1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef MEMORY_H 15 #define MEMORY_H 16 17 #ifndef CONFIG_USER_ONLY 18 19 #define DIRTY_MEMORY_VGA 0 20 #define DIRTY_MEMORY_CODE 1 21 #define DIRTY_MEMORY_MIGRATION 2 22 #define DIRTY_MEMORY_NUM 3 /* num of dirty bits */ 23 24 #include "exec/cpu-common.h" 25 #ifndef CONFIG_USER_ONLY 26 #include "exec/hwaddr.h" 27 #endif 28 #include "exec/memattrs.h" 29 #include "qemu/queue.h" 30 #include "qemu/int128.h" 31 #include "qemu/notify.h" 32 #include "qom/object.h" 33 #include "qemu/rcu.h" 34 35 #define RAM_ADDR_INVALID (~(ram_addr_t)0) 36 37 #define MAX_PHYS_ADDR_SPACE_BITS 62 38 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 39 40 #define TYPE_MEMORY_REGION "qemu:memory-region" 41 #define MEMORY_REGION(obj) \ 42 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION) 43 44 typedef struct MemoryRegionOps MemoryRegionOps; 45 typedef struct MemoryRegionMmio MemoryRegionMmio; 46 47 struct MemoryRegionMmio { 48 CPUReadMemoryFunc *read[3]; 49 CPUWriteMemoryFunc *write[3]; 50 }; 51 52 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 53 54 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 55 typedef enum { 56 IOMMU_NONE = 0, 57 IOMMU_RO = 1, 58 IOMMU_WO = 2, 59 IOMMU_RW = 3, 60 } IOMMUAccessFlags; 61 62 struct IOMMUTLBEntry { 63 AddressSpace *target_as; 64 hwaddr iova; 65 hwaddr translated_addr; 66 hwaddr addr_mask; /* 0xfff = 4k translation */ 67 IOMMUAccessFlags perm; 68 }; 69 70 /* 71 * Bitmap for different IOMMUNotifier capabilities. Each notifier can 72 * register with one or multiple IOMMU Notifier capability bit(s). 73 */ 74 typedef enum { 75 IOMMU_NOTIFIER_NONE = 0, 76 /* Notify cache invalidations */ 77 IOMMU_NOTIFIER_UNMAP = 0x1, 78 /* Notify entry changes (newly created entries) */ 79 IOMMU_NOTIFIER_MAP = 0x2, 80 } IOMMUNotifierFlag; 81 82 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP) 83 84 struct IOMMUNotifier { 85 void (*notify)(struct IOMMUNotifier *notifier, IOMMUTLBEntry *data); 86 IOMMUNotifierFlag notifier_flags; 87 QLIST_ENTRY(IOMMUNotifier) node; 88 }; 89 typedef struct IOMMUNotifier IOMMUNotifier; 90 91 /* New-style MMIO accessors can indicate that the transaction failed. 92 * A zero (MEMTX_OK) response means success; anything else is a failure 93 * of some kind. The memory subsystem will bitwise-OR together results 94 * if it is synthesizing an operation from multiple smaller accesses. 95 */ 96 #define MEMTX_OK 0 97 #define MEMTX_ERROR (1U << 0) /* device returned an error */ 98 #define MEMTX_DECODE_ERROR (1U << 1) /* nothing at that address */ 99 typedef uint32_t MemTxResult; 100 101 /* 102 * Memory region callbacks 103 */ 104 struct MemoryRegionOps { 105 /* Read from the memory region. @addr is relative to @mr; @size is 106 * in bytes. */ 107 uint64_t (*read)(void *opaque, 108 hwaddr addr, 109 unsigned size); 110 /* Write to the memory region. @addr is relative to @mr; @size is 111 * in bytes. */ 112 void (*write)(void *opaque, 113 hwaddr addr, 114 uint64_t data, 115 unsigned size); 116 117 MemTxResult (*read_with_attrs)(void *opaque, 118 hwaddr addr, 119 uint64_t *data, 120 unsigned size, 121 MemTxAttrs attrs); 122 MemTxResult (*write_with_attrs)(void *opaque, 123 hwaddr addr, 124 uint64_t data, 125 unsigned size, 126 MemTxAttrs attrs); 127 128 enum device_endian endianness; 129 /* Guest-visible constraints: */ 130 struct { 131 /* If nonzero, specify bounds on access sizes beyond which a machine 132 * check is thrown. 133 */ 134 unsigned min_access_size; 135 unsigned max_access_size; 136 /* If true, unaligned accesses are supported. Otherwise unaligned 137 * accesses throw machine checks. 138 */ 139 bool unaligned; 140 /* 141 * If present, and returns #false, the transaction is not accepted 142 * by the device (and results in machine dependent behaviour such 143 * as a machine check exception). 144 */ 145 bool (*accepts)(void *opaque, hwaddr addr, 146 unsigned size, bool is_write); 147 } valid; 148 /* Internal implementation constraints: */ 149 struct { 150 /* If nonzero, specifies the minimum size implemented. Smaller sizes 151 * will be rounded upwards and a partial result will be returned. 152 */ 153 unsigned min_access_size; 154 /* If nonzero, specifies the maximum size implemented. Larger sizes 155 * will be done as a series of accesses with smaller sizes. 156 */ 157 unsigned max_access_size; 158 /* If true, unaligned accesses are supported. Otherwise all accesses 159 * are converted to (possibly multiple) naturally aligned accesses. 160 */ 161 bool unaligned; 162 } impl; 163 164 /* If .read and .write are not present, old_mmio may be used for 165 * backwards compatibility with old mmio registration 166 */ 167 const MemoryRegionMmio old_mmio; 168 }; 169 170 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps; 171 172 struct MemoryRegionIOMMUOps { 173 /* Return a TLB entry that contains a given address. */ 174 IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write); 175 /* Returns minimum supported page size */ 176 uint64_t (*get_min_page_size)(MemoryRegion *iommu); 177 /* Called when IOMMU Notifier flag changed */ 178 void (*notify_flag_changed)(MemoryRegion *iommu, 179 IOMMUNotifierFlag old_flags, 180 IOMMUNotifierFlag new_flags); 181 }; 182 183 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 184 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 185 186 struct MemoryRegion { 187 Object parent_obj; 188 189 /* All fields are private - violators will be prosecuted */ 190 191 /* The following fields should fit in a cache line */ 192 bool romd_mode; 193 bool ram; 194 bool subpage; 195 bool readonly; /* For RAM regions */ 196 bool rom_device; 197 bool flush_coalesced_mmio; 198 bool global_locking; 199 uint8_t dirty_log_mask; 200 RAMBlock *ram_block; 201 Object *owner; 202 const MemoryRegionIOMMUOps *iommu_ops; 203 204 const MemoryRegionOps *ops; 205 void *opaque; 206 MemoryRegion *container; 207 Int128 size; 208 hwaddr addr; 209 void (*destructor)(MemoryRegion *mr); 210 uint64_t align; 211 bool terminates; 212 bool skip_dump; 213 bool enabled; 214 bool warning_printed; /* For reservations */ 215 uint8_t vga_logging_count; 216 MemoryRegion *alias; 217 hwaddr alias_offset; 218 int32_t priority; 219 QTAILQ_HEAD(subregions, MemoryRegion) subregions; 220 QTAILQ_ENTRY(MemoryRegion) subregions_link; 221 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced; 222 const char *name; 223 unsigned ioeventfd_nb; 224 MemoryRegionIoeventfd *ioeventfds; 225 QLIST_HEAD(, IOMMUNotifier) iommu_notify; 226 IOMMUNotifierFlag iommu_notify_flags; 227 }; 228 229 /** 230 * MemoryListener: callbacks structure for updates to the physical memory map 231 * 232 * Allows a component to adjust to changes in the guest-visible memory map. 233 * Use with memory_listener_register() and memory_listener_unregister(). 