xref: /openbmc/qemu/include/exec/memory.h (revision 35658f6e)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #define DIRTY_MEMORY_VGA       0
20 #define DIRTY_MEMORY_CODE      1
21 #define DIRTY_MEMORY_MIGRATION 2
22 #define DIRTY_MEMORY_NUM       3        /* num of dirty bits */
23 
24 #include "exec/cpu-common.h"
25 #ifndef CONFIG_USER_ONLY
26 #include "exec/hwaddr.h"
27 #endif
28 #include "exec/memattrs.h"
29 #include "qemu/queue.h"
30 #include "qemu/int128.h"
31 #include "qemu/notify.h"
32 #include "qom/object.h"
33 #include "qemu/rcu.h"
34 
35 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
36 
37 #define MAX_PHYS_ADDR_SPACE_BITS 62
38 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
39 
40 #define TYPE_MEMORY_REGION "qemu:memory-region"
41 #define MEMORY_REGION(obj) \
42         OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
43 
44 typedef struct MemoryRegionOps MemoryRegionOps;
45 typedef struct MemoryRegionMmio MemoryRegionMmio;
46 
47 struct MemoryRegionMmio {
48     CPUReadMemoryFunc *read[3];
49     CPUWriteMemoryFunc *write[3];
50 };
51 
52 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
53 
54 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
55 typedef enum {
56     IOMMU_NONE = 0,
57     IOMMU_RO   = 1,
58     IOMMU_WO   = 2,
59     IOMMU_RW   = 3,
60 } IOMMUAccessFlags;
61 
62 struct IOMMUTLBEntry {
63     AddressSpace    *target_as;
64     hwaddr           iova;
65     hwaddr           translated_addr;
66     hwaddr           addr_mask;  /* 0xfff = 4k translation */
67     IOMMUAccessFlags perm;
68 };
69 
70 /* New-style MMIO accessors can indicate that the transaction failed.
71  * A zero (MEMTX_OK) response means success; anything else is a failure
72  * of some kind. The memory subsystem will bitwise-OR together results
73  * if it is synthesizing an operation from multiple smaller accesses.
74  */
75 #define MEMTX_OK 0
76 #define MEMTX_ERROR             (1U << 0) /* device returned an error */
77 #define MEMTX_DECODE_ERROR      (1U << 1) /* nothing at that address */
78 typedef uint32_t MemTxResult;
79 
80 /*
81  * Memory region callbacks
82  */
83 struct MemoryRegionOps {
84     /* Read from the memory region. @addr is relative to @mr; @size is
85      * in bytes. */
86     uint64_t (*read)(void *opaque,
87                      hwaddr addr,
88                      unsigned size);
89     /* Write to the memory region. @addr is relative to @mr; @size is
90      * in bytes. */
91     void (*write)(void *opaque,
92                   hwaddr addr,
93                   uint64_t data,
94                   unsigned size);
95 
96     MemTxResult (*read_with_attrs)(void *opaque,
97                                    hwaddr addr,
98                                    uint64_t *data,
99                                    unsigned size,
100                                    MemTxAttrs attrs);
101     MemTxResult (*write_with_attrs)(void *opaque,
102                                     hwaddr addr,
103                                     uint64_t data,
104                                     unsigned size,
105                                     MemTxAttrs attrs);
106 
107     enum device_endian endianness;
108     /* Guest-visible constraints: */
109     struct {
110         /* If nonzero, specify bounds on access sizes beyond which a machine
111          * check is thrown.
112          */
113         unsigned min_access_size;
114         unsigned max_access_size;
115         /* If true, unaligned accesses are supported.  Otherwise unaligned
116          * accesses throw machine checks.
117          */
118          bool unaligned;
119         /*
120          * If present, and returns #false, the transaction is not accepted
121          * by the device (and results in machine dependent behaviour such
122          * as a machine check exception).
