClass: 617 * 618 * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion 619 * regions are currently populated to be used/accessed by the VM, notifying 620 * after parts were discarded (freeing up memory) and before parts will be 621 * populated (consuming memory), to be used/accessed by the VM. 622 * 623 * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the 624 * #MemoryRegion isn't mapped into an address space yet (either directly 625 * or via an alias); it cannot change while the #MemoryRegion is 626 * mapped into an address space. 627 * 628 * The #RamDiscardManager is intended to be used by technologies that are 629 * incompatible with discarding of RAM (e.g., VFIO, which may pin all 630 * memory inside a #MemoryRegion), and require proper coordination to only 631 * map the currently populated parts, to hinder parts that are expected to 632 * remain discarded from silently getting populated and consuming memory. 633 * Technologies that support discarding of RAM don't have to bother and can 634 * simply map the whole #MemoryRegion. 635 * 636 * An example #RamDiscardManager is virtio-mem, which logically (un)plugs 637 * memory within an assigned RAM #MemoryRegion, coordinated with the VM. 638 * Logically unplugging memory consists of discarding RAM. The VM agreed to not 639 * access unplugged (discarded) memory - especially via DMA. virtio-mem will 640 * properly coordinate with listeners before memory is plugged (populated), 641 * and after memory is unplugged (discarded). 642 * 643 * Listeners are called in multiples of the minimum granularity (unless it 644 * would exceed the registered range) and changes are aligned to the minimum 645 * granularity within the #MemoryRegion. Listeners have to prepare for memory 646 * becoming discarded in a different granularity than it was populated and the 647 * other way around. 648 */ 649 struct RamDiscardManagerClass { 650 /* private */ 651 InterfaceClass parent_class; 652 653 /* public */ 654 655 /** 656 * @get_min_granularity: 657 * 658 * Get the minimum granularity in which listeners will get notified 659 * about changes within the #MemoryRegion via the #RamDiscardManager. 660 * 661 * @rdm: the #RamDiscardManager 662 * @mr: the #MemoryRegion 663 * 664 * Returns the minimum granularity. 665 */ 666 uint64_t (*get_min_granularity)(const RamDiscardManager *rdm, 667 const MemoryRegion *mr); 668 669 /** 670 * @is_populated: 671 * 672 * Check whether the given #MemoryRegionSection is completely populated 673 * (i.e., no parts are currently discarded) via the #RamDiscardManager. 674 * There are no alignment requirements. 675 * 676 * @rdm: the #RamDiscardManager 677 * @section: the #MemoryRegionSection 678 * 679 * Returns whether the given range is completely populated. 680 */ 681 bool (*is_populated)(const RamDiscardManager *rdm, 682 const MemoryRegionSection *section); 683 684 /** 685 * @replay_populated: 686 * 687 * Call the #ReplayRamPopulate callback for all populated parts within the 688 * #MemoryRegionSection via the #RamDiscardManager. 689 * 690 * In case any call fails, no further calls are made. 691 * 692 * @rdm: the #RamDiscardManager 693 * @section: the #MemoryRegionSection 694 * @replay_fn: the #ReplayRamPopulate callback 695 * @opaque: pointer to forward to the callback 696 * 697 * Returns 0 on success, or a negative error if any notification failed. 698 */ 699 int (*replay_populated)(const RamDiscardManager *rdm, 700 MemoryRegionSection *section, 701 ReplayRamPopulate replay_fn, void *opaque); 702 703 /** 704 * @replay_discarded: 705 * 706 * Call the #ReplayRamDiscard callback for all discarded parts within the 707 * #MemoryRegionSection via the #RamDiscardManager. 708 * 709 * @rdm: the #RamDiscardManager 710 * @section: the #MemoryRegionSection 711 * @replay_fn: the #ReplayRamDiscard callback 712 * @opaque: pointer to forward to the callback 713 */ 714 void (*replay_discarded)(const RamDiscardManager *rdm, 715 MemoryRegionSection *section, 716 ReplayRamDiscard replay_fn, void *opaque); 717 718 /** 719 * @register_listener: 720 * 721 * Register a #RamDiscardListener for the given #MemoryRegionSection and 722 * immediately notify the #RamDiscardListener about all populated parts 723 * within the #MemoryRegionSection via the #RamDiscardManager. 724 * 725 * In case any notification fails, no further notifications are triggered 726 * and an error is logged. 727 * 728 * @rdm: the #RamDiscardManager 729 * @rdl: the #RamDiscardListener 730 * @section: the #MemoryRegionSection 731 */ 732 void (*register_listener)(RamDiscardManager *rdm, 733 RamDiscardListener *rdl, 734 MemoryRegionSection *section); 735 736 /** 737 * @unregister_listener: 738 * 739 * Unregister a previously registered #RamDiscardListener via the 740 * #RamDiscardManager after notifying the #RamDiscardListener about all 741 * populated parts becoming unpopulated within the registered 742 * #MemoryRegionSection. 743 * 744 * @rdm: the #RamDiscardManager 745 * @rdl: the #RamDiscardListener 746 */ 747 void (*unregister_listener)(RamDiscardManager *rdm, 748 RamDiscardListener *rdl); 749 }; 750 751 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm, 752 const MemoryRegion *mr); 753 754 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm, 755 const MemoryRegionSection *section); 756 757 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm, 758 MemoryRegionSection *section, 759 ReplayRamPopulate replay_fn, 760 void *opaque); 761 762 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm, 763 MemoryRegionSection *section, 764 ReplayRamDiscard replay_fn, 765 void *opaque); 766 767 void ram_discard_manager_register_listener(RamDiscardManager *rdm, 768 RamDiscardListener *rdl, 769 MemoryRegionSection *section); 770 771 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm, 772 RamDiscardListener *rdl); 773 774 bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr, 775 ram_addr_t *ram_addr, bool *read_only, 776 bool *mr_has_discard_manager); 777 778 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 779 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 780 781 /** MemoryRegion: 782 * 783 * A struct representing a memory region. 784 */ 785 struct MemoryRegion { 786 Object parent_obj; 787 788 /* private: */ 789 790 /* The following fields should fit in a cache line */ 791 bool romd_mode; 792 bool ram; 793 bool subpage; 794 bool readonly; /* For RAM regions */ 795 bool nonvolatile; 796 bool rom_device; 797 bool flush_coalesced_mmio; 798 bool unmergeable; 799 uint8_t dirty_log_mask; 800 bool is_iommu; 801 RAMBlock *ram_block; 802 Object *owner; 803 /* owner as TYPE_DEVICE. Used for re-entrancy checks in MR access hotpath */ 804 DeviceState *dev; 805 806 const MemoryRegionOps *ops; 807 void *opaque; 808 MemoryRegion *container; 809 int mapped_via_alias; /* Mapped via an alias, container might be NULL */ 810 Int128 size; 811 hwaddr addr; 812 void (*destructor)(MemoryRegion *mr); 813 uint64_t align; 814 bool terminates; 815 bool ram_device; 816 bool enabled; 817 bool warning_printed; /* For reservations */ 818 uint8_t vga_logging_count; 819 MemoryRegion *alias; 820 hwaddr alias_offset; 821 int32_t priority; 822 QTAILQ_HEAD(, MemoryRegion) subregions; 823 QTAILQ_ENTRY(MemoryRegion) subregions_link; 824 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced; 825 const char *name; 826 unsigned ioeventfd_nb; 827 MemoryRegionIoeventfd *ioeventfds; 828 RamDiscardManager *rdm; /* Only for RAM */ 829 830 /* For devices designed to perform re-entrant IO into their own IO MRs */ 831 bool disable_reentrancy_guard; 832 }; 833 834 struct IOMMUMemoryRegion { 835 MemoryRegion parent_obj; 836 837 QLIST_HEAD(, IOMMUNotifier) iommu_notify; 838 IOMMUNotifierFlag iommu_notify_flags; 839 }; 840 841 #define IOMMU_NOTIFIER_FOREACH(n, mr) \ 842 QLIST_FOREACH((n), &(mr)->iommu_notify, node) 843 844 #define MEMORY_LISTENER_PRIORITY_MIN 0 845 #define MEMORY_LISTENER_PRIORITY_ACCEL 10 846 #define MEMORY_LISTENER_PRIORITY_DEV_BACKEND 10 847 848 /** 849 * struct MemoryListener: callbacks structure for updates to the physical memory map 850 * 851 * Allows a component to adjust to changes in the guest-visible memory map. 852 * Use with memory_listener_register() and memory_listener_unregister(). 853 */ 854 struct MemoryListener { 855 /** 856 * @begin: 857 * 858 * Called at the beginning of an address space update transaction. 859 * Followed by calls to #MemoryListener.region_add(), 860 * #MemoryListener.region_del(), #MemoryListener.region_nop(), 861 * #MemoryListener.log_start() and #MemoryListener.log_stop() in 862 * increasing address order. 863 * 864 * @listener: The #MemoryListener. 865 */ 866 void (*begin)(MemoryListener *listener); 867 868 /** 869 * @commit: 870 * 871 * Called at the end of an address space update transaction, 872 * after the last call to #MemoryListener.region_add(), 873 * #MemoryListener.region_del() or #MemoryListener.region_nop(), 874 * #MemoryListener.log_start() and #MemoryListener.log_stop(). 875 * 876 * @listener: The #MemoryListener. 877 */ 878 void (*commit)(MemoryListener *listener); 879 880 /** 881 * @region_add: 882 * 883 * Called during an address space update transaction, 884 * for a section of the address space that is new in this address space 885 * space since the last transaction. 886 * 887 * @listener: The #MemoryListener. 888 * @section: The new #MemoryRegionSection. 889 */ 890 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 891 892 /** 893 * @region_del: 894 * 895 * Called during an address space update transaction, 896 * for a section of the address space that has disappeared in the address 897 * space since the last transaction. 898 * 899 * @listener: The #MemoryListener. 900 * @section: The old #MemoryRegionSection. 901 */ 902 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 903 904 /** 905 * @region_nop: 906 * 907 * Called during an address space update transaction, 908 * for a section of the address space that is in the same place in the address 909 * space as in the last transaction. 910 * 911 * @listener: The #MemoryListener. 912 * @section: The #MemoryRegionSection. 913 */ 914 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 915 916 /** 917 * @log_start: 918 * 919 * Called during an address space update transaction, after 920 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or 921 * #MemoryListener.region_nop(), if dirty memory logging clients have 922 * become active since the last transaction. 923 * 924 * @listener: The #MemoryListener. 925 * @section: The #MemoryRegionSection. 926 * @old: A bitmap of dirty memory logging clients that were active in 927 * the previous transaction. 928 * @new: A bitmap of dirty memory logging clients that are active in 929 * the current transaction. 930 */ 931 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 932 int old, int new); 933 934 /** 935 * @log_stop: 936 * 937 * Called during an address space update transaction, after 938 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or 939 * #MemoryListener.region_nop() and possibly after 940 * #MemoryListener.log_start(), if dirty memory logging clients have 941 * become inactive since the last transaction. 942 * 943 * @listener: The #MemoryListener. 944 * @section: The #MemoryRegionSection. 945 * @old: A bitmap of dirty memory logging clients that were active in 946 * the previous transaction. 947 * @new: A bitmap of dirty memory logging clients that are active in 948 * the current transaction. 