234 */ 235 struct MemoryListener { 236 void (*begin)(MemoryListener *listener); 237 void (*commit)(MemoryListener *listener); 238 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 239 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 240 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 241 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 242 int old, int new); 243 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 244 int old, int new); 245 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 246 void (*log_global_start)(MemoryListener *listener); 247 void (*log_global_stop)(MemoryListener *listener); 248 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 249 bool match_data, uint64_t data, EventNotifier *e); 250 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 251 bool match_data, uint64_t data, EventNotifier *e); 252 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section, 253 hwaddr addr, hwaddr len); 254 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section, 255 hwaddr addr, hwaddr len); 256 /* Lower = earlier (during add), later (during del) */ 257 unsigned priority; 258 AddressSpace *address_space; 259 QTAILQ_ENTRY(MemoryListener) link; 260 QTAILQ_ENTRY(MemoryListener) link_as; 261 }; 262 263 /** 264 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects 265 */ 266 struct AddressSpace { 267 /* All fields are private. */ 268 struct rcu_head rcu; 269 char *name; 270 MemoryRegion *root; 271 int ref_count; 272 bool malloced; 273 274 /* Accessed via RCU. */ 275 struct FlatView *current_map; 276 277 int ioeventfd_nb; 278 struct MemoryRegionIoeventfd *ioeventfds; 279 struct AddressSpaceDispatch *dispatch; 280 struct AddressSpaceDispatch *next_dispatch; 281 MemoryListener dispatch_listener; 282 QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners; 283 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 284 }; 285 286 /** 287 * MemoryRegionSection: describes a fragment of a #MemoryRegion 288 * 289 * @mr: the region, or %NULL if empty 290 * @address_space: the address space the region is mapped in 291 * @offset_within_region: the beginning of the section, relative to @mr's start 292 * @size: the size of the section; will not exceed @mr's boundaries 293 * @offset_within_address_space: the address of the first byte of the section 294 * relative to the region's address space 295 * @readonly: writes to this section are ignored 296 */ 297 struct MemoryRegionSection { 298 MemoryRegion *mr; 299 AddressSpace *address_space; 300 hwaddr offset_within_region; 301 Int128 size; 302 hwaddr offset_within_address_space; 303 bool readonly; 304 }; 305 306 /** 307 * memory_region_init: Initialize a memory region 308 * 309 * The region typically acts as a container for other memory regions. Use 310 * memory_region_add_subregion() to add subregions. 311 * 312 * @mr: the #MemoryRegion to be initialized 313 * @owner: the object that tracks the region's reference count 314 * @name: used for debugging; not visible to the user or ABI 315 * @size: size of the region; any subregions beyond this size will be clipped 316 */ 317 void memory_region_init(MemoryRegion *mr, 318 struct Object *owner, 319 const char *name, 320 uint64_t size); 321 322 /** 323 * memory_region_ref: Add 1 to a memory region's reference count 324 * 325 * Whenever memory regions are accessed outside the BQL, they need to be 326 * preserved against hot-unplug. MemoryRegions actually do not have their 327 * own reference count; they piggyback on a QOM object, their "owner". 328 * This function adds a reference to the owner. 329 * 330 * All MemoryRegions must have an owner if they can disappear, even if the 331 * device they belong to operates exclusively under the BQL. This is because 332 * the region could be returned at any time by memory_region_find, and this 333 * is usually under guest control. 334 * 335 * @mr: the #MemoryRegion 336 */ 337 void memory_region_ref(MemoryRegion *mr); 338 339 /** 340 * memory_region_unref: Remove 1 to a memory region's reference count 341 * 342 * Whenever memory regions are accessed outside the BQL, they need to be 343 * preserved against hot-unplug. MemoryRegions actually do not have their 344 * own reference count; they piggyback on a QOM object, their "owner". 345 * This function removes a reference to the owner and possibly destroys it. 346 * 347 * @mr: the #MemoryRegion 348 */ 349 void memory_region_unref(MemoryRegion *mr); 350 351 /** 352 * memory_region_init_io: Initialize an I/O memory region. 353 * 354 * Accesses into the region will cause the callbacks in @ops to be called. 355 * if @size is nonzero, subregions will be clipped to @size. 356 * 357 * @mr: the #MemoryRegion to be initialized. 358 * @owner: the object that tracks the region's reference count 359 * @ops: a structure containing read and write callbacks to be used when 360 * I/O is performed on the region. 361 * @opaque: passed to the read and write callbacks of the @ops structure. 362 * @name: used for debugging; not visible to the user or ABI 363 * @size: size of the region. 364 */ 365 void memory_region_init_io(MemoryRegion *mr, 366 struct Object *owner, 367 const MemoryRegionOps *ops, 368 void *opaque, 369 const char *name, 370 uint64_t size); 371 372 /** 373 * memory_region_init_ram: Initialize RAM memory region. Accesses into the 374 * region will modify memory directly. 375 * 376 * @mr: the #MemoryRegion to be initialized. 377 * @owner: the object that tracks the region's reference count 378 * @name: the name of the region. 379 * @size: size of the region. 380 * @errp: pointer to Error*, to store an error if it happens. 381 */ 382 void memory_region_init_ram(MemoryRegion *mr, 383 struct Object *owner, 384 const char *name, 385 uint64_t size, 386 Error **errp); 387 388 /** 389 * memory_region_init_resizeable_ram: Initialize memory region with resizeable 390 * RAM. Accesses into the region will 391 * modify memory directly. Only an initial 392 * portion of this RAM is actually used. 393 * The used size can change across reboots. 394 * 395 * @mr: the #MemoryRegion to be initialized. 396 * @owner: the object that tracks the region's reference count 397 * @name: the name of the region. 398 * @size: used size of the region. 399 * @max_size: max size of the region. 400 * @resized: callback to notify owner about used size change. 401 * @errp: pointer to Error*, to store an error if it happens. 402 */ 403 void memory_region_init_resizeable_ram(MemoryRegion *mr, 404 struct Object *owner, 405 const char *name, 406 uint64_t size, 407 uint64_t max_size, 408 void (*resized)(const char*, 409 uint64_t length, 410 void *host), 411 Error **errp); 412 #ifdef __linux__ 413 /** 414 * memory_region_init_ram_from_file: Initialize RAM memory region with a 415 * mmap-ed backend. 