1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef MEMORY_H 15 #define MEMORY_H 16 17 #ifndef CONFIG_USER_ONLY 18 19 #include <stdint.h> 20 #include <stdbool.h> 21 #include "qemu-common.h" 22 #include "exec/cpu-common.h" 23 #include "exec/hwaddr.h" 24 #include "qemu/queue.h" 25 #include "exec/iorange.h" 26 #include "exec/ioport.h" 27 #include "qemu/int128.h" 28 29 typedef struct MemoryRegionOps MemoryRegionOps; 30 typedef struct MemoryRegion MemoryRegion; 31 typedef struct MemoryRegionPortio MemoryRegionPortio; 32 typedef struct MemoryRegionMmio MemoryRegionMmio; 33 34 /* Must match *_DIRTY_FLAGS in cpu-all.h. To be replaced with dynamic 35 * registration. 36 */ 37 #define DIRTY_MEMORY_VGA 0 38 #define DIRTY_MEMORY_CODE 1 39 #define DIRTY_MEMORY_MIGRATION 3 40 41 struct MemoryRegionMmio { 42 CPUReadMemoryFunc *read[3]; 43 CPUWriteMemoryFunc *write[3]; 44 }; 45 46 /* Internal use; thunks between old-style IORange and MemoryRegions. */ 47 typedef struct MemoryRegionIORange MemoryRegionIORange; 48 struct MemoryRegionIORange { 49 IORange iorange; 50 MemoryRegion *mr; 51 hwaddr offset; 52 }; 53 54 /* 55 * Memory region callbacks 56 */ 57 struct MemoryRegionOps { 58 /* Read from the memory region. @addr is relative to @mr; @size is 59 * in bytes. */ 60 uint64_t (*read)(void *opaque, 61 hwaddr addr, 62 unsigned size); 63 /* Write to the memory region. @addr is relative to @mr; @size is 64 * in bytes. */ 65 void (*write)(void *opaque, 66 hwaddr addr, 67 uint64_t data, 68 unsigned size); 69 70 enum device_endian endianness; 71 /* Guest-visible constraints: */ 72 struct { 73 /* If nonzero, specify bounds on access sizes beyond which a machine 74 * check is thrown. 75 */ 76 unsigned min_access_size; 77 unsigned max_access_size; 78 /* If true, unaligned accesses are supported. Otherwise unaligned 79 * accesses throw machine checks. 80 */ 81 bool unaligned; 82 /* 83 * If present, and returns #false, the transaction is not accepted 84 * by the device (and results in machine dependent behaviour such 85 * as a machine check exception). 86 */ 87 bool (*accepts)(void *opaque, hwaddr addr, 88 unsigned size, bool is_write); 89 } valid; 90 /* Internal implementation constraints: */ 91 struct { 92 /* If nonzero, specifies the minimum size implemented. Smaller sizes 93 * will be rounded upwards and a partial result will be returned. 94 */ 95 unsigned min_access_size; 96 /* If nonzero, specifies the maximum size implemented. Larger sizes 97 * will be done as a series of accesses with smaller sizes. 98 */ 99 unsigned max_access_size; 100 /* If true, unaligned accesses are supported. Otherwise all accesses 101 * are converted to (possibly multiple) naturally aligned accesses. 102 */ 103 bool unaligned; 104 } impl; 105 106 /* If .read and .write are not present, old_portio may be used for 107 * backwards compatibility with old portio registration 108 */ 109 const MemoryRegionPortio *old_portio; 110 /* If .read and .write are not present, old_mmio may be used for 111 * backwards compatibility with old mmio registration 112 */ 113 const MemoryRegionMmio old_mmio; 114 }; 115 116 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 117 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 118 119 struct MemoryRegion { 120 /* All fields are private - violators will be prosecuted */ 121 const MemoryRegionOps *ops; 122 void *opaque; 123 MemoryRegion *parent; 124 Int128 size; 125 hwaddr addr; 126 void (*destructor)(MemoryRegion *mr); 127 ram_addr_t ram_addr; 128 bool subpage; 129 bool terminates; 130 bool readable; 131 bool ram; 132 bool readonly; /* For RAM regions */ 133 bool enabled; 134 bool rom_device; 135 bool warning_printed; /* For reservations */ 136 bool flush_coalesced_mmio; 137 MemoryRegion *alias; 138 hwaddr alias_offset; 139 unsigned priority; 140 bool may_overlap; 141 QTAILQ_HEAD(subregions, MemoryRegion) subregions; 142 QTAILQ_ENTRY(MemoryRegion) subregions_link; 143 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced; 144 const char *name; 145 uint8_t dirty_log_mask; 146 unsigned ioeventfd_nb; 147 MemoryRegionIoeventfd *ioeventfds; 148 }; 149 150 struct MemoryRegionPortio { 151 uint32_t offset; 152 uint32_t len; 153 unsigned size; 154 IOPortReadFunc *read; 155 IOPortWriteFunc *write; 156 }; 157 158 #define PORTIO_END_OF_LIST() { } 159 160 typedef struct AddressSpace AddressSpace; 161 162 /** 