949 */ 950 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 951 int old, int new); 952 953 /** 954 * @log_sync: 955 * 956 * Called by memory_region_snapshot_and_clear_dirty() and 957 * memory_global_dirty_log_sync(), before accessing QEMU's "official" 958 * copy of the dirty memory bitmap for a #MemoryRegionSection. 959 * 960 * @listener: The #MemoryListener. 961 * @section: The #MemoryRegionSection. 962 */ 963 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 964 965 /** 966 * @log_sync_global: 967 * 968 * This is the global version of @log_sync when the listener does 969 * not have a way to synchronize the log with finer granularity. 970 * When the listener registers with @log_sync_global defined, then 971 * its @log_sync must be NULL. Vice versa. 972 * 973 * @listener: The #MemoryListener. 974 * @last_stage: The last stage to synchronize the log during migration. 975 * The caller should guarantee that the synchronization with true for 976 * @last_stage is triggered for once after all VCPUs have been stopped. 977 */ 978 void (*log_sync_global)(MemoryListener *listener, bool last_stage); 979 980 /** 981 * @log_clear: 982 * 983 * Called before reading the dirty memory bitmap for a 984 * #MemoryRegionSection. 985 * 986 * @listener: The #MemoryListener. 987 * @section: The #MemoryRegionSection. 988 */ 989 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section); 990 991 /** 992 * @log_global_start: 993 * 994 * Called by memory_global_dirty_log_start(), which 995 * enables the %DIRTY_LOG_MIGRATION client on all memory regions in 996 * the address space. #MemoryListener.log_global_start() is also 997 * called when a #MemoryListener is added, if global dirty logging is 998 * active at that time. 999 * 1000 * @listener: The #MemoryListener. 1001 */ 1002 void (*log_global_start)(MemoryListener *listener); 1003 1004 /** 1005 * @log_global_stop: 1006 * 1007 * Called by memory_global_dirty_log_stop(), which 1008 * disables the %DIRTY_LOG_MIGRATION client on all memory regions in 1009 * the address space. 1010 * 1011 * @listener: The #MemoryListener. 1012 */ 1013 void (*log_global_stop)(MemoryListener *listener); 1014 1015 /** 1016 * @log_global_after_sync: 1017 * 1018 * Called after reading the dirty memory bitmap 1019 * for any #MemoryRegionSection. 1020 * 1021 * @listener: The #MemoryListener. 1022 */ 1023 void (*log_global_after_sync)(MemoryListener *listener); 1024 1025 /** 1026 * @eventfd_add: 1027 * 1028 * Called during an address space update transaction, 1029 * for a section of the address space that has had a new ioeventfd 1030 * registration since the last transaction. 1031 * 1032 * @listener: The #MemoryListener. 1033 * @section: The new #MemoryRegionSection. 1034 * @match_data: The @match_data parameter for the new ioeventfd. 1035 * @data: The @data parameter for the new ioeventfd. 1036 * @e: The #EventNotifier parameter for the new ioeventfd. 1037 */ 1038 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 1039 bool match_data, uint64_t data, EventNotifier *e); 1040 1041 /** 1042 * @eventfd_del: 1043 * 1044 * Called during an address space update transaction, 1045 * for a section of the address space that has dropped an ioeventfd 1046 * registration since the last transaction. 1047 * 1048 * @listener: The #MemoryListener. 1049 * @section: The new #MemoryRegionSection. 1050 * @match_data: The @match_data parameter for the dropped ioeventfd. 1051 * @data: The @data parameter for the dropped ioeventfd. 1052 * @e: The #EventNotifier parameter for the dropped ioeventfd. 1053 */ 1054 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 1055 bool match_data, uint64_t data, EventNotifier *e); 1056 1057 /** 1058 * @coalesced_io_add: 1059 * 1060 * Called during an address space update transaction, 1061 * for a section of the address space that has had a new coalesced 1062 * MMIO range registration since the last transaction. 1063 * 1064 * @listener: The #MemoryListener. 1065 * @section: The new #MemoryRegionSection. 1066 * @addr: The starting address for the coalesced MMIO range. 1067 * @len: The length of the coalesced MMIO range. 1068 */ 1069 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section, 1070 hwaddr addr, hwaddr len); 1071 1072 /** 1073 * @coalesced_io_del: 1074 * 1075 * Called during an address space update transaction, 1076 * for a section of the address space that has dropped a coalesced 1077 * MMIO range since the last transaction. 1078 * 1079 * @listener: The #MemoryListener. 1080 * @section: The new #MemoryRegionSection. 1081 * @addr: The starting address for the coalesced MMIO range. 1082 * @len: The length of the coalesced MMIO range. 1083 */ 1084 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section, 1085 hwaddr addr, hwaddr len); 1086 /** 1087 * @priority: 1088 * 1089 * Govern the order in which memory listeners are invoked. Lower priorities 1090 * are invoked earlier for "add" or "start" callbacks, and later for "delete" 1091 * or "stop" callbacks. 1092 */ 1093 unsigned priority; 1094 1095 /** 1096 * @name: 1097 * 1098 * Name of the listener. It can be used in contexts where we'd like to 1099 * identify one memory listener with the rest. 1100 */ 1101 const char *name; 1102 1103 /* private: */ 1104 AddressSpace *address_space; 1105 QTAILQ_ENTRY(MemoryListener) link; 1106 QTAILQ_ENTRY(MemoryListener) link_as; 1107 }; 1108 1109 /** 1110 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects 1111 */ 1112 struct AddressSpace { 1113 /* private: */ 1114 struct rcu_head rcu; 1115 char *name; 1116 MemoryRegion *root; 1117 1118 /* Accessed via RCU. */ 1119 struct FlatView *current_map; 1120 1121 int ioeventfd_nb; 1122 int ioeventfd_notifiers; 1123 struct MemoryRegionIoeventfd *ioeventfds; 1124 QTAILQ_HEAD(, MemoryListener) listeners; 1125 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 1126 }; 1127 1128 typedef struct AddressSpaceDispatch AddressSpaceDispatch; 1129 typedef struct FlatRange FlatRange; 1130 1131 /* Flattened global view of current active memory hierarchy. Kept in sorted 1132 * order. 1133 */ 1134 struct FlatView { 1135 struct rcu_head rcu; 1136 unsigned ref; 1137 FlatRange *ranges; 1138 unsigned nr; 1139 unsigned nr_allocated; 1140 struct AddressSpaceDispatch *dispatch; 1141 MemoryRegion *root; 1142 }; 1143 1144 static inline FlatView *address_space_to_flatview(AddressSpace *as) 1145 { 1146 return qatomic_rcu_read(&as->current_map); 1147 } 1148 1149 /** 1150 * typedef flatview_cb: callback for flatview_for_each_range() 1151 * 1152 * @start: start address of the range within the FlatView 1153 * @len: length of the range in bytes 1154 * @mr: MemoryRegion covering this range 1155 * @offset_in_region: offset of the first byte of the range within @mr 1156 * @opaque: data pointer passed to flatview_for_each_range() 1157 * 1158 * Returns: true to stop the iteration, false to keep going. 1159 */ 1160 typedef bool (*flatview_cb)(Int128 start, 1161 Int128 len, 1162 const MemoryRegion *mr, 1163 hwaddr offset_in_region, 1164 void *opaque); 1165 1166 /** 1167 * flatview_for_each_range: Iterate through a FlatView 1168 * @fv: the FlatView to iterate through 1169 * @cb: function to call for each range 1170 * @opaque: opaque data pointer to pass to @cb 1171 * 1172 * A FlatView is made up of a list of non-overlapping ranges, each of 1173 * which is a slice of a MemoryRegion. This function iterates through 1174 * each range in @fv, calling @cb. The callback function can terminate 1175 * iteration early by returning 'true'. 1176 */ 1177 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque); 1178 1179 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a, 1180 MemoryRegionSection *b) 1181 { 1182 return a->mr == b->mr && 1183 a->fv == b->fv && 1184 a->offset_within_region == b->offset_within_region && 1185 a->offset_within_address_space == b->offset_within_address_space && 1186 int128_eq(a->size, b->size) && 1187 a->readonly == b->readonly && 1188 a->nonvolatile == b->nonvolatile; 1189 } 1190 1191 /** 1192 * memory_region_section_new_copy: Copy a memory region section 1193 * 1194 * Allocate memory for a new copy, copy the memory region section, and 1195 * properly take a reference on all relevant members. 1196 * 1197 * @s: the #MemoryRegionSection to copy 1198 */ 1199 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s); 1200 1201 /** 1202 * memory_region_section_new_copy: Free a copied memory region section 1203 * 1204 * Free a copy of a memory section created via memory_region_section_new_copy(). 1205 * properly dropping references on all relevant members. 1206 * 1207 * @s: the #MemoryRegionSection to copy 1208 */ 1209 void memory_region_section_free_copy(MemoryRegionSection *s); 1210 1211 /** 1212 * memory_region_init: Initialize a memory region 1213 * 1214 * The region typically acts as a container for other memory regions. Use 1215 * memory_region_add_subregion() to add subregions. 1216 * 1217 * @mr: the #MemoryRegion to be initialized 1218 * @owner: the object that tracks the region's reference count 1219 * @name: used for debugging; not visible to the user or ABI 1220 * @size: size of the region; any subregions beyond this size will be clipped 1221 */ 1222 void memory_region_init(MemoryRegion *mr, 1223 Object *owner, 1224 const char *name, 1225 uint64_t size); 1226 1227 /** 1228 * memory_region_ref: Add 1 to a memory region's reference count 1229 * 1230 * Whenever memory regions are accessed outside the BQL, they need to be 1231 * preserved against hot-unplug. MemoryRegions actually do not have their 1232 * own reference count; they piggyback on a QOM object, their "owner". 1233 * This function adds a reference to the owner. 1234 * 1235 * All MemoryRegions must have an owner if they can disappear, even if the 1236 * device they belong to operates exclusively under the BQL. This is because 1237 * the region could be returned at any time by memory_region_find, and this 1238 * is usually under guest control. 1239 * 1240 * @mr: the #MemoryRegion 1241 */ 1242 void memory_region_ref(MemoryRegion *mr); 1243 1244 /** 1245 * memory_region_unref: Remove 1 to a memory region's reference count 1246 * 1247 * Whenever memory regions are accessed outside the BQL, they need to be 1248 * preserved against hot-unplug. MemoryRegions actually do not have their 1249 * own reference count; they piggyback on a QOM object, their "owner". 1250 * This function removes a reference to the owner and possibly destroys it. 1251 * 1252 * @mr: the #MemoryRegion 1253 */ 1254 void memory_region_unref(MemoryRegion *mr); 1255 1256 /** 1257 * memory_region_init_io: Initialize an I/O memory region. 1258 * 1259 * Accesses into the region will cause the callbacks in @ops to be called. 1260 * if @size is nonzero, subregions will be clipped to @size. 1261 * 1262 * @mr: the #MemoryRegion to be initialized. 1263 * @owner: the object that tracks the region's reference count 1264 * @ops: a structure containing read and write callbacks to be used when 1265 * I/O is performed on the region. 1266 * @opaque: passed to the read and write callbacks of the @ops structure. 1267 * @name: used for debugging; not visible to the user or ABI 1268 * @size: size of the region. 1269 */ 1270 void memory_region_init_io(MemoryRegion *mr, 1271 Object *owner, 1272 const MemoryRegionOps *ops, 1273 void *opaque, 1274 const char *name, 1275 uint64_t size); 1276 1277 /** 1278 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses 1279 * into the region will modify memory 1280 * directly. 1281 * 1282 * @mr: the #MemoryRegion to be initialized. 1283 * @owner: the object that tracks the region's reference count 1284 * @name: Region name, becomes part of RAMBlock name used in migration stream 1285 * must be unique within any device 1286 * @size: size of the region. 