123          */
124         bool (*accepts)(void *opaque, hwaddr addr,
125                         unsigned size, bool is_write);
126     } valid;
127     /* Internal implementation constraints: */
128     struct {
129         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
130          * will be rounded upwards and a partial result will be returned.
131          */
132         unsigned min_access_size;
133         /* If nonzero, specifies the maximum size implemented.  Larger sizes
134          * will be done as a series of accesses with smaller sizes.
135          */
136         unsigned max_access_size;
137         /* If true, unaligned accesses are supported.  Otherwise all accesses
138          * are converted to (possibly multiple) naturally aligned accesses.
139          */
140         bool unaligned;
141     } impl;
142 
143     /* If .read and .write are not present, old_mmio may be used for
144      * backwards compatibility with old mmio registration
145      */
146     const MemoryRegionMmio old_mmio;
147 };
148 
149 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
150 
151 struct MemoryRegionIOMMUOps {
152     /* Return a TLB entry that contains a given address. */
153     IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write);
154     /* Returns minimum supported page size */
155     uint64_t (*get_min_page_size)(MemoryRegion *iommu);
156 };
157 
158 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
159 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
160 
161 struct MemoryRegion {
162     Object parent_obj;
163 
164     /* All fields are private - violators will be prosecuted */
165 
166     /* The following fields should fit in a cache line */
167     bool romd_mode;
168     bool ram;
169     bool subpage;
170     bool readonly; /* For RAM regions */
171     bool rom_device;
172     bool flush_coalesced_mmio;
173     bool global_locking;
174     uint8_t dirty_log_mask;
175     RAMBlock *ram_block;
176     Object *owner;
177     const MemoryRegionIOMMUOps *iommu_ops;
178 
179     const MemoryRegionOps *ops;
180     void *opaque;
181     MemoryRegion *container;
182     Int128 size;
183     hwaddr addr;
184     void (*destructor)(MemoryRegion *mr);
185     uint64_t align;
186     bool terminates;
187     bool skip_dump;
188     bool enabled;
189     bool warning_printed; /* For reservations */
190     uint8_t vga_logging_count;
191     MemoryRegion *alias;
192     hwaddr alias_offset;
193     int32_t priority;
194     QTAILQ_HEAD(subregions, MemoryRegion) subregions;
195     QTAILQ_ENTRY(MemoryRegion) subregions_link;
196     QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
197     const char *name;
198     unsigned ioeventfd_nb;
199     MemoryRegionIoeventfd *ioeventfds;
200     NotifierList iommu_notify;
201 };
202 
203 /**
204  * MemoryListener: callbacks structure for updates to the physical memory map
205  *
206  * Allows a component to adjust to changes in the guest-visible memory map.
207  * Use with memory_listener_register() and memory_listener_unregister().
208  */
209 struct MemoryListener {
210     void (*begin)(MemoryListener *listener);
211     void (*commit)(MemoryListener *listener);
212     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
213     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
214     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
215     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
216                       int old, int new);
217     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
218                      int old, int new);
219     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
220     void (*log_global_start)(MemoryListener *listener);
221     void (*log_global_stop)(MemoryListener *listener);
222     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
223                         bool match_data, uint64_t data, EventNotifier *e);
224     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
225                         bool match_data, uint64_t data, EventNotifier *e);
226     void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
227                                hwaddr addr, hwaddr len);
228     void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
229                                hwaddr addr, hwaddr len);
230     /* Lower = earlier (during add), later (during del) */
231     unsigned priority;
232     AddressSpace *address_space_filter;
233     QTAILQ_ENTRY(MemoryListener) link;
234 };
235 
236 /**
237  * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
238  */
239 struct AddressSpace {
240     /* All fields are private. */
241     struct rcu_head rcu;
242     char *name;
243     MemoryRegion *root;
244     int ref_count;
245     bool malloced;
246 
247     /* Accessed via RCU.  */
248     struct FlatView *current_map;
249 
250     int ioeventfd_nb;
251     struct MemoryRegionIoeventfd *ioeventfds;
252     struct AddressSpaceDispatch *dispatch;
253     struct AddressSpaceDispatch *next_dispatch;
254     MemoryListener dispatch_listener;
255 
256     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
257 };
258 
259 /**
260  * MemoryRegionSection: describes a fragment of a #MemoryRegion
261  *
262  * @mr: the region, or %NULL if empty
263  * @address_space: the address space the region is mapped in
264  * @offset_within_region: the beginning of the section, relative to @mr's start
265  * @size: the size of the section; will not exceed @mr's boundaries
266  * @offset_within_address_space: the address of the first byte of the section
267  *     relative to the region's address space
268  * @readonly: writes to this section are ignored
269  */
270 struct MemoryRegionSection {
271     MemoryRegion *mr;
272     AddressSpace *address_space;
273     hwaddr offset_within_region;
274     Int128 size;
275     hwaddr offset_within_address_space;
276     bool readonly;
277 };
278 
279 /**
280  * memory_region_init: Initialize a memory region
281  *
282  * The region typically acts as a container for other memory regions.  Use
283  * memory_region_add_subregion() to add subregions.