163 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects 164 */ 165 struct AddressSpace { 166 /* All fields are private. */ 167 const char *name; 168 MemoryRegion *root; 169 struct FlatView *current_map; 170 int ioeventfd_nb; 171 struct MemoryRegionIoeventfd *ioeventfds; 172 struct AddressSpaceDispatch *dispatch; 173 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 174 }; 175 176 typedef struct MemoryRegionSection MemoryRegionSection; 177 178 /** 179 * MemoryRegionSection: describes a fragment of a #MemoryRegion 180 * 181 * @mr: the region, or %NULL if empty 182 * @address_space: the address space the region is mapped in 183 * @offset_within_region: the beginning of the section, relative to @mr's start 184 * @size: the size of the section; will not exceed @mr's boundaries 185 * @offset_within_address_space: the address of the first byte of the section 186 * relative to the region's address space 187 * @readonly: writes to this section are ignored 188 */ 189 struct MemoryRegionSection { 190 MemoryRegion *mr; 191 AddressSpace *address_space; 192 hwaddr offset_within_region; 193 uint64_t size; 194 hwaddr offset_within_address_space; 195 bool readonly; 196 }; 197 198 typedef struct MemoryListener MemoryListener; 199 200 /** 201 * MemoryListener: callbacks structure for updates to the physical memory map 202 * 203 * Allows a component to adjust to changes in the guest-visible memory map. 204 * Use with memory_listener_register() and memory_listener_unregister(). 205 */ 206 struct MemoryListener { 207 void (*begin)(MemoryListener *listener); 208 void (*commit)(MemoryListener *listener); 209 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 210 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 211 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 212 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section); 213 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section); 214 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 215 void (*log_global_start)(MemoryListener *listener); 216 void (*log_global_stop)(MemoryListener *listener); 217 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 218 bool match_data, uint64_t data, EventNotifier *e); 219 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 220 bool match_data, uint64_t data, EventNotifier *e); 221 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section, 222 hwaddr addr, hwaddr len); 223 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section, 224 hwaddr addr, hwaddr len); 225 /* Lower = earlier (during add), later (during del) */ 226 unsigned priority; 227 AddressSpace *address_space_filter; 228 QTAILQ_ENTRY(MemoryListener) link; 229 }; 230 231 /** 232 * memory_region_init: Initialize a memory region 233 * 234 * The region typically acts as a container for other memory regions. Use 235 * memory_region_add_subregion() to add subregions. 236 * 237 * @mr: the #MemoryRegion to be initialized 238 * @name: used for debugging; not visible to the user or ABI 239 * @size: size of the region; any subregions beyond this size will be clipped 240 */ 241 void memory_region_init(MemoryRegion *mr, 242 const char *name, 243 uint64_t size); 244 /** 245 * memory_region_init_io: Initialize an I/O memory region. 246 * 247 * Accesses into the region will cause the callbacks in @ops to be called. 248 * if @size is nonzero, subregions will be clipped to @size. 249 * 250 * @mr: the #MemoryRegion to be initialized. 251 * @ops: a structure containing read and write callbacks to be used when 252 * I/O is performed on the region. 253 * @opaque: passed to to the read and write callbacks of the @ops structure. 254 * @name: used for debugging; not visible to the user or ABI 255 * @size: size of the region. 256 */ 257 void memory_region_init_io(MemoryRegion *mr, 258 const MemoryRegionOps *ops, 259 void *opaque, 260 const char *name, 261 uint64_t size); 262 263 /** 264 * memory_region_init_ram: Initialize RAM memory region. Accesses into the 265 * region will modify memory directly. 266 * 267 * @mr: the #MemoryRegion to be initialized. 268 * @name: the name of the region. 269 * @size: size of the region. 270 */ 271 void memory_region_init_ram(MemoryRegion *mr, 272 const char *name, 273 uint64_t size); 274 275 /** 276 * memory_region_init_ram_ptr: Initialize RAM memory region from a 277 * user-provided pointer. Accesses into the 278 * region will modify memory directly. 