1287 * @errp: pointer to Error*, to store an error if it happens. 1288 * 1289 * Note that this function does not do anything to cause the data in the 1290 * RAM memory region to be migrated; that is the responsibility of the caller. 1291 */ 1292 void memory_region_init_ram_nomigrate(MemoryRegion *mr, 1293 Object *owner, 1294 const char *name, 1295 uint64_t size, 1296 Error **errp); 1297 1298 /** 1299 * memory_region_init_ram_flags_nomigrate: Initialize RAM memory region. 1300 * Accesses into the region will 1301 * modify memory directly. 1302 * 1303 * @mr: the #MemoryRegion to be initialized. 1304 * @owner: the object that tracks the region's reference count 1305 * @name: Region name, becomes part of RAMBlock name used in migration stream 1306 * must be unique within any device 1307 * @size: size of the region. 1308 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE. 1309 * @errp: pointer to Error*, to store an error if it happens. 1310 * 1311 * Note that this function does not do anything to cause the data in the 1312 * RAM memory region to be migrated; that is the responsibility of the caller. 1313 */ 1314 void memory_region_init_ram_flags_nomigrate(MemoryRegion *mr, 1315 Object *owner, 1316 const char *name, 1317 uint64_t size, 1318 uint32_t ram_flags, 1319 Error **errp); 1320 1321 /** 1322 * memory_region_init_resizeable_ram: Initialize memory region with resizable 1323 * RAM. Accesses into the region will 1324 * modify memory directly. Only an initial 1325 * portion of this RAM is actually used. 1326 * Changing the size while migrating 1327 * can result in the migration being 1328 * canceled. 1329 * 1330 * @mr: the #MemoryRegion to be initialized. 1331 * @owner: the object that tracks the region's reference count 1332 * @name: Region name, becomes part of RAMBlock name used in migration stream 1333 * must be unique within any device 1334 * @size: used size of the region. 1335 * @max_size: max size of the region. 1336 * @resized: callback to notify owner about used size change. 1337 * @errp: pointer to Error*, to store an error if it happens. 1338 * 1339 * Note that this function does not do anything to cause the data in the 1340 * RAM memory region to be migrated; that is the responsibility of the caller. 1341 */ 1342 void memory_region_init_resizeable_ram(MemoryRegion *mr, 1343 Object *owner, 1344 const char *name, 1345 uint64_t size, 1346 uint64_t max_size, 1347 void (*resized)(const char*, 1348 uint64_t length, 1349 void *host), 1350 Error **errp); 1351 #ifdef CONFIG_POSIX 1352 1353 /** 1354 * memory_region_init_ram_from_file: Initialize RAM memory region with a 1355 * mmap-ed backend. 1356 * 1357 * @mr: the #MemoryRegion to be initialized. 1358 * @owner: the object that tracks the region's reference count 1359 * @name: Region name, becomes part of RAMBlock name used in migration stream 1360 * must be unique within any device 1361 * @size: size of the region. 1362 * @align: alignment of the region base address; if 0, the default alignment 1363 * (getpagesize()) will be used. 1364 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM, 1365 * RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY, 1366 * RAM_READONLY_FD 1367 * @path: the path in which to allocate the RAM. 1368 * @offset: offset within the file referenced by path 1369 * @errp: pointer to Error*, to store an error if it happens. 1370 * 1371 * Note that this function does not do anything to cause the data in the 1372 * RAM memory region to be migrated; that is the responsibility of the caller. 1373 */ 1374 void memory_region_init_ram_from_file(MemoryRegion *mr, 1375 Object *owner, 1376 const char *name, 1377 uint64_t size, 1378 uint64_t align, 1379 uint32_t ram_flags, 1380 const char *path, 1381 ram_addr_t offset, 1382 Error **errp); 1383 1384 /** 1385 * memory_region_init_ram_from_fd: Initialize RAM memory region with a 1386 * mmap-ed backend. 1387 * 1388 * @mr: the #MemoryRegion to be initialized. 1389 * @owner: the object that tracks the region's reference count 1390 * @name: the name of the region. 1391 * @size: size of the region. 1392 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM, 1393 * RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY, 1394 * RAM_READONLY_FD 1395 * @fd: the fd to mmap. 1396 * @offset: offset within the file referenced by fd 1397 * @errp: pointer to Error*, to store an error if it happens. 1398 * 1399 * Note that this function does not do anything to cause the data in the 1400 * RAM memory region to be migrated; that is the responsibility of the caller. 1401 */ 1402 void memory_region_init_ram_from_fd(MemoryRegion *mr, 1403 Object *owner, 1404 const char *name, 1405 uint64_t size, 1406 uint32_t ram_flags, 1407 int fd, 1408 ram_addr_t offset, 1409 Error **errp); 1410 #endif 1411 1412 /** 1413 * memory_region_init_ram_ptr: Initialize RAM memory region from a 1414 * user-provided pointer. Accesses into the 1415 * region will modify memory directly. 1416 * 1417 * @mr: the #MemoryRegion to be initialized. 1418 * @owner: the object that tracks the region's reference count 1419 * @name: Region name, becomes part of RAMBlock name used in migration stream 1420 * must be unique within any device 1421 * @size: size of the region. 1422 * @ptr: memory to be mapped; must contain at least @size bytes. 1423 * 1424 * Note that this function does not do anything to cause the data in the 1425 * RAM memory region to be migrated; that is the responsibility of the caller. 1426 */ 1427 void memory_region_init_ram_ptr(MemoryRegion *mr, 1428 Object *owner, 1429 const char *name, 1430 uint64_t size, 1431 void *ptr); 1432 1433 /** 1434 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from 1435 * a user-provided pointer. 1436 * 1437 * A RAM device represents a mapping to a physical device, such as to a PCI 1438 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped 1439 * into the VM address space and access to the region will modify memory 1440 * directly. However, the memory region should not be included in a memory 1441 * dump (device may not be enabled/mapped at the time of the dump), and 1442 * operations incompatible with manipulating MMIO should be avoided. Replaces 1443 * skip_dump flag. 1444 * 1445 * @mr: the #MemoryRegion to be initialized. 1446 * @owner: the object that tracks the region's reference count 1447 * @name: the name of the region. 1448 * @size: size of the region. 1449 * @ptr: memory to be mapped; must contain at least @size bytes. 1450 * 1451 * Note that this function does not do anything to cause the data in the 1452 * RAM memory region to be migrated; that is the responsibility of the caller. 1453 * (For RAM device memory regions, migrating the contents rarely makes sense.) 1454 */ 1455 void memory_region_init_ram_device_ptr(MemoryRegion *mr, 1456 Object *owner, 1457 const char *name, 1458 uint64_t size, 1459 void *ptr); 1460 1461 /** 1462 * memory_region_init_alias: Initialize a memory region that aliases all or a 1463 * part of another memory region. 1464 * 1465 * @mr: the #MemoryRegion to be initialized. 1466 * @owner: the object that tracks the region's reference count 1467 * @name: used for debugging; not visible to the user or ABI 1468 * @orig: the region to be referenced; @mr will be equivalent to 1469 * @orig between @offset and @offset + @size - 1. 1470 * @offset: start of the section in @orig to be referenced. 1471 * @size: size of the region. 1472 */ 1473 void memory_region_init_alias(MemoryRegion *mr, 1474 Object *owner, 1475 const char *name, 1476 MemoryRegion *orig, 1477 hwaddr offset, 1478 uint64_t size); 1479 1480 /** 1481 * memory_region_init_rom_nomigrate: Initialize a ROM memory region. 1482 * 1483 * This has the same effect as calling memory_region_init_ram_nomigrate() 1484 * and then marking the resulting region read-only with 1485 * memory_region_set_readonly(). 1486 * 1487 * Note that this function does not do anything to cause the data in the 1488 * RAM side of the memory region to be migrated; that is the responsibility 1489 * of the caller. 1490 * 1491 * @mr: the #MemoryRegion to be initialized. 1492 * @owner: the object that tracks the region's reference count 1493 * @name: Region name, becomes part of RAMBlock name used in migration stream 1494 * must be unique within any device 1495 * @size: size of the region. 1496 * @errp: pointer to Error*, to store an error if it happens. 1497 */ 1498 void memory_region_init_rom_nomigrate(MemoryRegion *mr, 1499 Object *owner, 1500 const char *name, 1501 uint64_t size, 1502 Error **errp); 1503 1504 /** 1505 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region. 1506 * Writes are handled via callbacks. 1507 * 1508 * Note that this function does not do anything to cause the data in the 1509 * RAM side of the memory region to be migrated; that is the responsibility 1510 * of the caller. 1511 * 1512 * @mr: the #MemoryRegion to be initialized. 1513 * @owner: the object that tracks the region's reference count 1514 * @ops: callbacks for write access handling (must not be NULL). 1515 * @opaque: passed to the read and write callbacks of the @ops structure. 1516 * @name: Region name, becomes part of RAMBlock name used in migration stream 1517 * must be unique within any device 1518 * @size: size of the region. 1519 * @errp: pointer to Error*, to store an error if it happens. 1520 */ 1521 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr, 1522 Object *owner, 1523 const MemoryRegionOps *ops, 1524 void *opaque, 1525 const char *name, 1526 uint64_t size, 1527 Error **errp); 1528 1529 /** 1530 * memory_region_init_iommu: Initialize a memory region of a custom type 1531 * that translates addresses 1532 * 1533 * An IOMMU region translates addresses and forwards accesses to a target 1534 * memory region. 1535 * 1536 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION. 1537 * @_iommu_mr should be a pointer to enough memory for an instance of 1538 * that subclass, @instance_size is the size of that subclass, and 1539 * @mrtypename is its name. This function will initialize @_iommu_mr as an 1540 * instance of the subclass, and its methods will then be called to handle 1541 * accesses to the memory region. See the documentation of 1542 * #IOMMUMemoryRegionClass for further details. 1543 * 1544 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized 1545 * @instance_size: the IOMMUMemoryRegion subclass instance size 1546 * @mrtypename: the type name of the #IOMMUMemoryRegion 1547 * @owner: the object that tracks the region's reference count 1548 * @name: used for debugging; not visible to the user or ABI 1549 * @size: size of the region. 1550 */ 1551 void memory_region_init_iommu(void *_iommu_mr, 1552 size_t instance_size, 1553 const char *mrtypename, 1554 Object *owner, 1555 const char *name, 1556 uint64_t size); 1557 1558 /** 1559 * memory_region_init_ram - Initialize RAM memory region. Accesses into the 1560 * region will modify memory directly. 1561 * 1562 * @mr: the #MemoryRegion to be initialized 1563 * @owner: the object that tracks the region's reference count (must be 1564 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL) 1565 * @name: name of the memory region 1566 * @size: size of the region in bytes 1567 * @errp: pointer to Error*, to store an error if it happens. 1568 * 1569 * This function allocates RAM for a board model or device, and 1570 * arranges for it to be migrated (by calling vmstate_register_ram() 1571 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1572 * @owner is NULL). 