416 * 417 * @mr: the #MemoryRegion to be initialized. 418 * @owner: the object that tracks the region's reference count 419 * @name: the name of the region. 420 * @size: size of the region. 421 * @share: %true if memory must be mmaped with the MAP_SHARED flag 422 * @path: the path in which to allocate the RAM. 423 * @errp: pointer to Error*, to store an error if it happens. 424 */ 425 void memory_region_init_ram_from_file(MemoryRegion *mr, 426 struct Object *owner, 427 const char *name, 428 uint64_t size, 429 bool share, 430 const char *path, 431 Error **errp); 432 #endif 433 434 /** 435 * memory_region_init_ram_ptr: Initialize RAM memory region from a 436 * user-provided pointer. Accesses into the 437 * region will modify memory directly. 438 * 439 * @mr: the #MemoryRegion to be initialized. 440 * @owner: the object that tracks the region's reference count 441 * @name: the name of the region. 442 * @size: size of the region. 443 * @ptr: memory to be mapped; must contain at least @size bytes. 444 */ 445 void memory_region_init_ram_ptr(MemoryRegion *mr, 446 struct Object *owner, 447 const char *name, 448 uint64_t size, 449 void *ptr); 450 451 /** 452 * memory_region_init_alias: Initialize a memory region that aliases all or a 453 * part of another memory region. 454 * 455 * @mr: the #MemoryRegion to be initialized. 456 * @owner: the object that tracks the region's reference count 457 * @name: used for debugging; not visible to the user or ABI 458 * @orig: the region to be referenced; @mr will be equivalent to 459 * @orig between @offset and @offset + @size - 1. 460 * @offset: start of the section in @orig to be referenced. 461 * @size: size of the region. 462 */ 463 void memory_region_init_alias(MemoryRegion *mr, 464 struct Object *owner, 465 const char *name, 466 MemoryRegion *orig, 467 hwaddr offset, 468 uint64_t size); 469 470 /** 471 * memory_region_init_rom: Initialize a ROM memory region. 472 * 473 * This has the same effect as calling memory_region_init_ram() 474 * and then marking the resulting region read-only with 475 * memory_region_set_readonly(). 476 * 477 * @mr: the #MemoryRegion to be initialized. 478 * @owner: the object that tracks the region's reference count 479 * @name: the name of the region. 480 * @size: size of the region. 481 * @errp: pointer to Error*, to store an error if it happens. 482 */ 483 void memory_region_init_rom(MemoryRegion *mr, 484 struct Object *owner, 485 const char *name, 486 uint64_t size, 487 Error **errp); 488 489 /** 490 * memory_region_init_rom_device: Initialize a ROM memory region. Writes are 491 * handled via callbacks. 492 * 493 * @mr: the #MemoryRegion to be initialized. 494 * @owner: the object that tracks the region's reference count 495 * @ops: callbacks for write access handling (must not be NULL). 496 * @name: the name of the region. 497 * @size: size of the region. 498 * @errp: pointer to Error*, to store an error if it happens. 499 */ 500 void memory_region_init_rom_device(MemoryRegion *mr, 501 struct Object *owner, 502 const MemoryRegionOps *ops, 503 void *opaque, 504 const char *name, 505 uint64_t size, 506 Error **errp); 507 508 /** 509 * memory_region_init_reservation: Initialize a memory region that reserves 510 * I/O space. 511 * 512 * A reservation region primariy serves debugging purposes. It claims I/O 513 * space that is not supposed to be handled by QEMU itself. Any access via 514 * the memory API will cause an abort(). 515 * This function is deprecated. Use memory_region_init_io() with NULL 516 * callbacks instead. 517 * 518 * @mr: the #MemoryRegion to be initialized 519 * @owner: the object that tracks the region's reference count 520 * @name: used for debugging; not visible to the user or ABI 521 * @size: size of the region. 522 */ 523 static inline void memory_region_init_reservation(MemoryRegion *mr, 524 Object *owner, 525 const char *name, 526 uint64_t size) 527 { 528 memory_region_init_io(mr, owner, NULL, mr, name, size); 529 } 530 531 /** 532 * memory_region_init_iommu: Initialize a memory region that translates 533 * addresses 534 * 535 * An IOMMU region translates addresses and forwards accesses to a target 536 * memory region. 537 * 538 * @mr: the #MemoryRegion to be initialized 539 * @owner: the object that tracks the region's reference count 540 * @ops: a function that translates addresses into the @target region 541 * @name: used for debugging; not visible to the user or ABI 542 * @size: size of the region. 543 */ 544 void memory_region_init_iommu(MemoryRegion *mr, 545 struct Object *owner, 546 const MemoryRegionIOMMUOps *ops, 547 const char *name, 548 uint64_t size); 549 550 /** 551 * memory_region_owner: get a memory region's owner. 552 * 553 * @mr: the memory region being queried. 554 */ 555 struct Object *memory_region_owner(MemoryRegion *mr); 556 557 /** 558 * memory_region_size: get a memory region's size. 559 * 560 * @mr: the memory region being queried. 561 */ 562 uint64_t memory_region_size(MemoryRegion *mr); 563 564 /** 565 * memory_region_is_ram: check whether a memory region is random access 566 * 567 * Returns %true is a memory region is random access. 568 * 569 * @mr: the memory region being queried 570 */ 571 static inline bool memory_region_is_ram(MemoryRegion *mr) 572 { 573 return mr->ram; 574 } 575 576 /** 577 * memory_region_is_skip_dump: check whether a memory region should not be 578 * dumped 579 * 580 * Returns %true is a memory region should not be dumped(e.g. VFIO BAR MMAP). 581 * 582 * @mr: the memory region being queried 583 */ 584 bool memory_region_is_skip_dump(MemoryRegion *mr); 585 586 /** 587 * memory_region_set_skip_dump: Set skip_dump flag, dump will ignore this memory 588 * region 589 * 590 * @mr: the memory region being queried 591 */ 592 void memory_region_set_skip_dump(MemoryRegion *mr); 593 594 /** 595 * memory_region_is_romd: check whether a memory region is in ROMD mode 596 * 597 * Returns %true if a memory region is a ROM device and currently set to allow 598 * direct reads. 599 * 600 * @mr: the memory region being queried 601 */ 602 static inline bool memory_region_is_romd(MemoryRegion *mr) 603 { 604 return mr->rom_device && mr->romd_mode; 605 } 606 607 /** 608 * memory_region_is_iommu: check whether a memory region is an iommu 609 * 610 * Returns %true is a memory region is an iommu. 611 * 612 * @mr: the memory region being queried 613 */ 614 static inline bool memory_region_is_iommu(MemoryRegion *mr) 615 { 616 return mr->iommu_ops; 617 } 618 619 620 /** 621 * memory_region_iommu_get_min_page_size: get minimum supported page size 622 * for an iommu 623 * 624 * Returns minimum supported page size for an iommu. 