279 * 280 * @mr: the #MemoryRegion to be initialized. 281 * @name: the name of the region. 282 * @size: size of the region. 283 * @ptr: memory to be mapped; must contain at least @size bytes. 284 */ 285 void memory_region_init_ram_ptr(MemoryRegion *mr, 286 const char *name, 287 uint64_t size, 288 void *ptr); 289 290 /** 291 * memory_region_init_alias: Initialize a memory region that aliases all or a 292 * part of another memory region. 293 * 294 * @mr: the #MemoryRegion to be initialized. 295 * @name: used for debugging; not visible to the user or ABI 296 * @orig: the region to be referenced; @mr will be equivalent to 297 * @orig between @offset and @offset + @size - 1. 298 * @offset: start of the section in @orig to be referenced. 299 * @size: size of the region. 300 */ 301 void memory_region_init_alias(MemoryRegion *mr, 302 const char *name, 303 MemoryRegion *orig, 304 hwaddr offset, 305 uint64_t size); 306 307 /** 308 * memory_region_init_rom_device: Initialize a ROM memory region. Writes are 309 * handled via callbacks. 310 * 311 * @mr: the #MemoryRegion to be initialized. 312 * @ops: callbacks for write access handling. 313 * @name: the name of the region. 314 * @size: size of the region. 315 */ 316 void memory_region_init_rom_device(MemoryRegion *mr, 317 const MemoryRegionOps *ops, 318 void *opaque, 319 const char *name, 320 uint64_t size); 321 322 /** 323 * memory_region_init_reservation: Initialize a memory region that reserves 324 * I/O space. 325 * 326 * A reservation region primariy serves debugging purposes. It claims I/O 327 * space that is not supposed to be handled by QEMU itself. Any access via 328 * the memory API will cause an abort(). 329 * 330 * @mr: the #MemoryRegion to be initialized 331 * @name: used for debugging; not visible to the user or ABI 332 * @size: size of the region. 333 */ 334 void memory_region_init_reservation(MemoryRegion *mr, 335 const char *name, 336 uint64_t size); 337 /** 338 * memory_region_destroy: Destroy a memory region and reclaim all resources. 339 * 340 * @mr: the region to be destroyed. May not currently be a subregion 341 * (see memory_region_add_subregion()) or referenced in an alias 342 * (see memory_region_init_alias()). 343 */ 344 void memory_region_destroy(MemoryRegion *mr); 345 346 /** 347 * memory_region_size: get a memory region's size. 348 * 349 * @mr: the memory region being queried. 350 */ 351 uint64_t memory_region_size(MemoryRegion *mr); 352 353 /** 354 * memory_region_is_ram: check whether a memory region is random access 355 * 356 * Returns %true is a memory region is random access. 357 * 358 * @mr: the memory region being queried 359 */ 360 bool memory_region_is_ram(MemoryRegion *mr); 361 362 /** 363 * memory_region_is_romd: check whether a memory region is ROMD 364 * 365 * Returns %true is a memory region is ROMD and currently set to allow 366 * direct reads. 367 * 368 * @mr: the memory region being queried 369 */ 370 static inline bool memory_region_is_romd(MemoryRegion *mr) 371 { 372 return mr->rom_device && mr->readable; 373 } 374 375 /** 376 * memory_region_name: get a memory region's name 377 * 378 * Returns the string that was used to initialize the memory region. 379 * 380 * @mr: the memory region being queried 381 */ 382 const char *memory_region_name(MemoryRegion *mr); 383 384 /** 385 * memory_region_is_logging: return whether a memory region is logging writes 386 * 387 * Returns %true if the memory region is logging writes 388 * 389 * @mr: the memory region being queried 390 */ 391 bool memory_region_is_logging(MemoryRegion *mr); 392 393 /** 394 * memory_region_is_rom: check whether a memory region is ROM 395 * 396 * Returns %true is a memory region is read-only memory. 397 * 398 * @mr: the memory region being queried 399 */ 400 bool memory_region_is_rom(MemoryRegion *mr); 401 402 /** 403 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 404 * 405 * Returns a host pointer to a RAM memory region (created with 406 * memory_region_init_ram() or memory_region_init_ram_ptr()). Use with 407 * care. 408 * 409 * @mr: the memory region being queried. 410 */ 411 void *memory_region_get_ram_ptr(MemoryRegion *mr); 412 413 /** 414 * memory_region_set_log: Turn dirty logging on or off for a region. 415 * 416 * Turns dirty logging on or off for a specified client (display, migration). 