1573 * 1574 * TODO: Currently we restrict @owner to being either NULL (for 1575 * global RAM regions with no owner) or devices, so that we can 1576 * give the RAM block a unique name for migration purposes. 1577 * We should lift this restriction and allow arbitrary Objects. 1578 * If you pass a non-NULL non-device @owner then we will assert. 1579 */ 1580 void memory_region_init_ram(MemoryRegion *mr, 1581 Object *owner, 1582 const char *name, 1583 uint64_t size, 1584 Error **errp); 1585 1586 /** 1587 * memory_region_init_rom: Initialize a ROM memory region. 1588 * 1589 * This has the same effect as calling memory_region_init_ram() 1590 * and then marking the resulting region read-only with 1591 * memory_region_set_readonly(). This includes arranging for the 1592 * contents to be migrated. 1593 * 1594 * TODO: Currently we restrict @owner to being either NULL (for 1595 * global RAM regions with no owner) or devices, so that we can 1596 * give the RAM block a unique name for migration purposes. 1597 * We should lift this restriction and allow arbitrary Objects. 1598 * If you pass a non-NULL non-device @owner then we will assert. 1599 * 1600 * @mr: the #MemoryRegion to be initialized. 1601 * @owner: the object that tracks the region's reference count 1602 * @name: Region name, becomes part of RAMBlock name used in migration stream 1603 * must be unique within any device 1604 * @size: size of the region. 1605 * @errp: pointer to Error*, to store an error if it happens. 1606 */ 1607 void memory_region_init_rom(MemoryRegion *mr, 1608 Object *owner, 1609 const char *name, 1610 uint64_t size, 1611 Error **errp); 1612 1613 /** 1614 * memory_region_init_rom_device: Initialize a ROM memory region. 1615 * Writes are handled via callbacks. 1616 * 1617 * This function initializes a memory region backed by RAM for reads 1618 * and callbacks for writes, and arranges for the RAM backing to 1619 * be migrated (by calling vmstate_register_ram() 1620 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1621 * @owner is NULL). 1622 * 1623 * TODO: Currently we restrict @owner to being either NULL (for 1624 * global RAM regions with no owner) or devices, so that we can 1625 * give the RAM block a unique name for migration purposes. 1626 * We should lift this restriction and allow arbitrary Objects. 1627 * If you pass a non-NULL non-device @owner then we will assert. 1628 * 1629 * @mr: the #MemoryRegion to be initialized. 1630 * @owner: the object that tracks the region's reference count 1631 * @ops: callbacks for write access handling (must not be NULL). 1632 * @opaque: passed to the read and write callbacks of the @ops structure. 1633 * @name: Region name, becomes part of RAMBlock name used in migration stream 1634 * must be unique within any device 1635 * @size: size of the region. 1636 * @errp: pointer to Error*, to store an error if it happens. 1637 */ 1638 void memory_region_init_rom_device(MemoryRegion *mr, 1639 Object *owner, 1640 const MemoryRegionOps *ops, 1641 void *opaque, 1642 const char *name, 1643 uint64_t size, 1644 Error **errp); 1645 1646 1647 /** 1648 * memory_region_owner: get a memory region's owner. 1649 * 1650 * @mr: the memory region being queried. 1651 */ 1652 Object *memory_region_owner(MemoryRegion *mr); 1653 1654 /** 1655 * memory_region_size: get a memory region's size. 1656 * 1657 * @mr: the memory region being queried. 1658 */ 1659 uint64_t memory_region_size(MemoryRegion *mr); 1660 1661 /** 1662 * memory_region_is_ram: check whether a memory region is random access 1663 * 1664 * Returns %true if a memory region is random access. 1665 * 1666 * @mr: the memory region being queried 1667 */ 1668 static inline bool memory_region_is_ram(MemoryRegion *mr) 1669 { 1670 return mr->ram; 1671 } 1672 1673 /** 1674 * memory_region_is_ram_device: check whether a memory region is a ram device 1675 * 1676 * Returns %true if a memory region is a device backed ram region 1677 * 1678 * @mr: the memory region being queried 1679 */ 1680 bool memory_region_is_ram_device(MemoryRegion *mr); 1681 1682 /** 1683 * memory_region_is_romd: check whether a memory region is in ROMD mode 1684 * 1685 * Returns %true if a memory region is a ROM device and currently set to allow 1686 * direct reads. 1687 * 1688 * @mr: the memory region being queried 1689 */ 1690 static inline bool memory_region_is_romd(MemoryRegion *mr) 1691 { 1692 return mr->rom_device && mr->romd_mode; 1693 } 1694 1695 /** 1696 * memory_region_is_protected: check whether a memory region is protected 1697 * 1698 * Returns %true if a memory region is protected RAM and cannot be accessed 1699 * via standard mechanisms, e.g. DMA. 1700 * 1701 * @mr: the memory region being queried 1702 */ 1703 bool memory_region_is_protected(MemoryRegion *mr); 1704 1705 /** 1706 * memory_region_get_iommu: check whether a memory region is an iommu 1707 * 1708 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu, 1709 * otherwise NULL. 1710 * 1711 * @mr: the memory region being queried 1712 */ 1713 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr) 1714 { 1715 if (mr->alias) { 1716 return memory_region_get_iommu(mr->alias); 1717 } 1718 if (mr->is_iommu) { 1719 return (IOMMUMemoryRegion *) mr; 1720 } 1721 return NULL; 1722 } 1723 1724 /** 1725 * memory_region_get_iommu_class_nocheck: returns iommu memory region class 1726 * if an iommu or NULL if not 1727 * 1728 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu, 1729 * otherwise NULL. This is fast path avoiding QOM checking, use with caution. 1730 * 1731 * @iommu_mr: the memory region being queried 1732 */ 1733 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck( 1734 IOMMUMemoryRegion *iommu_mr) 1735 { 1736 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class); 1737 } 1738 1739 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL) 1740 1741 /** 1742 * memory_region_iommu_get_min_page_size: get minimum supported page size 1743 * for an iommu 1744 * 1745 * Returns minimum supported page size for an iommu. 1746 * 1747 * @iommu_mr: the memory region being queried 1748 */ 1749 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr); 1750 1751 /** 1752 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 1753 * 1754 * Note: for any IOMMU implementation, an in-place mapping change 1755 * should be notified with an UNMAP followed by a MAP. 1756 * 1757 * @iommu_mr: the memory region that was changed 1758 * @iommu_idx: the IOMMU index for the translation table which has changed 1759 * @event: TLB event with the new entry in the IOMMU translation table. 1760 * The entry replaces all old entries for the same virtual I/O address 1761 * range. 1762 */ 1763 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr, 1764 int iommu_idx, 1765 IOMMUTLBEvent event); 1766 1767 /** 1768 * memory_region_notify_iommu_one: notify a change in an IOMMU translation 1769 * entry to a single notifier 1770 * 1771 * This works just like memory_region_notify_iommu(), but it only 1772 * notifies a specific notifier, not all of them. 1773 * 1774 * @notifier: the notifier to be notified 1775 * @event: TLB event with the new entry in the IOMMU translation table. 1776 * The entry replaces all old entries for the same virtual I/O address 1777 * range. 1778 */ 1779 void memory_region_notify_iommu_one(IOMMUNotifier *notifier, 1780 IOMMUTLBEvent *event); 1781 1782 /** 1783 * memory_region_unmap_iommu_notifier_range: notify a unmap for an IOMMU 1784 * translation that covers the 1785 * range of a notifier 1786 * 1787 * @notifier: the notifier to be notified 1788 */ 1789 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier); 1790 1791 1792 /** 1793 * memory_region_register_iommu_notifier: register a notifier for changes to 1794 * IOMMU translation entries. 1795 * 1796 * Returns 0 on success, or a negative errno otherwise. In particular, 1797 * -EINVAL indicates that at least one of the attributes of the notifier 1798 * is not supported (flag/range) by the IOMMU memory region. In case of error 1799 * the error object must be created. 1800 * 1801 * @mr: the memory region to observe 1802 * @n: the IOMMUNotifier to be added; the notify callback receives a 1803 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer 1804 * ceases to be valid on exit from the notifier. 1805 * @errp: pointer to Error*, to store an error if it happens. 1806 */ 1807 int memory_region_register_iommu_notifier(MemoryRegion *mr, 1808 IOMMUNotifier *n, Error **errp); 1809 1810 /** 1811 * memory_region_iommu_replay: replay existing IOMMU translations to 1812 * a notifier with the minimum page granularity returned by 1813 * mr->iommu_ops->get_page_size(). 1814 * 1815 * Note: this is not related to record-and-replay functionality. 1816 * 1817 * @iommu_mr: the memory region to observe 1818 * @n: the notifier to which to replay iommu mappings 1819 */ 1820 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n); 1821 1822 /** 1823 * memory_region_unregister_iommu_notifier: unregister a notifier for 1824 * changes to IOMMU translation entries. 1825 * 1826 * @mr: the memory region which was observed and for which notity_stopped() 1827 * needs to be called 1828 * @n: the notifier to be removed. 1829 */ 1830 void memory_region_unregister_iommu_notifier(MemoryRegion *mr, 1831 IOMMUNotifier *n); 1832 1833 /** 1834 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is 1835 * defined on the IOMMU. 1836 * 1837 * Returns 0 on success, or a negative errno otherwise. In particular, 1838 * -EINVAL indicates that the IOMMU does not support the requested 1839 * attribute. 1840 * 1841 * @iommu_mr: the memory region 1842 * @attr: the requested attribute 1843 * @data: a pointer to the requested attribute data 1844 */ 1845 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr, 1846 enum IOMMUMemoryRegionAttr attr, 1847 void *data); 1848 1849 /** 1850 * memory_region_iommu_attrs_to_index: return the IOMMU index to 1851 * use for translations with the given memory transaction attributes. 1852 * 1853 * @iommu_mr: the memory region 1854 * @attrs: the memory transaction attributes 1855 */ 1856 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr, 1857 MemTxAttrs attrs); 1858 1859 /** 1860 * memory_region_iommu_num_indexes: return the total number of IOMMU 1861 * indexes that this IOMMU supports. 1862 * 1863 * @iommu_mr: the memory region 1864 */ 1865 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr); 1866 1867 /** 1868 * memory_region_iommu_set_page_size_mask: set the supported page 1869 * sizes for a given IOMMU memory region 1870 * 1871 * @iommu_mr: IOMMU memory region 1872 * @page_size_mask: supported page size mask 1873 * @errp: pointer to Error*, to store an error if it happens. 1874 */ 1875 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr, 1876 uint64_t page_size_mask, 1877 Error **errp); 1878 1879 /** 1880 * memory_region_iommu_set_iova_ranges - Set the usable IOVA ranges 1881 * for a given IOMMU MR region 1882 * 1883 * @iommu: IOMMU memory region 1884 * @iova_ranges: list of ordered IOVA ranges (at least one range) 1885 * @errp: pointer to Error*, to store an error if it happens. 1886 */ 1887 int memory_region_iommu_set_iova_ranges(IOMMUMemoryRegion *iommu, 1888 GList *iova_ranges, 1889 Error **errp); 1890 1891 /** 1892 * memory_region_name: get a memory region's name 1893 * 1894 * Returns the string that was used to initialize the memory region. 