625 * 626 * @mr: the memory region being queried 627 */ 628 uint64_t memory_region_iommu_get_min_page_size(MemoryRegion *mr); 629 630 /** 631 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 632 * 633 * The notification type will be decided by entry.perm bits: 634 * 635 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE. 636 * - For MAP (newly added entry) notifies: set entry.perm to the 637 * permission of the page (which is definitely !IOMMU_NONE). 638 * 639 * Note: for any IOMMU implementation, an in-place mapping change 640 * should be notified with an UNMAP followed by a MAP. 641 * 642 * @mr: the memory region that was changed 643 * @entry: the new entry in the IOMMU translation table. The entry 644 * replaces all old entries for the same virtual I/O address range. 645 * Deleted entries have .@perm == 0. 646 */ 647 void memory_region_notify_iommu(MemoryRegion *mr, 648 IOMMUTLBEntry entry); 649 650 /** 651 * memory_region_register_iommu_notifier: register a notifier for changes to 652 * IOMMU translation entries. 653 * 654 * @mr: the memory region to observe 655 * @n: the IOMMUNotifier to be added; the notify callback receives a 656 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer 657 * ceases to be valid on exit from the notifier. 658 */ 659 void memory_region_register_iommu_notifier(MemoryRegion *mr, 660 IOMMUNotifier *n); 661 662 /** 663 * memory_region_iommu_replay: replay existing IOMMU translations to 664 * a notifier with the minimum page granularity returned by 665 * mr->iommu_ops->get_page_size(). 666 * 667 * @mr: the memory region to observe 668 * @n: the notifier to which to replay iommu mappings 669 * @is_write: Whether to treat the replay as a translate "write" 670 * through the iommu 671 */ 672 void memory_region_iommu_replay(MemoryRegion *mr, IOMMUNotifier *n, 673 bool is_write); 674 675 /** 676 * memory_region_unregister_iommu_notifier: unregister a notifier for 677 * changes to IOMMU translation entries. 678 * 679 * @mr: the memory region which was observed and for which notity_stopped() 680 * needs to be called 681 * @n: the notifier to be removed. 682 */ 683 void memory_region_unregister_iommu_notifier(MemoryRegion *mr, 684 IOMMUNotifier *n); 685 686 /** 687 * memory_region_name: get a memory region's name 688 * 689 * Returns the string that was used to initialize the memory region. 690 * 691 * @mr: the memory region being queried 692 */ 693 const char *memory_region_name(const MemoryRegion *mr); 694 695 /** 696 * memory_region_is_logging: return whether a memory region is logging writes 697 * 698 * Returns %true if the memory region is logging writes for the given client 699 * 700 * @mr: the memory region being queried 701 * @client: the client being queried 702 */ 703 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 704 705 /** 706 * memory_region_get_dirty_log_mask: return the clients for which a 707 * memory region is logging writes. 708 * 709 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 710 * are the bit indices. 711 * 712 * @mr: the memory region being queried 713 */ 714 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 715 716 /** 717 * memory_region_is_rom: check whether a memory region is ROM 718 * 719 * Returns %true is a memory region is read-only memory. 720 * 721 * @mr: the memory region being queried 722 */ 723 static inline bool memory_region_is_rom(MemoryRegion *mr) 724 { 725 return mr->ram && mr->readonly; 726 } 727 728 729 /** 730 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 731 * 732 * Returns a file descriptor backing a file-based RAM memory region, 733 * or -1 if the region is not a file-based RAM memory region. 734 * 735 * @mr: the RAM or alias memory region being queried. 736 */ 737 int memory_region_get_fd(MemoryRegion *mr); 738 739 /** 740 * memory_region_set_fd: Mark a RAM memory region as backed by a 741 * file descriptor. 742 * 743 * This function is typically used after memory_region_init_ram_ptr(). 744 * 745 * @mr: the memory region being queried. 746 * @fd: the file descriptor that backs @mr. 747 */ 748 void memory_region_set_fd(MemoryRegion *mr, int fd); 749 750 /** 751 * memory_region_from_host: Convert a pointer into a RAM memory region 752 * and an offset within it. 753 * 754 * Given a host pointer inside a RAM memory region (created with 755 * memory_region_init_ram() or memory_region_init_ram_ptr()), return 756 * the MemoryRegion and the offset within it. 757 * 758 * Use with care; by the time this function returns, the returned pointer is 759 * not protected by RCU anymore. If the caller is not within an RCU critical 760 * section and does not hold the iothread lock, it must have other means of 761 * protecting the pointer, such as a reference to the region that includes 762 * the incoming ram_addr_t. 763 * 764 * @mr: the memory region being queried. 765 */ 766 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset); 767 768 /** 769 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 770 * 771 * Returns a host pointer to a RAM memory region (created with 772 * memory_region_init_ram() or memory_region_init_ram_ptr()). 773 * 774 * Use with care; by the time this function returns, the returned pointer is 775 * not protected by RCU anymore. If the caller is not within an RCU critical 776 * section and does not hold the iothread lock, it must have other means of 777 * protecting the pointer, such as a reference to the region that includes 778 * the incoming ram_addr_t. 779 * 780 * @mr: the memory region being queried. 781 */ 782 void *memory_region_get_ram_ptr(MemoryRegion *mr); 783 784 /* memory_region_ram_resize: Resize a RAM region. 785 * 786 * Only legal before guest might have detected the memory size: e.g. on 787 * incoming migration, or right after reset. 788 * 789 * @mr: a memory region created with @memory_region_init_resizeable_ram. 790 * @newsize: the new size the region 791 * @errp: pointer to Error*, to store an error if it happens. 792 */ 793 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 794 Error **errp); 795 796 /** 797 * memory_region_set_log: Turn dirty logging on or off for a region. 798 * 799 * Turns dirty logging on or off for a specified client (display, migration). 800 * Only meaningful for RAM regions. 801 * 802 * @mr: the memory region being updated. 803 * @log: whether dirty logging is to be enabled or disabled. 804 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 805 */ 806 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 807 808 /** 809 * memory_region_get_dirty: Check whether a range of bytes is dirty 810 * for a specified client. 