417 * Only meaningful for RAM regions. 418 * 419 * @mr: the memory region being updated. 420 * @log: whether dirty logging is to be enabled or disabled. 421 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 422 * %DIRTY_MEMORY_VGA. 423 */ 424 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 425 426 /** 427 * memory_region_get_dirty: Check whether a range of bytes is dirty 428 * for a specified client. 429 * 430 * Checks whether a range of bytes has been written to since the last 431 * call to memory_region_reset_dirty() with the same @client. Dirty logging 432 * must be enabled. 433 * 434 * @mr: the memory region being queried. 435 * @addr: the address (relative to the start of the region) being queried. 436 * @size: the size of the range being queried. 437 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 438 * %DIRTY_MEMORY_VGA. 439 */ 440 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr, 441 hwaddr size, unsigned client); 442 443 /** 444 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 445 * 446 * Marks a range of bytes as dirty, after it has been dirtied outside 447 * guest code. 448 * 449 * @mr: the memory region being dirtied. 450 * @addr: the address (relative to the start of the region) being dirtied. 451 * @size: size of the range being dirtied. 452 */ 453 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 454 hwaddr size); 455 456 /** 457 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty 458 * for a specified client. It clears them. 459 * 460 * Checks whether a range of bytes has been written to since the last 461 * call to memory_region_reset_dirty() with the same @client. Dirty logging 462 * must be enabled. 463 * 464 * @mr: the memory region being queried. 465 * @addr: the address (relative to the start of the region) being queried. 466 * @size: the size of the range being queried. 467 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 468 * %DIRTY_MEMORY_VGA. 469 */ 470 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr, 471 hwaddr size, unsigned client); 472 /** 473 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with 474 * any external TLBs (e.g. kvm) 475 * 476 * Flushes dirty information from accelerators such as kvm and vhost-net 477 * and makes it available to users of the memory API. 478 * 479 * @mr: the region being flushed. 480 */ 481 void memory_region_sync_dirty_bitmap(MemoryRegion *mr); 482 483 /** 484 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 485 * client. 486 * 487 * Marks a range of pages as no longer dirty. 488 * 489 * @mr: the region being updated. 490 * @addr: the start of the subrange being cleaned. 491 * @size: the size of the subrange being cleaned. 492 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 493 * %DIRTY_MEMORY_VGA. 494 */ 495 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 496 hwaddr size, unsigned client); 497 498 /** 499 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 500 * 501 * Allows a memory region to be marked as read-only (turning it into a ROM). 502 * only useful on RAM regions. 503 * 504 * @mr: the region being updated. 505 * @readonly: whether rhe region is to be ROM or RAM. 506 */ 507 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 508 509 /** 510 * memory_region_rom_device_set_readable: enable/disable ROM readability 511 * 512 * Allows a ROM device (initialized with memory_region_init_rom_device() to 513 * to be marked as readable (default) or not readable. When it is readable, 514 * the device is mapped to guest memory. When not readable, reads are 515 * forwarded to the #MemoryRegion.read function. 516 * 517 * @mr: the memory region to be updated 518 * @readable: whether reads are satisified directly (%true) or via callbacks 519 * (%false) 520 */ 521 void memory_region_rom_device_set_readable(MemoryRegion *mr, bool readable); 522 523 /** 524 * memory_region_set_coalescing: Enable memory coalescing for the region. 525 * 526 * Enabled writes to a region to be queued for later processing. MMIO ->write 527 * callbacks may be delayed until a non-coalesced MMIO is issued. 528 * Only useful for IO regions. Roughly similar to write-combining hardware. 529 * 530 * @mr: the memory region to be write coalesced 531 */ 532 void memory_region_set_coalescing(MemoryRegion *mr); 533 534 /** 535 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 536 * a region. 