1895 * 1896 * @mr: the memory region being queried 1897 */ 1898 const char *memory_region_name(const MemoryRegion *mr); 1899 1900 /** 1901 * memory_region_is_logging: return whether a memory region is logging writes 1902 * 1903 * Returns %true if the memory region is logging writes for the given client 1904 * 1905 * @mr: the memory region being queried 1906 * @client: the client being queried 1907 */ 1908 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 1909 1910 /** 1911 * memory_region_get_dirty_log_mask: return the clients for which a 1912 * memory region is logging writes. 1913 * 1914 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 1915 * are the bit indices. 1916 * 1917 * @mr: the memory region being queried 1918 */ 1919 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 1920 1921 /** 1922 * memory_region_is_rom: check whether a memory region is ROM 1923 * 1924 * Returns %true if a memory region is read-only memory. 1925 * 1926 * @mr: the memory region being queried 1927 */ 1928 static inline bool memory_region_is_rom(MemoryRegion *mr) 1929 { 1930 return mr->ram && mr->readonly; 1931 } 1932 1933 /** 1934 * memory_region_is_nonvolatile: check whether a memory region is non-volatile 1935 * 1936 * Returns %true is a memory region is non-volatile memory. 1937 * 1938 * @mr: the memory region being queried 1939 */ 1940 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr) 1941 { 1942 return mr->nonvolatile; 1943 } 1944 1945 /** 1946 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 1947 * 1948 * Returns a file descriptor backing a file-based RAM memory region, 1949 * or -1 if the region is not a file-based RAM memory region. 1950 * 1951 * @mr: the RAM or alias memory region being queried. 1952 */ 1953 int memory_region_get_fd(MemoryRegion *mr); 1954 1955 /** 1956 * memory_region_from_host: Convert a pointer into a RAM memory region 1957 * and an offset within it. 1958 * 1959 * Given a host pointer inside a RAM memory region (created with 1960 * memory_region_init_ram() or memory_region_init_ram_ptr()), return 1961 * the MemoryRegion and the offset within it. 1962 * 1963 * Use with care; by the time this function returns, the returned pointer is 1964 * not protected by RCU anymore. If the caller is not within an RCU critical 1965 * section and does not hold the iothread lock, it must have other means of 1966 * protecting the pointer, such as a reference to the region that includes 1967 * the incoming ram_addr_t. 1968 * 1969 * @ptr: the host pointer to be converted 1970 * @offset: the offset within memory region 1971 */ 1972 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset); 1973 1974 /** 1975 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 1976 * 1977 * Returns a host pointer to a RAM memory region (created with 1978 * memory_region_init_ram() or memory_region_init_ram_ptr()). 1979 * 1980 * Use with care; by the time this function returns, the returned pointer is 1981 * not protected by RCU anymore. If the caller is not within an RCU critical 1982 * section and does not hold the iothread lock, it must have other means of 1983 * protecting the pointer, such as a reference to the region that includes 1984 * the incoming ram_addr_t. 1985 * 1986 * @mr: the memory region being queried. 1987 */ 1988 void *memory_region_get_ram_ptr(MemoryRegion *mr); 1989 1990 /* memory_region_ram_resize: Resize a RAM region. 1991 * 1992 * Resizing RAM while migrating can result in the migration being canceled. 1993 * Care has to be taken if the guest might have already detected the memory. 1994 * 1995 * @mr: a memory region created with @memory_region_init_resizeable_ram. 1996 * @newsize: the new size the region 1997 * @errp: pointer to Error*, to store an error if it happens. 1998 */ 1999 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 2000 Error **errp); 2001 2002 /** 2003 * memory_region_msync: Synchronize selected address range of 2004 * a memory mapped region 2005 * 2006 * @mr: the memory region to be msync 2007 * @addr: the initial address of the range to be sync 2008 * @size: the size of the range to be sync 2009 */ 2010 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size); 2011 2012 /** 2013 * memory_region_writeback: Trigger cache writeback for 2014 * selected address range 2015 * 2016 * @mr: the memory region to be updated 2017 * @addr: the initial address of the range to be written back 2018 * @size: the size of the range to be written back 2019 */ 2020 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size); 2021 2022 /** 2023 * memory_region_set_log: Turn dirty logging on or off for a region. 2024 * 2025 * Turns dirty logging on or off for a specified client (display, migration). 2026 * Only meaningful for RAM regions. 2027 * 2028 * @mr: the memory region being updated. 2029 * @log: whether dirty logging is to be enabled or disabled. 2030 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 2031 */ 2032 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 2033 2034 /** 2035 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 2036 * 2037 * Marks a range of bytes as dirty, after it has been dirtied outside 2038 * guest code. 2039 * 2040 * @mr: the memory region being dirtied. 2041 * @addr: the address (relative to the start of the region) being dirtied. 2042 * @size: size of the range being dirtied. 2043 */ 2044 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 2045 hwaddr size); 2046 2047 /** 2048 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range 2049 * 2050 * This function is called when the caller wants to clear the remote 2051 * dirty bitmap of a memory range within the memory region. This can 2052 * be used by e.g. KVM to manually clear dirty log when 2053 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host 2054 * kernel. 2055 * 2056 * @mr: the memory region to clear the dirty log upon 2057 * @start: start address offset within the memory region 2058 * @len: length of the memory region to clear dirty bitmap 2059 */ 2060 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start, 2061 hwaddr len); 2062 2063 /** 2064 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty 2065 * bitmap and clear it. 2066 * 2067 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and 2068 * returns the snapshot. The snapshot can then be used to query dirty 2069 * status, using memory_region_snapshot_get_dirty. Snapshotting allows 2070 * querying the same page multiple times, which is especially useful for 2071 * display updates where the scanlines often are not page aligned. 2072 * 2073 * The dirty bitmap region which gets copied into the snapshot (and 2074 * cleared afterwards) can be larger than requested. The boundaries 2075 * are rounded up/down so complete bitmap longs (covering 64 pages on 2076 * 64bit hosts) can be copied over into the bitmap snapshot. Which 2077 * isn't a problem for display updates as the extra pages are outside 2078 * the visible area, and in case the visible area changes a full 2079 * display redraw is due anyway. Should other use cases for this 2080 * function emerge we might have to revisit this implementation 2081 * detail. 2082 * 2083 * Use g_free to release DirtyBitmapSnapshot. 2084 * 2085 * @mr: the memory region being queried. 2086 * @addr: the address (relative to the start of the region) being queried. 2087 * @size: the size of the range being queried. 2088 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA. 2089 */ 2090 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr, 2091 hwaddr addr, 2092 hwaddr size, 2093 unsigned client); 2094 2095 /** 2096 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty 2097 * in the specified dirty bitmap snapshot. 2098 * 2099 * @mr: the memory region being queried. 2100 * @snap: the dirty bitmap snapshot 2101 * @addr: the address (relative to the start of the region) being queried. 2102 * @size: the size of the range being queried. 2103 */ 2104 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, 2105 DirtyBitmapSnapshot *snap, 2106 hwaddr addr, hwaddr size); 2107 2108 /** 2109 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 2110 * client. 2111 * 2112 * Marks a range of pages as no longer dirty. 2113 * 2114 * @mr: the region being updated. 2115 * @addr: the start of the subrange being cleaned. 2116 * @size: the size of the subrange being cleaned. 2117 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 2118 * %DIRTY_MEMORY_VGA. 2119 */ 2120 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 2121 hwaddr size, unsigned client); 2122 2123 /** 2124 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate 2125 * TBs (for self-modifying code). 2126 * 2127 * The MemoryRegionOps->write() callback of a ROM device must use this function 2128 * to mark byte ranges that have been modified internally, such as by directly 2129 * accessing the memory returned by memory_region_get_ram_ptr(). 2130 * 2131 * This function marks the range dirty and invalidates TBs so that TCG can 2132 * detect self-modifying code. 2133 * 2134 * @mr: the region being flushed. 2135 * @addr: the start, relative to the start of the region, of the range being 2136 * flushed. 2137 * @size: the size, in bytes, of the range being flushed. 2138 */ 2139 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size); 2140 2141 /** 2142 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 2143 * 2144 * Allows a memory region to be marked as read-only (turning it into a ROM). 2145 * only useful on RAM regions. 2146 * 2147 * @mr: the region being updated. 2148 * @readonly: whether rhe region is to be ROM or RAM. 2149 */ 2150 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 2151 2152 /** 2153 * memory_region_set_nonvolatile: Turn a memory region non-volatile 2154 * 2155 * Allows a memory region to be marked as non-volatile. 2156 * only useful on RAM regions. 2157 * 2158 * @mr: the region being updated. 2159 * @nonvolatile: whether rhe region is to be non-volatile. 2160 */ 2161 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile); 2162 2163 /** 2164 * memory_region_rom_device_set_romd: enable/disable ROMD mode 2165 * 2166 * Allows a ROM device (initialized with memory_region_init_rom_device() to 2167 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 2168 * device is mapped to guest memory and satisfies read access directly. 2169 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 2170 * Writes are always handled by the #MemoryRegion.write function. 2171 * 2172 * @mr: the memory region to be updated 2173 * @romd_mode: %true to put the region into ROMD mode 2174 */ 2175 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 2176 2177 /** 2178 * memory_region_set_coalescing: Enable memory coalescing for the region. 2179 * 2180 * Enabled writes to a region to be queued for later processing. MMIO ->write 2181 * callbacks may be delayed until a non-coalesced MMIO is issued. 2182 * Only useful for IO regions. Roughly similar to write-combining hardware. 2183 * 2184 * @mr: the memory region to be write coalesced 2185 */ 2186 void memory_region_set_coalescing(MemoryRegion *mr); 2187 2188 /** 2189 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 2190 * a region. 2191 * 2192 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 2193 * Multiple calls can be issued coalesced disjoint ranges. 2194 * 2195 * @mr: the memory region to be updated. 2196 * @offset: the start of the range within the region to be coalesced. 2197 * @size: the size of the subrange to be coalesced. 2198 */ 2199 void memory_region_add_coalescing(MemoryRegion *mr, 2200 hwaddr offset, 2201 uint64_t size); 2202 2203 /** 2204 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 2205 * 2206 * Disables any coalescing caused by memory_region_set_coalescing() or 2207 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 2208 * hardware. 