811 * 812 * Checks whether a range of bytes has been written to since the last 813 * call to memory_region_reset_dirty() with the same @client. Dirty logging 814 * must be enabled. 815 * 816 * @mr: the memory region being queried. 817 * @addr: the address (relative to the start of the region) being queried. 818 * @size: the size of the range being queried. 819 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 820 * %DIRTY_MEMORY_VGA. 821 */ 822 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr, 823 hwaddr size, unsigned client); 824 825 /** 826 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 827 * 828 * Marks a range of bytes as dirty, after it has been dirtied outside 829 * guest code. 830 * 831 * @mr: the memory region being dirtied. 832 * @addr: the address (relative to the start of the region) being dirtied. 833 * @size: size of the range being dirtied. 834 */ 835 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 836 hwaddr size); 837 838 /** 839 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty 840 * for a specified client. It clears them. 841 * 842 * Checks whether a range of bytes has been written to since the last 843 * call to memory_region_reset_dirty() with the same @client. Dirty logging 844 * must be enabled. 845 * 846 * @mr: the memory region being queried. 847 * @addr: the address (relative to the start of the region) being queried. 848 * @size: the size of the range being queried. 849 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 850 * %DIRTY_MEMORY_VGA. 851 */ 852 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr, 853 hwaddr size, unsigned client); 854 /** 855 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with 856 * any external TLBs (e.g. kvm) 857 * 858 * Flushes dirty information from accelerators such as kvm and vhost-net 859 * and makes it available to users of the memory API. 860 * 861 * @mr: the region being flushed. 862 */ 863 void memory_region_sync_dirty_bitmap(MemoryRegion *mr); 864 865 /** 866 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 867 * client. 868 * 869 * Marks a range of pages as no longer dirty. 870 * 871 * @mr: the region being updated. 872 * @addr: the start of the subrange being cleaned. 873 * @size: the size of the subrange being cleaned. 874 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 875 * %DIRTY_MEMORY_VGA. 876 */ 877 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 878 hwaddr size, unsigned client); 879 880 /** 881 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 882 * 883 * Allows a memory region to be marked as read-only (turning it into a ROM). 884 * only useful on RAM regions. 885 * 886 * @mr: the region being updated. 887 * @readonly: whether rhe region is to be ROM or RAM. 888 */ 889 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 890 891 /** 892 * memory_region_rom_device_set_romd: enable/disable ROMD mode 893 * 894 * Allows a ROM device (initialized with memory_region_init_rom_device() to 895 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 896 * device is mapped to guest memory and satisfies read access directly. 897 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 898 * Writes are always handled by the #MemoryRegion.write function. 899 * 900 * @mr: the memory region to be updated 901 * @romd_mode: %true to put the region into ROMD mode 902 */ 903 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 904 905 /** 906 * memory_region_set_coalescing: Enable memory coalescing for the region. 907 * 908 * Enabled writes to a region to be queued for later processing. MMIO ->write 909 * callbacks may be delayed until a non-coalesced MMIO is issued. 910 * Only useful for IO regions. Roughly similar to write-combining hardware. 911 * 912 * @mr: the memory region to be write coalesced 913 */ 914 void memory_region_set_coalescing(MemoryRegion *mr); 915 916 /** 917 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 918 * a region. 919 * 920 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 921 * Multiple calls can be issued coalesced disjoint ranges. 922 * 923 * @mr: the memory region to be updated. 924 * @offset: the start of the range within the region to be coalesced. 925 * @size: the size of the subrange to be coalesced. 926 */ 927 void memory_region_add_coalescing(MemoryRegion *mr, 928 hwaddr offset, 929 uint64_t size); 930 931 /** 932 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 933 * 934 * Disables any coalescing caused by memory_region_set_coalescing() or 935 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 936 * hardware. 937 * 938 * @mr: the memory region to be updated. 939 */ 940 void memory_region_clear_coalescing(MemoryRegion *mr); 941 942 /** 943 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 944 * accesses. 945 * 946 * Ensure that pending coalesced MMIO request are flushed before the memory 947 * region is accessed. This property is automatically enabled for all regions 948 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 949 * 950 * @mr: the memory region to be updated. 951 */ 952 void memory_region_set_flush_coalesced(MemoryRegion *mr); 953 954 /** 955 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 956 * accesses. 957 * 958 * Clear the automatic coalesced MMIO flushing enabled via 959 * memory_region_set_flush_coalesced. Note that this service has no effect on 960 * memory regions that have MMIO coalescing enabled for themselves. For them, 961 * automatic flushing will stop once coalescing is disabled. 962 * 963 * @mr: the memory region to be updated. 964 */ 965 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 966 967 /** 968 * memory_region_set_global_locking: Declares the access processing requires 969 * QEMU's global lock. 970 * 971 * When this is invoked, accesses to the memory region will be processed while 972 * holding the global lock of QEMU. This is the default behavior of memory 973 * regions. 974 * 975 * @mr: the memory region to be updated. 976 */ 977 void memory_region_set_global_locking(MemoryRegion *mr); 978 979 /** 980 * memory_region_clear_global_locking: Declares that access processing does 981 * not depend on the QEMU global lock. 982 * 983 * By clearing this property, accesses to the memory region will be processed 984 * outside of QEMU's global lock (unless the lock is held on when issuing the 985 * access request). In this case, the device model implementing the access 986 * handlers is responsible for synchronization of concurrency. 987 * 988 * @mr: the memory region to be updated. 989 */ 990 void memory_region_clear_global_locking(MemoryRegion *mr); 991 992 /** 993 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 994 * is written to a location. 