537 * 538 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 539 * Multiple calls can be issued coalesced disjoint ranges. 540 * 541 * @mr: the memory region to be updated. 542 * @offset: the start of the range within the region to be coalesced. 543 * @size: the size of the subrange to be coalesced. 544 */ 545 void memory_region_add_coalescing(MemoryRegion *mr, 546 hwaddr offset, 547 uint64_t size); 548 549 /** 550 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 551 * 552 * Disables any coalescing caused by memory_region_set_coalescing() or 553 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 554 * hardware. 555 * 556 * @mr: the memory region to be updated. 557 */ 558 void memory_region_clear_coalescing(MemoryRegion *mr); 559 560 /** 561 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 562 * accesses. 563 * 564 * Ensure that pending coalesced MMIO request are flushed before the memory 565 * region is accessed. This property is automatically enabled for all regions 566 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 567 * 568 * @mr: the memory region to be updated. 569 */ 570 void memory_region_set_flush_coalesced(MemoryRegion *mr); 571 572 /** 573 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 574 * accesses. 575 * 576 * Clear the automatic coalesced MMIO flushing enabled via 577 * memory_region_set_flush_coalesced. Note that this service has no effect on 578 * memory regions that have MMIO coalescing enabled for themselves. For them, 579 * automatic flushing will stop once coalescing is disabled. 580 * 581 * @mr: the memory region to be updated. 582 */ 583 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 584 585 /** 586 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 587 * is written to a location. 588 * 589 * Marks a word in an IO region (initialized with memory_region_init_io()) 590 * as a trigger for an eventfd event. The I/O callback will not be called. 591 * The caller must be prepared to handle failure (that is, take the required 592 * action if the callback _is_ called). 593 * 594 * @mr: the memory region being updated. 595 * @addr: the address within @mr that is to be monitored 596 * @size: the size of the access to trigger the eventfd 597 * @match_data: whether to match against @data, instead of just @addr 598 * @data: the data to match against the guest write 599 * @fd: the eventfd to be triggered when @addr, @size, and @data all match. 600 **/ 601 void memory_region_add_eventfd(MemoryRegion *mr, 602 hwaddr addr, 603 unsigned size, 604 bool match_data, 605 uint64_t data, 606 EventNotifier *e); 607 608 /** 609 * memory_region_del_eventfd: Cancel an eventfd. 610 * 611 * Cancels an eventfd trigger requested by a previous 612 * memory_region_add_eventfd() call. 613 * 614 * @mr: the memory region being updated. 615 * @addr: the address within @mr that is to be monitored 616 * @size: the size of the access to trigger the eventfd 617 * @match_data: whether to match against @data, instead of just @addr 618 * @data: the data to match against the guest write 619 * @fd: the eventfd to be triggered when @addr, @size, and @data all match. 620 */ 621 void memory_region_del_eventfd(MemoryRegion *mr, 622 hwaddr addr, 623 unsigned size, 624 bool match_data, 625 uint64_t data, 626 EventNotifier *e); 627 628 /** 629 * memory_region_add_subregion: Add a subregion to a container. 630 * 631 * Adds a subregion at @offset. The subregion may not overlap with other 632 * subregions (except for those explicitly marked as overlapping). A region 633 * may only be added once as a subregion (unless removed with 634 * memory_region_del_subregion()); use memory_region_init_alias() if you 635 * want a region to be a subregion in multiple locations. 636 * 637 * @mr: the region to contain the new subregion; must be a container 638 * initialized with memory_region_init(). 639 * @offset: the offset relative to @mr where @subregion is added. 640 * @subregion: the subregion to be added. 641 */ 642 void memory_region_add_subregion(MemoryRegion *mr, 643 hwaddr offset, 644 MemoryRegion *subregion); 645 /** 646 * memory_region_add_subregion_overlap: Add a subregion to a container 647 * with overlap. 648 * 649 * Adds a subregion at @offset. The subregion may overlap with other 650 * subregions. Conflicts are resolved by having a higher @priority hide a 651 * lower @priority. Subregions without priority are taken as @priority 0. 