2209 * 2210 * @mr: the memory region to be updated. 2211 */ 2212 void memory_region_clear_coalescing(MemoryRegion *mr); 2213 2214 /** 2215 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 2216 * accesses. 2217 * 2218 * Ensure that pending coalesced MMIO request are flushed before the memory 2219 * region is accessed. This property is automatically enabled for all regions 2220 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 2221 * 2222 * @mr: the memory region to be updated. 2223 */ 2224 void memory_region_set_flush_coalesced(MemoryRegion *mr); 2225 2226 /** 2227 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 2228 * accesses. 2229 * 2230 * Clear the automatic coalesced MMIO flushing enabled via 2231 * memory_region_set_flush_coalesced. Note that this service has no effect on 2232 * memory regions that have MMIO coalescing enabled for themselves. For them, 2233 * automatic flushing will stop once coalescing is disabled. 2234 * 2235 * @mr: the memory region to be updated. 2236 */ 2237 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 2238 2239 /** 2240 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 2241 * is written to a location. 2242 * 2243 * Marks a word in an IO region (initialized with memory_region_init_io()) 2244 * as a trigger for an eventfd event. The I/O callback will not be called. 2245 * The caller must be prepared to handle failure (that is, take the required 2246 * action if the callback _is_ called). 2247 * 2248 * @mr: the memory region being updated. 2249 * @addr: the address within @mr that is to be monitored 2250 * @size: the size of the access to trigger the eventfd 2251 * @match_data: whether to match against @data, instead of just @addr 2252 * @data: the data to match against the guest write 2253 * @e: event notifier to be triggered when @addr, @size, and @data all match. 2254 **/ 2255 void memory_region_add_eventfd(MemoryRegion *mr, 2256 hwaddr addr, 2257 unsigned size, 2258 bool match_data, 2259 uint64_t data, 2260 EventNotifier *e); 2261 2262 /** 2263 * memory_region_del_eventfd: Cancel an eventfd. 2264 * 2265 * Cancels an eventfd trigger requested by a previous 2266 * memory_region_add_eventfd() call. 2267 * 2268 * @mr: the memory region being updated. 2269 * @addr: the address within @mr that is to be monitored 2270 * @size: the size of the access to trigger the eventfd 2271 * @match_data: whether to match against @data, instead of just @addr 2272 * @data: the data to match against the guest write 2273 * @e: event notifier to be triggered when @addr, @size, and @data all match. 2274 */ 2275 void memory_region_del_eventfd(MemoryRegion *mr, 2276 hwaddr addr, 2277 unsigned size, 2278 bool match_data, 2279 uint64_t data, 2280 EventNotifier *e); 2281 2282 /** 2283 * memory_region_add_subregion: Add a subregion to a container. 2284 * 2285 * Adds a subregion at @offset. The subregion may not overlap with other 2286 * subregions (except for those explicitly marked as overlapping). A region 2287 * may only be added once as a subregion (unless removed with 2288 * memory_region_del_subregion()); use memory_region_init_alias() if you 2289 * want a region to be a subregion in multiple locations. 2290 * 2291 * @mr: the region to contain the new subregion; must be a container 2292 * initialized with memory_region_init(). 2293 * @offset: the offset relative to @mr where @subregion is added. 2294 * @subregion: the subregion to be added. 2295 */ 2296 void memory_region_add_subregion(MemoryRegion *mr, 2297 hwaddr offset, 2298 MemoryRegion *subregion); 2299 /** 2300 * memory_region_add_subregion_overlap: Add a subregion to a container 2301 * with overlap. 2302 * 2303 * Adds a subregion at @offset. The subregion may overlap with other 2304 * subregions. Conflicts are resolved by having a higher @priority hide a 2305 * lower @priority. Subregions without priority are taken as @priority 0. 2306 * A region may only be added once as a subregion (unless removed with 2307 * memory_region_del_subregion()); use memory_region_init_alias() if you 2308 * want a region to be a subregion in multiple locations. 2309 * 2310 * @mr: the region to contain the new subregion; must be a container 2311 * initialized with memory_region_init(). 2312 * @offset: the offset relative to @mr where @subregion is added. 2313 * @subregion: the subregion to be added. 2314 * @priority: used for resolving overlaps; highest priority wins. 2315 */ 2316 void memory_region_add_subregion_overlap(MemoryRegion *mr, 2317 hwaddr offset, 2318 MemoryRegion *subregion, 2319 int priority); 2320 2321 /** 2322 * memory_region_get_ram_addr: Get the ram address associated with a memory 2323 * region 2324 * 2325 * @mr: the region to be queried 2326 */ 2327 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 2328 2329 uint64_t memory_region_get_alignment(const MemoryRegion *mr); 2330 /** 2331 * memory_region_del_subregion: Remove a subregion. 2332 * 2333 * Removes a subregion from its container. 2334 * 2335 * @mr: the container to be updated. 2336 * @subregion: the region being removed; must be a current subregion of @mr. 2337 */ 2338 void memory_region_del_subregion(MemoryRegion *mr, 2339 MemoryRegion *subregion); 2340 2341 /* 2342 * memory_region_set_enabled: dynamically enable or disable a region 2343 * 2344 * Enables or disables a memory region. A disabled memory region 2345 * ignores all accesses to itself and its subregions. It does not 2346 * obscure sibling subregions with lower priority - it simply behaves as 2347 * if it was removed from the hierarchy. 2348 * 2349 * Regions default to being enabled. 2350 * 2351 * @mr: the region to be updated 2352 * @enabled: whether to enable or disable the region 2353 */ 2354 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 2355 2356 /* 2357 * memory_region_set_address: dynamically update the address of a region 2358 * 2359 * Dynamically updates the address of a region, relative to its container. 2360 * May be used on regions are currently part of a memory hierarchy. 2361 * 2362 * @mr: the region to be updated 2363 * @addr: new address, relative to container region 2364 */ 2365 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 2366 2367 /* 2368 * memory_region_set_size: dynamically update the size of a region. 2369 * 2370 * Dynamically updates the size of a region. 2371 * 2372 * @mr: the region to be updated 2373 * @size: used size of the region. 2374 */ 2375 void memory_region_set_size(MemoryRegion *mr, uint64_t size); 2376 2377 /* 2378 * memory_region_set_alias_offset: dynamically update a memory alias's offset 2379 * 2380 * Dynamically updates the offset into the target region that an alias points 2381 * to, as if the fourth argument to memory_region_init_alias() has changed. 2382 * 2383 * @mr: the #MemoryRegion to be updated; should be an alias. 2384 * @offset: the new offset into the target memory region 2385 */ 2386 void memory_region_set_alias_offset(MemoryRegion *mr, 2387 hwaddr offset); 2388 2389 /* 2390 * memory_region_set_unmergeable: Set a memory region unmergeable 2391 * 2392 * Mark a memory region unmergeable, resulting in the memory region (or 2393 * everything contained in a memory region container) not getting merged when 2394 * simplifying the address space and notifying memory listeners. Consequently, 2395 * memory listeners will never get notified about ranges that are larger than 2396 * the original memory regions. 2397 * 2398 * This is primarily useful when multiple aliases to a RAM memory region are 2399 * mapped into a memory region container, and updates (e.g., enable/disable or 2400 * map/unmap) of individual memory region aliases are not supposed to affect 2401 * other memory regions in the same container. 2402 * 2403 * @mr: the #MemoryRegion to be updated 2404 * @unmergeable: whether to mark the #MemoryRegion unmergeable 2405 */ 2406 void memory_region_set_unmergeable(MemoryRegion *mr, bool unmergeable); 2407 2408 /** 2409 * memory_region_present: checks if an address relative to a @container 2410 * translates into #MemoryRegion within @container 2411 * 2412 * Answer whether a #MemoryRegion within @container covers the address 2413 * @addr. 2414 * 2415 * @container: a #MemoryRegion within which @addr is a relative address 2416 * @addr: the area within @container to be searched 2417 */ 2418 bool memory_region_present(MemoryRegion *container, hwaddr addr); 2419 2420 /** 2421 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 2422 * into another memory region, which does not necessarily imply that it is 2423 * mapped into an address space. 2424 * 2425 * @mr: a #MemoryRegion which should be checked if it's mapped 2426 */ 2427 bool memory_region_is_mapped(MemoryRegion *mr); 2428 2429 /** 2430 * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a 2431 * #MemoryRegion 2432 * 2433 * The #RamDiscardManager cannot change while a memory region is mapped. 2434 * 2435 * @mr: the #MemoryRegion 2436 */ 2437 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr); 2438 2439 /** 2440 * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a 2441 * #RamDiscardManager assigned 2442 * 2443 * @mr: the #MemoryRegion 2444 */ 2445 static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr) 2446 { 2447 return !!memory_region_get_ram_discard_manager(mr); 2448 } 2449 2450 /** 2451 * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a 2452 * #MemoryRegion 2453 * 2454 * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion 2455 * that does not cover RAM, or a #MemoryRegion that already has a 2456 * #RamDiscardManager assigned. 2457 * 2458 * @mr: the #MemoryRegion 2459 * @rdm: #RamDiscardManager to set 2460 */ 2461 void memory_region_set_ram_discard_manager(MemoryRegion *mr, 2462 RamDiscardManager *rdm); 2463 2464 /** 2465 * memory_region_find: translate an address/size relative to a 2466 * MemoryRegion into a #MemoryRegionSection. 2467 * 2468 * Locates the first #MemoryRegion within @mr that overlaps the range 2469 * given by @addr and @size. 2470 * 2471 * Returns a #MemoryRegionSection that describes a contiguous overlap. 2472 * It will have the following characteristics: 2473 * - @size = 0 iff no overlap was found 2474 * - @mr is non-%NULL iff an overlap was found 2475 * 2476 * Remember that in the return value the @offset_within_region is 2477 * relative to the returned region (in the .@mr field), not to the 2478 * @mr argument. 2479 * 2480 * Similarly, the .@offset_within_address_space is relative to the 2481 * address space that contains both regions, the passed and the 2482 * returned one. However, in the special case where the @mr argument 2483 * has no container (and thus is the root of the address space), the 2484 * following will hold: 2485 * - @offset_within_address_space >= @addr 2486 * - @offset_within_address_space + .@size <= @addr + @size 2487 * 2488 * @mr: a MemoryRegion within which @addr is a relative address 2489 * @addr: start of the area within @as to be searched 2490 * @size: size of the area to be searched 2491 */ 2492 MemoryRegionSection memory_region_find(MemoryRegion *mr, 2493 hwaddr addr, uint64_t size); 2494 2495 /** 2496 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 2497 * 2498 * Synchronizes the dirty page log for all address spaces. 