995 * 996 * Marks a word in an IO region (initialized with memory_region_init_io()) 997 * as a trigger for an eventfd event. The I/O callback will not be called. 998 * The caller must be prepared to handle failure (that is, take the required 999 * action if the callback _is_ called). 1000 * 1001 * @mr: the memory region being updated. 1002 * @addr: the address within @mr that is to be monitored 1003 * @size: the size of the access to trigger the eventfd 1004 * @match_data: whether to match against @data, instead of just @addr 1005 * @data: the data to match against the guest write 1006 * @fd: the eventfd to be triggered when @addr, @size, and @data all match. 1007 **/ 1008 void memory_region_add_eventfd(MemoryRegion *mr, 1009 hwaddr addr, 1010 unsigned size, 1011 bool match_data, 1012 uint64_t data, 1013 EventNotifier *e); 1014 1015 /** 1016 * memory_region_del_eventfd: Cancel an eventfd. 1017 * 1018 * Cancels an eventfd trigger requested by a previous 1019 * memory_region_add_eventfd() call. 1020 * 1021 * @mr: the memory region being updated. 1022 * @addr: the address within @mr that is to be monitored 1023 * @size: the size of the access to trigger the eventfd 1024 * @match_data: whether to match against @data, instead of just @addr 1025 * @data: the data to match against the guest write 1026 * @fd: the eventfd to be triggered when @addr, @size, and @data all match. 1027 */ 1028 void memory_region_del_eventfd(MemoryRegion *mr, 1029 hwaddr addr, 1030 unsigned size, 1031 bool match_data, 1032 uint64_t data, 1033 EventNotifier *e); 1034 1035 /** 1036 * memory_region_add_subregion: Add a subregion to a container. 1037 * 1038 * Adds a subregion at @offset. The subregion may not overlap with other 1039 * subregions (except for those explicitly marked as overlapping). A region 1040 * may only be added once as a subregion (unless removed with 1041 * memory_region_del_subregion()); use memory_region_init_alias() if you 1042 * want a region to be a subregion in multiple locations. 1043 * 1044 * @mr: the region to contain the new subregion; must be a container 1045 * initialized with memory_region_init(). 1046 * @offset: the offset relative to @mr where @subregion is added. 1047 * @subregion: the subregion to be added. 1048 */ 1049 void memory_region_add_subregion(MemoryRegion *mr, 1050 hwaddr offset, 1051 MemoryRegion *subregion); 1052 /** 1053 * memory_region_add_subregion_overlap: Add a subregion to a container 1054 * with overlap. 1055 * 1056 * Adds a subregion at @offset. The subregion may overlap with other 1057 * subregions. Conflicts are resolved by having a higher @priority hide a 1058 * lower @priority. Subregions without priority are taken as @priority 0. 1059 * A region may only be added once as a subregion (unless removed with 1060 * memory_region_del_subregion()); use memory_region_init_alias() if you 1061 * want a region to be a subregion in multiple locations. 1062 * 1063 * @mr: the region to contain the new subregion; must be a container 1064 * initialized with memory_region_init(). 1065 * @offset: the offset relative to @mr where @subregion is added. 1066 * @subregion: the subregion to be added. 1067 * @priority: used for resolving overlaps; highest priority wins. 1068 */ 1069 void memory_region_add_subregion_overlap(MemoryRegion *mr, 1070 hwaddr offset, 1071 MemoryRegion *subregion, 1072 int priority); 1073 1074 /** 1075 * memory_region_get_ram_addr: Get the ram address associated with a memory 1076 * region 1077 */ 1078 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 1079 1080 uint64_t memory_region_get_alignment(const MemoryRegion *mr); 1081 /** 1082 * memory_region_del_subregion: Remove a subregion. 1083 * 1084 * Removes a subregion from its container. 1085 * 1086 * @mr: the container to be updated. 1087 * @subregion: the region being removed; must be a current subregion of @mr. 1088 */ 1089 void memory_region_del_subregion(MemoryRegion *mr, 1090 MemoryRegion *subregion); 1091 1092 /* 1093 * memory_region_set_enabled: dynamically enable or disable a region 1094 * 1095 * Enables or disables a memory region. A disabled memory region 1096 * ignores all accesses to itself and its subregions. It does not 1097 * obscure sibling subregions with lower priority - it simply behaves as 1098 * if it was removed from the hierarchy. 1099 * 1100 * Regions default to being enabled. 1101 * 1102 * @mr: the region to be updated 1103 * @enabled: whether to enable or disable the region 1104 */ 1105 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 1106 1107 /* 1108 * memory_region_set_address: dynamically update the address of a region 1109 * 1110 * Dynamically updates the address of a region, relative to its container. 1111 * May be used on regions are currently part of a memory hierarchy. 1112 * 1113 * @mr: the region to be updated 1114 * @addr: new address, relative to container region 1115 */ 1116 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 1117 1118 /* 1119 * memory_region_set_size: dynamically update the size of a region. 1120 * 1121 * Dynamically updates the size of a region. 1122 * 1123 * @mr: the region to be updated 1124 * @size: used size of the region. 1125 */ 1126 void memory_region_set_size(MemoryRegion *mr, uint64_t size); 1127 1128 /* 1129 * memory_region_set_alias_offset: dynamically update a memory alias's offset 1130 * 1131 * Dynamically updates the offset into the target region that an alias points 1132 * to, as if the fourth argument to memory_region_init_alias() has changed. 1133 * 1134 * @mr: the #MemoryRegion to be updated; should be an alias. 1135 * @offset: the new offset into the target memory region 1136 */ 1137 void memory_region_set_alias_offset(MemoryRegion *mr, 1138 hwaddr offset); 1139 1140 /** 1141 * memory_region_present: checks if an address relative to a @container 1142 * translates into #MemoryRegion within @container 1143 * 1144 * Answer whether a #MemoryRegion within @container covers the address 1145 * @addr. 1146 * 1147 * @container: a #MemoryRegion within which @addr is a relative address 1148 * @addr: the area within @container to be searched 1149 */ 1150 bool memory_region_present(MemoryRegion *container, hwaddr addr); 1151 1152 /** 1153 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 1154 * into any address space. 1155 * 1156 * @mr: a #MemoryRegion which should be checked if it's mapped 1157 */ 1158 bool memory_region_is_mapped(MemoryRegion *mr); 1159 1160 /** 1161 * memory_region_find: translate an address/size relative to a 1162 * MemoryRegion into a #MemoryRegionSection. 1163 * 1164 * Locates the first #MemoryRegion within @mr that overlaps the range 1165 * given by @addr and @size. 1166 * 1167 * Returns a #MemoryRegionSection that describes a contiguous overlap. 