652 * A region may only be added once as a subregion (unless removed with 653 * memory_region_del_subregion()); use memory_region_init_alias() if you 654 * want a region to be a subregion in multiple locations. 655 * 656 * @mr: the region to contain the new subregion; must be a container 657 * initialized with memory_region_init(). 658 * @offset: the offset relative to @mr where @subregion is added. 659 * @subregion: the subregion to be added. 660 * @priority: used for resolving overlaps; highest priority wins. 661 */ 662 void memory_region_add_subregion_overlap(MemoryRegion *mr, 663 hwaddr offset, 664 MemoryRegion *subregion, 665 unsigned priority); 666 667 /** 668 * memory_region_get_ram_addr: Get the ram address associated with a memory 669 * region 670 * 671 * DO NOT USE THIS FUNCTION. This is a temporary workaround while the Xen 672 * code is being reworked. 673 */ 674 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 675 676 /** 677 * memory_region_del_subregion: Remove a subregion. 678 * 679 * Removes a subregion from its container. 680 * 681 * @mr: the container to be updated. 682 * @subregion: the region being removed; must be a current subregion of @mr. 683 */ 684 void memory_region_del_subregion(MemoryRegion *mr, 685 MemoryRegion *subregion); 686 687 /* 688 * memory_region_set_enabled: dynamically enable or disable a region 689 * 690 * Enables or disables a memory region. A disabled memory region 691 * ignores all accesses to itself and its subregions. It does not 692 * obscure sibling subregions with lower priority - it simply behaves as 693 * if it was removed from the hierarchy. 694 * 695 * Regions default to being enabled. 696 * 697 * @mr: the region to be updated 698 * @enabled: whether to enable or disable the region 699 */ 700 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 701 702 /* 703 * memory_region_set_address: dynamically update the address of a region 704 * 705 * Dynamically updates the address of a region, relative to its parent. 706 * May be used on regions are currently part of a memory hierarchy. 707 * 708 * @mr: the region to be updated 709 * @addr: new address, relative to parent region 710 */ 711 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 712 713 /* 714 * memory_region_set_alias_offset: dynamically update a memory alias's offset 715 * 716 * Dynamically updates the offset into the target region that an alias points 717 * to, as if the fourth argument to memory_region_init_alias() has changed. 718 * 719 * @mr: the #MemoryRegion to be updated; should be an alias. 720 * @offset: the new offset into the target memory region 721 */ 722 void memory_region_set_alias_offset(MemoryRegion *mr, 723 hwaddr offset); 724 725 /** 726 * memory_region_find: locate a MemoryRegion in an address space 727 * 728 * Locates the first #MemoryRegion within an address space given by 729 * @address_space that overlaps the range given by @addr and @size. 730 * 731 * Returns a #MemoryRegionSection that describes a contiguous overlap. 732 * It will have the following characteristics: 733 * .@offset_within_address_space >= @addr 734 * .@offset_within_address_space + .@size <= @addr + @size 735 * .@size = 0 iff no overlap was found 736 * .@mr is non-%NULL iff an overlap was found 737 * 738 * @address_space: a top-level (i.e. parentless) region that contains 739 * the region to be found 740 * @addr: start of the area within @address_space to be searched 741 * @size: size of the area to be searched 742 */ 743 MemoryRegionSection memory_region_find(MemoryRegion *address_space, 744 hwaddr addr, uint64_t size); 745 746 /** 747 * memory_region_section_addr: get offset within MemoryRegionSection 748 * 749 * Returns offset within MemoryRegionSection 750 * 751 * @section: the memory region section being queried 752 * @addr: address in address space 753 */ 754 static inline hwaddr 755 memory_region_section_addr(MemoryRegionSection *section, 756 hwaddr addr) 757 { 758 addr -= section->offset_within_address_space; 759 addr += section->offset_within_region; 760 return addr; 761 } 762 763 /** 764 * memory_global_sync_dirty_bitmap: synchronize the dirty log for all memory 765 * 766 * Synchronizes the dirty page log for an entire address space. 