2499 * 2500 * @last_stage: whether this is the last stage of live migration 2501 */ 2502 void memory_global_dirty_log_sync(bool last_stage); 2503 2504 /** 2505 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 2506 * 2507 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap. 2508 * This function must be called after the dirty log bitmap is cleared, and 2509 * before dirty guest memory pages are read. If you are using 2510 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes 2511 * care of doing this. 2512 */ 2513 void memory_global_after_dirty_log_sync(void); 2514 2515 /** 2516 * memory_region_transaction_begin: Start a transaction. 2517 * 2518 * During a transaction, changes will be accumulated and made visible 2519 * only when the transaction ends (is committed). 2520 */ 2521 void memory_region_transaction_begin(void); 2522 2523 /** 2524 * memory_region_transaction_commit: Commit a transaction and make changes 2525 * visible to the guest. 2526 */ 2527 void memory_region_transaction_commit(void); 2528 2529 /** 2530 * memory_listener_register: register callbacks to be called when memory 2531 * sections are mapped or unmapped into an address 2532 * space 2533 * 2534 * @listener: an object containing the callbacks to be called 2535 * @filter: if non-%NULL, only regions in this address space will be observed 2536 */ 2537 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 2538 2539 /** 2540 * memory_listener_unregister: undo the effect of memory_listener_register() 2541 * 2542 * @listener: an object containing the callbacks to be removed 2543 */ 2544 void memory_listener_unregister(MemoryListener *listener); 2545 2546 /** 2547 * memory_global_dirty_log_start: begin dirty logging for all regions 2548 * 2549 * @flags: purpose of starting dirty log, migration or dirty rate 2550 */ 2551 void memory_global_dirty_log_start(unsigned int flags); 2552 2553 /** 2554 * memory_global_dirty_log_stop: end dirty logging for all regions 2555 * 2556 * @flags: purpose of stopping dirty log, migration or dirty rate 2557 */ 2558 void memory_global_dirty_log_stop(unsigned int flags); 2559 2560 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled); 2561 2562 bool memory_region_access_valid(MemoryRegion *mr, hwaddr addr, 2563 unsigned size, bool is_write, 2564 MemTxAttrs attrs); 2565 2566 /** 2567 * memory_region_dispatch_read: perform a read directly to the specified 2568 * MemoryRegion. 2569 * 2570 * @mr: #MemoryRegion to access 2571 * @addr: address within that region 2572 * @pval: pointer to uint64_t which the data is written to 2573 * @op: size, sign, and endianness of the memory operation 2574 * @attrs: memory transaction attributes to use for the access 2575 */ 2576 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 2577 hwaddr addr, 2578 uint64_t *pval, 2579 MemOp op, 2580 MemTxAttrs attrs); 2581 /** 2582 * memory_region_dispatch_write: perform a write directly to the specified 2583 * MemoryRegion. 2584 * 2585 * @mr: #MemoryRegion to access 2586 * @addr: address within that region 2587 * @data: data to write 2588 * @op: size, sign, and endianness of the memory operation 2589 * @attrs: memory transaction attributes to use for the access 2590 */ 2591 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 2592 hwaddr addr, 2593 uint64_t data, 2594 MemOp op, 2595 MemTxAttrs attrs); 2596 2597 /** 2598 * address_space_init: initializes an address space 2599 * 2600 * @as: an uninitialized #AddressSpace 2601 * @root: a #MemoryRegion that routes addresses for the address space 2602 * @name: an address space name. The name is only used for debugging 2603 * output. 2604 */ 2605 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 2606 2607 /** 2608 * address_space_destroy: destroy an address space 2609 * 2610 * Releases all resources associated with an address space. After an address space 2611 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 2612 * as well. 2613 * 2614 * @as: address space to be destroyed 2615 */ 2616 void address_space_destroy(AddressSpace *as); 2617 2618 /** 2619 * address_space_remove_listeners: unregister all listeners of an address space 2620 * 2621 * Removes all callbacks previously registered with memory_listener_register() 2622 * for @as. 2623 * 2624 * @as: an initialized #AddressSpace 2625 */ 2626 void address_space_remove_listeners(AddressSpace *as); 2627 2628 /** 2629 * address_space_rw: read from or write to an address space. 2630 * 2631 * Return a MemTxResult indicating whether the operation succeeded 2632 * or failed (eg unassigned memory, device rejected the transaction, 2633 * IOMMU fault). 2634 * 2635 * @as: #AddressSpace to be accessed 2636 * @addr: address within that address space 2637 * @attrs: memory transaction attributes 2638 * @buf: buffer with the data transferred 2639 * @len: the number of bytes to read or write 2640 * @is_write: indicates the transfer direction 2641 */ 2642 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 2643 MemTxAttrs attrs, void *buf, 2644 hwaddr len, bool is_write); 2645 2646 /** 2647 * address_space_write: write to address space. 2648 * 2649 * Return a MemTxResult indicating whether the operation succeeded 2650 * or failed (eg unassigned memory, device rejected the transaction, 2651 * IOMMU fault). 2652 * 2653 * @as: #AddressSpace to be accessed 2654 * @addr: address within that address space 2655 * @attrs: memory transaction attributes 2656 * @buf: buffer with the data transferred 2657 * @len: the number of bytes to write 2658 */ 2659 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 2660 MemTxAttrs attrs, 2661 const void *buf, hwaddr len); 2662 2663 /** 2664 * address_space_write_rom: write to address space, including ROM. 2665 * 2666 * This function writes to the specified address space, but will 2667 * write data to both ROM and RAM. This is used for non-guest 2668 * writes like writes from the gdb debug stub or initial loading 2669 * of ROM contents. 2670 * 2671 * Note that portions of the write which attempt to write data to 2672 * a device will be silently ignored -- only real RAM and ROM will 2673 * be written to. 2674 * 2675 * Return a MemTxResult indicating whether the operation succeeded 2676 * or failed (eg unassigned memory, device rejected the transaction, 2677 * IOMMU fault). 2678 * 2679 * @as: #AddressSpace to be accessed 2680 * @addr: address within that address space 2681 * @attrs: memory transaction attributes 2682 * @buf: buffer with the data transferred 2683 * @len: the number of bytes to write 2684 */ 2685 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 2686 MemTxAttrs attrs, 2687 const void *buf, hwaddr len); 2688 2689 /* address_space_ld*: load from an address space 2690 * address_space_st*: store to an address space 2691 * 2692 * These functions perform a load or store of the byte, word, 2693 * longword or quad to the specified address within the AddressSpace. 2694 * The _le suffixed functions treat the data as little endian; 2695 * _be indicates big endian; no suffix indicates "same endianness 2696 * as guest CPU". 2697 * 2698 * The "guest CPU endianness" accessors are deprecated for use outside 2699 * target-* code; devices should be CPU-agnostic and use either the LE 2700 * or the BE accessors. 2701 * 2702 * @as #AddressSpace to be accessed 2703 * @addr: address within that address space 2704 * @val: data value, for stores 2705 * @attrs: memory transaction attributes 2706 * @result: location to write the success/failure of the transaction; 2707 * if NULL, this information is discarded 2708 */ 2709 2710 #define SUFFIX 2711 #define ARG1 as 2712 #define ARG1_DECL AddressSpace *as 2713 #include "exec/memory_ldst.h.inc" 2714 2715 #define SUFFIX 2716 #define ARG1 as 2717 #define ARG1_DECL AddressSpace *as 2718 #include "exec/memory_ldst_phys.h.inc" 2719 2720 struct MemoryRegionCache { 2721 void *ptr; 2722 hwaddr xlat; 2723 hwaddr len; 2724 FlatView *fv; 2725 MemoryRegionSection mrs; 2726 bool is_write; 2727 }; 2728 2729 /* address_space_ld*_cached: load from a cached #MemoryRegion 2730 * address_space_st*_cached: store into a cached #MemoryRegion 2731 * 2732 * These functions perform a load or store of the byte, word, 2733 * longword or quad to the specified address. The address is 2734 * a physical address in the AddressSpace, but it must lie within 2735 * a #MemoryRegion that was mapped with address_space_cache_init. 2736 * 2737 * The _le suffixed functions treat the data as little endian; 2738 * _be indicates big endian; no suffix indicates "same endianness 2739 * as guest CPU". 2740 * 2741 * The "guest CPU endianness" accessors are deprecated for use outside 2742 * target-* code; devices should be CPU-agnostic and use either the LE 2743 * or the BE accessors. 2744 * 2745 * @cache: previously initialized #MemoryRegionCache to be accessed 2746 * @addr: address within the address space 2747 * @val: data value, for stores 2748 * @attrs: memory transaction attributes 2749 * @result: location to write the success/failure of the transaction; 2750 * if NULL, this information is discarded 2751 */ 2752 2753 #define SUFFIX _cached_slow 2754 #define ARG1 cache 2755 #define ARG1_DECL MemoryRegionCache *cache 2756 #include "exec/memory_ldst.h.inc" 2757 2758 /* Inline fast path for direct RAM access. */ 2759 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache, 2760 hwaddr addr, MemTxAttrs attrs, MemTxResult *result) 2761 { 2762 assert(addr < cache->len); 2763 if (likely(cache->ptr)) { 2764 return ldub_p(cache->ptr + addr); 2765 } else { 2766 return address_space_ldub_cached_slow(cache, addr, attrs, result); 2767 } 2768 } 2769 2770 static inline void address_space_stb_cached(MemoryRegionCache *cache, 2771 hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result) 2772 { 2773 assert(addr < cache->len); 2774 if (likely(cache->ptr)) { 2775 stb_p(cache->ptr + addr, val); 2776 } else { 2777 address_space_stb_cached_slow(cache, addr, val, attrs, result); 2778 } 2779 } 2780 2781 #define ENDIANNESS _le 2782 #include "exec/memory_ldst_cached.h.inc" 2783 2784 #define ENDIANNESS _be 2785 #include "exec/memory_ldst_cached.h.inc" 2786 2787 #define SUFFIX _cached 2788 #define ARG1 cache 2789 #define ARG1_DECL MemoryRegionCache *cache 2790 #include "exec/memory_ldst_phys.h.inc" 2791 2792 /* address_space_cache_init: prepare for repeated access to a physical 2793 * memory region 2794 * 2795 * @cache: #MemoryRegionCache to be filled 2796 * @as: #AddressSpace to be accessed 2797 * @addr: address within that address space 2798 * @len: length of buffer 2799 * @is_write: indicates the transfer direction 2800 * 2801 * Will only work with RAM, and may map a subset of the requested range by 2802 * returning a value that is less than @len. On failure, return a negative 2803 * errno value. 2804 * 2805 * Because it only works with RAM, this function can be used for 2806 * read-modify-write operations. In this case, is_write should be %true. 2807 * 2808 * Note that addresses passed to the address_space_*_cached functions 2809 * are relative to @addr. 2810 */ 2811 int64_t address_space_cache_init(MemoryRegionCache *cache, 2812 AddressSpace *as, 2813 hwaddr addr, 2814 hwaddr len, 2815 bool is_write); 2816 2817 /** 2818 * address_space_cache_init_empty: Initialize empty #MemoryRegionCache 2819 * 2820 * @cache: The #MemoryRegionCache to operate on. 2821 * 2822 * Initializes #MemoryRegionCache structure without memory region attached. 2823 * Cache initialized this way can only be safely destroyed, but not used. 2824 */ 2825 static inline void address_space_cache_init_empty(MemoryRegionCache *cache) 2826 { 2827 cache->mrs.mr = NULL; 2828 /* There is no real need to initialize fv, but it makes Coverity happy. */ 2829 cache->fv = NULL; 2830 } 2831 2832 /** 2833 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache 2834 * 2835 * @cache: The #MemoryRegionCache to operate on. 2836 * @addr: The first physical address that was written, relative to the 2837 * address that was passed to @address_space_cache_init. 2838 * @access_len: The number of bytes that were written starting at @addr. 2839 */ 2840 void address_space_cache_invalidate(MemoryRegionCache *cache, 2841 hwaddr addr, 2842 hwaddr access_len); 2843 2844 /** 2845 * address_space_cache_destroy: free a #MemoryRegionCache 2846 * 2847 * @cache: The #MemoryRegionCache whose memory should be released. 