1168 * It will have the following characteristics: 1169 * .@size = 0 iff no overlap was found 1170 * .@mr is non-%NULL iff an overlap was found 1171 * 1172 * Remember that in the return value the @offset_within_region is 1173 * relative to the returned region (in the .@mr field), not to the 1174 * @mr argument. 1175 * 1176 * Similarly, the .@offset_within_address_space is relative to the 1177 * address space that contains both regions, the passed and the 1178 * returned one. However, in the special case where the @mr argument 1179 * has no container (and thus is the root of the address space), the 1180 * following will hold: 1181 * .@offset_within_address_space >= @addr 1182 * .@offset_within_address_space + .@size <= @addr + @size 1183 * 1184 * @mr: a MemoryRegion within which @addr is a relative address 1185 * @addr: start of the area within @as to be searched 1186 * @size: size of the area to be searched 1187 */ 1188 MemoryRegionSection memory_region_find(MemoryRegion *mr, 1189 hwaddr addr, uint64_t size); 1190 1191 /** 1192 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 1193 * 1194 * Synchronizes the dirty page log for all address spaces. 1195 */ 1196 void memory_global_dirty_log_sync(void); 1197 1198 /** 1199 * memory_region_transaction_begin: Start a transaction. 1200 * 1201 * During a transaction, changes will be accumulated and made visible 1202 * only when the transaction ends (is committed). 1203 */ 1204 void memory_region_transaction_begin(void); 1205 1206 /** 1207 * memory_region_transaction_commit: Commit a transaction and make changes 1208 * visible to the guest. 1209 */ 1210 void memory_region_transaction_commit(void); 1211 1212 /** 1213 * memory_listener_register: register callbacks to be called when memory 1214 * sections are mapped or unmapped into an address 1215 * space 1216 * 1217 * @listener: an object containing the callbacks to be called 1218 * @filter: if non-%NULL, only regions in this address space will be observed 1219 */ 1220 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 1221 1222 /** 1223 * memory_listener_unregister: undo the effect of memory_listener_register() 1224 * 1225 * @listener: an object containing the callbacks to be removed 1226 */ 1227 void memory_listener_unregister(MemoryListener *listener); 1228 1229 /** 1230 * memory_global_dirty_log_start: begin dirty logging for all regions 1231 */ 1232 void memory_global_dirty_log_start(void); 1233 1234 /** 1235 * memory_global_dirty_log_stop: end dirty logging for all regions 1236 */ 1237 void memory_global_dirty_log_stop(void); 1238 1239 void mtree_info(fprintf_function mon_printf, void *f); 1240 1241 /** 1242 * memory_region_dispatch_read: perform a read directly to the specified 1243 * MemoryRegion. 1244 * 1245 * @mr: #MemoryRegion to access 1246 * @addr: address within that region 1247 * @pval: pointer to uint64_t which the data is written to 1248 * @size: size of the access in bytes 1249 * @attrs: memory transaction attributes to use for the access 1250 */ 1251 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 1252 hwaddr addr, 1253 uint64_t *pval, 1254 unsigned size, 1255 MemTxAttrs attrs); 1256 /** 1257 * memory_region_dispatch_write: perform a write directly to the specified 1258 * MemoryRegion. 1259 * 1260 * @mr: #MemoryRegion to access 1261 * @addr: address within that region 1262 * @data: data to write 1263 * @size: size of the access in bytes 1264 * @attrs: memory transaction attributes to use for the access 1265 */ 1266 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 1267 hwaddr addr, 1268 uint64_t data, 1269 unsigned size, 1270 MemTxAttrs attrs); 1271 1272 /** 1273 * address_space_init: initializes an address space 1274 * 1275 * @as: an uninitialized #AddressSpace 1276 * @root: a #MemoryRegion that routes addresses for the address space 1277 * @name: an address space name. The name is only used for debugging 1278 * output. 1279 */ 1280 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 1281 1282 /** 1283 * address_space_init_shareable: return an address space for a memory region, 1284 * creating it if it does not already exist 1285 * 1286 * @root: a #MemoryRegion that routes addresses for the address space 1287 * @name: an address space name. The name is only used for debugging 1288 * output. 1289 * 1290 * This function will return a pointer to an existing AddressSpace 1291 * which was initialized with the specified MemoryRegion, or it will 1292 * create and initialize one if it does not already exist. The ASes 1293 * are reference-counted, so the memory will be freed automatically 1294 * when the AddressSpace is destroyed via address_space_destroy. 1295 */ 1296 AddressSpace *address_space_init_shareable(MemoryRegion *root, 1297 const char *name); 1298 1299 /** 1300 * address_space_destroy: destroy an address space 1301 * 1302 * Releases all resources associated with an address space. After an address space 1303 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 1304 * as well. 1305 * 1306 * @as: address space to be destroyed 1307 */ 1308 void address_space_destroy(AddressSpace *as); 1309 1310 /** 1311 * address_space_rw: read from or write to an address space. 1312 * 1313 * Return a MemTxResult indicating whether the operation succeeded 1314 * or failed (eg unassigned memory, device rejected the transaction, 1315 * IOMMU fault). 1316 * 1317 * @as: #AddressSpace to be accessed 1318 * @addr: address within that address space 1319 * @attrs: memory transaction attributes 1320 * @buf: buffer with the data transferred 1321 * @is_write: indicates the transfer direction 1322 */ 1323 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 1324 MemTxAttrs attrs, uint8_t *buf, 1325 int len, bool is_write); 1326 1327 /** 1328 * address_space_write: write to address space. 1329 * 1330 * Return a MemTxResult indicating whether the operation succeeded 1331 * or failed (eg unassigned memory, device rejected the transaction, 1332 * IOMMU fault). 1333 * 1334 * @as: #AddressSpace to be accessed 1335 * @addr: address within that address space 1336 * @attrs: memory transaction attributes 1337 * @buf: buffer with the data transferred 1338 */ 1339 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 1340 MemTxAttrs attrs, 1341 const uint8_t *buf, int len); 1342 1343 /* address_space_ld*: load from an address space 1344 * address_space_st*: store to an address space 1345 * 1346 * These functions perform a load or store of the byte, word, 1347 * longword or quad to the specified address within the AddressSpace. 1348 * The _le suffixed functions treat the data as little endian; 1349 * _be indicates big endian; no suffix indicates "same endianness 1350 * as guest CPU". 