767 * @address_space: a top-level (i.e. parentless) region that contains the 768 * memory being synchronized 769 */ 770 void memory_global_sync_dirty_bitmap(MemoryRegion *address_space); 771 772 /** 773 * memory_region_transaction_begin: Start a transaction. 774 * 775 * During a transaction, changes will be accumulated and made visible 776 * only when the transaction ends (is committed). 777 */ 778 void memory_region_transaction_begin(void); 779 780 /** 781 * memory_region_transaction_commit: Commit a transaction and make changes 782 * visible to the guest. 783 */ 784 void memory_region_transaction_commit(void); 785 786 /** 787 * memory_listener_register: register callbacks to be called when memory 788 * sections are mapped or unmapped into an address 789 * space 790 * 791 * @listener: an object containing the callbacks to be called 792 * @filter: if non-%NULL, only regions in this address space will be observed 793 */ 794 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 795 796 /** 797 * memory_listener_unregister: undo the effect of memory_listener_register() 798 * 799 * @listener: an object containing the callbacks to be removed 800 */ 801 void memory_listener_unregister(MemoryListener *listener); 802 803 /** 804 * memory_global_dirty_log_start: begin dirty logging for all regions 805 */ 806 void memory_global_dirty_log_start(void); 807 808 /** 809 * memory_global_dirty_log_stop: end dirty logging for all regions 810 */ 811 void memory_global_dirty_log_stop(void); 812 813 void mtree_info(fprintf_function mon_printf, void *f); 814 815 /** 816 * address_space_init: initializes an address space 817 * 818 * @as: an uninitialized #AddressSpace 819 * @root: a #MemoryRegion that routes addesses for the address space 820 */ 821 void address_space_init(AddressSpace *as, MemoryRegion *root); 822 823 824 /** 825 * address_space_destroy: destroy an address space 826 * 827 * Releases all resources associated with an address space. After an address space 828 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 829 * as well. 830 * 831 * @as: address space to be destroyed 832 */ 833 void address_space_destroy(AddressSpace *as); 834 835 /** 836 * address_space_rw: read from or write to an address space. 837 * 838 * @as: #AddressSpace to be accessed 839 * @addr: address within that address space 840 * @buf: buffer with the data transferred 841 * @is_write: indicates the transfer direction 842 */ 843 void address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf, 844 int len, bool is_write); 845 846 /** 847 * address_space_write: write to address space. 848 * 849 * @as: #AddressSpace to be accessed 850 * @addr: address within that address space 851 * @buf: buffer with the data transferred 852 */ 853 void address_space_write(AddressSpace *as, hwaddr addr, 854 const uint8_t *buf, int len); 855 856 /** 857 * address_space_read: read from an address space. 858 * 859 * @as: #AddressSpace to be accessed 860 * @addr: address within that address space 861 * @buf: buffer with the data transferred 862 */ 863 void address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len); 864 865 /* address_space_map: map a physical memory region into a host virtual address 866 * 867 * May map a subset of the requested range, given by and returned in @plen. 868 * May return %NULL if resources needed to perform the mapping are exhausted. 869 * Use only for reads OR writes - not for read-modify-write operations. 870 * Use cpu_register_map_client() to know when retrying the map operation is 871 * likely to succeed. 872 * 873 * @as: #AddressSpace to be accessed 874 * @addr: address within that address space 875 * @plen: pointer to length of buffer; updated on return 876 * @is_write: indicates the transfer direction 877 */ 878 void *address_space_map(AddressSpace *as, hwaddr addr, 879 hwaddr *plen, bool is_write); 880 881 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 882 * 883 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 884 * the amount of memory that was actually read or written by the caller. 885 * 886 * @as: #AddressSpace used 887 * @addr: address within that address space 888 * @len: buffer length as returned by address_space_map() 889 * @access_len: amount of data actually transferred 890 * @is_write: indicates the transfer direction 891 */ 892 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 893 int is_write, hwaddr access_len); 894 895 896 #endif 897 898 #endif 899