2848 */ 2849 void address_space_cache_destroy(MemoryRegionCache *cache); 2850 2851 /* address_space_get_iotlb_entry: translate an address into an IOTLB 2852 * entry. Should be called from an RCU critical section. 2853 */ 2854 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 2855 bool is_write, MemTxAttrs attrs); 2856 2857 /* address_space_translate: translate an address range into an address space 2858 * into a MemoryRegion and an address range into that section. Should be 2859 * called from an RCU critical section, to avoid that the last reference 2860 * to the returned region disappears after address_space_translate returns. 2861 * 2862 * @fv: #FlatView to be accessed 2863 * @addr: address within that address space 2864 * @xlat: pointer to address within the returned memory region section's 2865 * #MemoryRegion. 2866 * @len: pointer to length 2867 * @is_write: indicates the transfer direction 2868 * @attrs: memory attributes 2869 */ 2870 MemoryRegion *flatview_translate(FlatView *fv, 2871 hwaddr addr, hwaddr *xlat, 2872 hwaddr *len, bool is_write, 2873 MemTxAttrs attrs); 2874 2875 static inline MemoryRegion *address_space_translate(AddressSpace *as, 2876 hwaddr addr, hwaddr *xlat, 2877 hwaddr *len, bool is_write, 2878 MemTxAttrs attrs) 2879 { 2880 return flatview_translate(address_space_to_flatview(as), 2881 addr, xlat, len, is_write, attrs); 2882 } 2883 2884 /* address_space_access_valid: check for validity of accessing an address 2885 * space range 2886 * 2887 * Check whether memory is assigned to the given address space range, and 2888 * access is permitted by any IOMMU regions that are active for the address 2889 * space. 2890 * 2891 * For now, addr and len should be aligned to a page size. This limitation 2892 * will be lifted in the future. 2893 * 2894 * @as: #AddressSpace to be accessed 2895 * @addr: address within that address space 2896 * @len: length of the area to be checked 2897 * @is_write: indicates the transfer direction 2898 * @attrs: memory attributes 2899 */ 2900 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len, 2901 bool is_write, MemTxAttrs attrs); 2902 2903 /* address_space_map: map a physical memory region into a host virtual address 2904 * 2905 * May map a subset of the requested range, given by and returned in @plen. 2906 * May return %NULL and set *@plen to zero(0), if resources needed to perform 2907 * the mapping are exhausted. 2908 * Use only for reads OR writes - not for read-modify-write operations. 2909 * Use cpu_register_map_client() to know when retrying the map operation is 2910 * likely to succeed. 2911 * 2912 * @as: #AddressSpace to be accessed 2913 * @addr: address within that address space 2914 * @plen: pointer to length of buffer; updated on return 2915 * @is_write: indicates the transfer direction 2916 * @attrs: memory attributes 2917 */ 2918 void *address_space_map(AddressSpace *as, hwaddr addr, 2919 hwaddr *plen, bool is_write, MemTxAttrs attrs); 2920 2921 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 2922 * 2923 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 2924 * the amount of memory that was actually read or written by the caller. 2925 * 2926 * @as: #AddressSpace used 2927 * @buffer: host pointer as returned by address_space_map() 2928 * @len: buffer length as returned by address_space_map() 2929 * @access_len: amount of data actually transferred 2930 * @is_write: indicates the transfer direction 2931 */ 2932 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 2933 bool is_write, hwaddr access_len); 2934 2935 2936 /* Internal functions, part of the implementation of address_space_read. */ 2937 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2938 MemTxAttrs attrs, void *buf, hwaddr len); 2939 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2940 MemTxAttrs attrs, void *buf, 2941 hwaddr len, hwaddr addr1, hwaddr l, 2942 MemoryRegion *mr); 2943 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr); 2944 2945 /* Internal functions, part of the implementation of address_space_read_cached 2946 * and address_space_write_cached. */ 2947 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache, 2948 hwaddr addr, void *buf, hwaddr len); 2949 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache, 2950 hwaddr addr, const void *buf, 2951 hwaddr len); 2952 2953 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr); 2954 bool prepare_mmio_access(MemoryRegion *mr); 2955 2956 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) 2957 { 2958 if (is_write) { 2959 return memory_region_is_ram(mr) && !mr->readonly && 2960 !mr->rom_device && !memory_region_is_ram_device(mr); 2961 } else { 2962 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) || 2963 memory_region_is_romd(mr); 2964 } 2965 } 2966 2967 /** 2968 * address_space_read: read from an address space. 2969 * 2970 * Return a MemTxResult indicating whether the operation succeeded 2971 * or failed (eg unassigned memory, device rejected the transaction, 2972 * IOMMU fault). Called within RCU critical section. 2973 * 2974 * @as: #AddressSpace to be accessed 2975 * @addr: address within that address space 2976 * @attrs: memory transaction attributes 2977 * @buf: buffer with the data transferred 2978 * @len: length of the data transferred 2979 */ 2980 static inline __attribute__((__always_inline__)) 2981 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, 2982 MemTxAttrs attrs, void *buf, 2983 hwaddr len) 2984 { 2985 MemTxResult result = MEMTX_OK; 2986 hwaddr l, addr1; 2987 void *ptr; 2988 MemoryRegion *mr; 2989 FlatView *fv; 2990 2991 if (__builtin_constant_p(len)) { 2992 if (len) { 2993 RCU_READ_LOCK_GUARD(); 2994 fv = address_space_to_flatview(as); 2995 l = len; 2996 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2997 if (len == l && memory_access_is_direct(mr, false)) { 2998 ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 2999 memcpy(buf, ptr, len); 3000 } else { 3001 result = flatview_read_continue(fv, addr, attrs, buf, len, 3002 addr1, l, mr); 3003 } 3004 } 3005 } else { 3006 result = address_space_read_full(as, addr, attrs, buf, len); 3007 } 3008 return result; 3009 } 3010 3011 /** 3012 * address_space_read_cached: read from a cached RAM region 3013 * 3014 * @cache: Cached region to be addressed 3015 * @addr: address relative to the base of the RAM region 3016 * @buf: buffer with the data transferred 3017 * @len: length of the data transferred 3018 */ 3019 static inline MemTxResult 3020 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr, 3021 void *buf, hwaddr len) 3022 { 3023 assert(addr < cache->len && len <= cache->len - addr); 3024 fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr); 3025 if (likely(cache->ptr)) { 3026 memcpy(buf, cache->ptr + addr, len); 3027 return MEMTX_OK; 3028 } else { 3029 return address_space_read_cached_slow(cache, addr, buf, len); 3030 } 3031 } 3032 3033 /** 3034 * address_space_write_cached: write to a cached RAM region 3035 * 3036 * @cache: Cached region to be addressed 3037 * @addr: address relative to the base of the RAM region 3038 * @buf: buffer with the data transferred 3039 * @len: length of the data transferred 3040 */ 3041 static inline MemTxResult 3042 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr, 3043 const void *buf, hwaddr len) 3044 { 3045 assert(addr < cache->len && len <= cache->len - addr); 3046 if (likely(cache->ptr)) { 3047 memcpy(cache->ptr + addr, buf, len); 3048 return MEMTX_OK; 3049 } else { 3050 return address_space_write_cached_slow(cache, addr, buf, len); 3051 } 3052 } 3053 3054 /** 3055 * address_space_set: Fill address space with a constant byte. 3056 * 3057 * Return a MemTxResult indicating whether the operation succeeded 3058 * or failed (eg unassigned memory, device rejected the transaction, 3059 * IOMMU fault). 3060 * 3061 * @as: #AddressSpace to be accessed 3062 * @addr: address within that address space 3063 * @c: constant byte to fill the memory 3064 * @len: the number of bytes to fill with the constant byte 3065 * @attrs: memory transaction attributes 3066 */ 3067 MemTxResult address_space_set(AddressSpace *as, hwaddr addr, 3068 uint8_t c, hwaddr len, MemTxAttrs attrs); 3069 3070 #ifdef NEED_CPU_H 3071 /* enum device_endian to MemOp. */ 3072 static inline MemOp devend_memop(enum device_endian end) 3073 { 3074 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN && 3075 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN); 3076 3077 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 3078 /* Swap if non-host endianness or native (target) endianness */ 3079 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP; 3080 #else 3081 const int non_host_endianness = 3082 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN; 3083 3084 /* In this case, native (target) endianness needs no swap. */ 3085 return (end == non_host_endianness) ? MO_BSWAP : 0; 3086 #endif 3087 } 3088 #endif 3089 3090 /* 3091 * Inhibit technologies that require discarding of pages in RAM blocks, e.g., 3092 * to manage the actual amount of memory consumed by the VM (then, the memory 3093 * provided by RAM blocks might be bigger than the desired memory consumption). 3094 * This *must* be set if: 3095 * - Discarding parts of a RAM blocks does not result in the change being 3096 * reflected in the VM and the pages getting freed. 3097 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous 3098 * discards blindly. 3099 * - Discarding parts of a RAM blocks will result in integrity issues (e.g., 3100 * encrypted VMs). 3101 * Technologies that only temporarily pin the current working set of a 3102 * driver are fine, because we don't expect such pages to be discarded 3103 * (esp. based on guest action like balloon inflation). 3104 * 3105 * This is *not* to be used to protect from concurrent discards (esp., 3106 * postcopy). 3107 * 3108 * Returns 0 if successful. Returns -EBUSY if a technology that relies on 3109 * discards to work reliably is active. 3110 */ 3111 int ram_block_discard_disable(bool state); 3112 3113 /* 3114 * See ram_block_discard_disable(): only disable uncoordinated discards, 3115 * keeping coordinated discards (via the RamDiscardManager) enabled. 3116 */ 3117 int ram_block_uncoordinated_discard_disable(bool state); 3118 3119 /* 3120 * Inhibit technologies that disable discarding of pages in RAM blocks. 3121 * 3122 * Returns 0 if successful. Returns -EBUSY if discards are already set to 3123 * broken. 3124 */ 3125 int ram_block_discard_require(bool state); 3126 3127 /* 3128 * See ram_block_discard_require(): only inhibit technologies that disable 3129 * uncoordinated discarding of pages in RAM blocks, allowing co-existance with 3130 * technologies that only inhibit uncoordinated discards (via the 3131 * RamDiscardManager). 3132 */ 3133 int ram_block_coordinated_discard_require(bool state); 3134 3135 /* 3136 * Test if any discarding of memory in ram blocks is disabled. 3137 */ 3138 bool ram_block_discard_is_disabled(void); 3139 3140 /* 3141 * Test if any discarding of memory in ram blocks is required to work reliably. 3142 */ 3143 bool ram_block_discard_is_required(void); 3144 3145 #endif 3146 3147 #endif 3148