1351 * 1352 * The "guest CPU endianness" accessors are deprecated for use outside 1353 * target-* code; devices should be CPU-agnostic and use either the LE 1354 * or the BE accessors. 1355 * 1356 * @as #AddressSpace to be accessed 1357 * @addr: address within that address space 1358 * @val: data value, for stores 1359 * @attrs: memory transaction attributes 1360 * @result: location to write the success/failure of the transaction; 1361 * if NULL, this information is discarded 1362 */ 1363 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr, 1364 MemTxAttrs attrs, MemTxResult *result); 1365 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr, 1366 MemTxAttrs attrs, MemTxResult *result); 1367 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr, 1368 MemTxAttrs attrs, MemTxResult *result); 1369 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr, 1370 MemTxAttrs attrs, MemTxResult *result); 1371 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr, 1372 MemTxAttrs attrs, MemTxResult *result); 1373 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr, 1374 MemTxAttrs attrs, MemTxResult *result); 1375 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr, 1376 MemTxAttrs attrs, MemTxResult *result); 1377 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val, 1378 MemTxAttrs attrs, MemTxResult *result); 1379 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val, 1380 MemTxAttrs attrs, MemTxResult *result); 1381 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val, 1382 MemTxAttrs attrs, MemTxResult *result); 1383 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val, 1384 MemTxAttrs attrs, MemTxResult *result); 1385 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val, 1386 MemTxAttrs attrs, MemTxResult *result); 1387 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val, 1388 MemTxAttrs attrs, MemTxResult *result); 1389 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val, 1390 MemTxAttrs attrs, MemTxResult *result); 1391 1392 /* address_space_translate: translate an address range into an address space 1393 * into a MemoryRegion and an address range into that section. Should be 1394 * called from an RCU critical section, to avoid that the last reference 1395 * to the returned region disappears after address_space_translate returns. 1396 * 1397 * @as: #AddressSpace to be accessed 1398 * @addr: address within that address space 1399 * @xlat: pointer to address within the returned memory region section's 1400 * #MemoryRegion. 1401 * @len: pointer to length 1402 * @is_write: indicates the transfer direction 1403 */ 1404 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr, 1405 hwaddr *xlat, hwaddr *len, 1406 bool is_write); 1407 1408 /* address_space_access_valid: check for validity of accessing an address 1409 * space range 1410 * 1411 * Check whether memory is assigned to the given address space range, and 1412 * access is permitted by any IOMMU regions that are active for the address 1413 * space. 1414 * 1415 * For now, addr and len should be aligned to a page size. This limitation 1416 * will be lifted in the future. 1417 * 1418 * @as: #AddressSpace to be accessed 1419 * @addr: address within that address space 1420 * @len: length of the area to be checked 1421 * @is_write: indicates the transfer direction 1422 */ 1423 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write); 1424 1425 /* address_space_map: map a physical memory region into a host virtual address 1426 * 1427 * May map a subset of the requested range, given by and returned in @plen. 1428 * May return %NULL if resources needed to perform the mapping are exhausted. 1429 * Use only for reads OR writes - not for read-modify-write operations. 1430 * Use cpu_register_map_client() to know when retrying the map operation is 1431 * likely to succeed. 1432 * 1433 * @as: #AddressSpace to be accessed 1434 * @addr: address within that address space 1435 * @plen: pointer to length of buffer; updated on return 1436 * @is_write: indicates the transfer direction 1437 */ 1438 void *address_space_map(AddressSpace *as, hwaddr addr, 1439 hwaddr *plen, bool is_write); 1440 1441 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 1442 * 1443 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 1444 * the amount of memory that was actually read or written by the caller. 1445 * 1446 * @as: #AddressSpace used 1447 * @addr: address within that address space 1448 * @len: buffer length as returned by address_space_map() 1449 * @access_len: amount of data actually transferred 1450 * @is_write: indicates the transfer direction 1451 */ 1452 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 1453 int is_write, hwaddr access_len); 1454 1455 1456 /* Internal functions, part of the implementation of address_space_read. */ 1457 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr, 1458 MemTxAttrs attrs, uint8_t *buf, 1459 int len, hwaddr addr1, hwaddr l, 1460 MemoryRegion *mr); 1461 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 1462 MemTxAttrs attrs, uint8_t *buf, int len); 1463 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr); 1464 1465 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) 1466 { 1467 if (is_write) { 1468 return memory_region_is_ram(mr) && !mr->readonly; 1469 } else { 1470 return memory_region_is_ram(mr) || memory_region_is_romd(mr); 1471 } 1472 } 1473 1474 /** 1475 * address_space_read: read from an address space. 1476 * 1477 * Return a MemTxResult indicating whether the operation succeeded 1478 * or failed (eg unassigned memory, device rejected the transaction, 1479 * IOMMU fault). 1480 * 1481 * @as: #AddressSpace to be accessed 1482 * @addr: address within that address space 1483 * @attrs: memory transaction attributes 1484 * @buf: buffer with the data transferred 1485 */ 1486 static inline __attribute__((__always_inline__)) 1487 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, 1488 uint8_t *buf, int len) 1489 { 1490 MemTxResult result = MEMTX_OK; 1491 hwaddr l, addr1; 1492 void *ptr; 1493 MemoryRegion *mr; 1494 1495 if (__builtin_constant_p(len)) { 1496 if (len) { 1497 rcu_read_lock(); 1498 l = len; 1499 mr = address_space_translate(as, addr, &addr1, &l, false); 1500 if (len == l && memory_access_is_direct(mr, false)) { 1501 ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 1502 memcpy(buf, ptr, len); 1503 } else { 1504 result = address_space_read_continue(as, addr, attrs, buf, len, 1505 addr1, l, mr); 1506 } 1507 rcu_read_unlock(); 1508 } 1509 } else { 1510 result = address_space_read_full(as, addr, attrs, buf, len); 1511 } 1512 return result; 1513 } 1514 1515 #endif 1516 1517 #endif 1518