284  *
285  * @mr: the #MemoryRegion to be initialized
286  * @owner: the object that tracks the region's reference count
287  * @name: used for debugging; not visible to the user or ABI
288  * @size: size of the region; any subregions beyond this size will be clipped
289  */
290 void memory_region_init(MemoryRegion *mr,
291                         struct Object *owner,
292                         const char *name,
293                         uint64_t size);
294 
295 /**
296  * memory_region_ref: Add 1 to a memory region's reference count
297  *
298  * Whenever memory regions are accessed outside the BQL, they need to be
299  * preserved against hot-unplug.  MemoryRegions actually do not have their
300  * own reference count; they piggyback on a QOM object, their "owner".
301  * This function adds a reference to the owner.
302  *
303  * All MemoryRegions must have an owner if they can disappear, even if the
304  * device they belong to operates exclusively under the BQL.  This is because
305  * the region could be returned at any time by memory_region_find, and this
306  * is usually under guest control.
307  *
308  * @mr: the #MemoryRegion
309  */
310 void memory_region_ref(MemoryRegion *mr);
311 
312 /**
313  * memory_region_unref: Remove 1 to a memory region's reference count
314  *
315  * Whenever memory regions are accessed outside the BQL, they need to be
316  * preserved against hot-unplug.  MemoryRegions actually do not have their
317  * own reference count; they piggyback on a QOM object, their "owner".
318  * This function removes a reference to the owner and possibly destroys it.
319  *
320  * @mr: the #MemoryRegion
321  */
322 void memory_region_unref(MemoryRegion *mr);
323 
324 /**
325  * memory_region_init_io: Initialize an I/O memory region.
326  *
327  * Accesses into the region will cause the callbacks in @ops to be called.
328  * if @size is nonzero, subregions will be clipped to @size.
329  *
330  * @mr: the #MemoryRegion to be initialized.
331  * @owner: the object that tracks the region's reference count
332  * @ops: a structure containing read and write callbacks to be used when
333  *       I/O is performed on the region.
334  * @opaque: passed to the read and write callbacks of the @ops structure.
335  * @name: used for debugging; not visible to the user or ABI
336  * @size: size of the region.
337  */
338 void memory_region_init_io(MemoryRegion *mr,
339                            struct Object *owner,
340                            const MemoryRegionOps *ops,
341                            void *opaque,
342                            const char *name,
343                            uint64_t size);
344 
345 /**
346  * memory_region_init_ram:  Initialize RAM memory region.  Accesses into the
347  *                          region will modify memory directly.
348  *
349  * @mr: the #MemoryRegion to be initialized.
350  * @owner: the object that tracks the region's reference count
351  * @name: the name of the region.
352  * @size: size of the region.
353  * @errp: pointer to Error*, to store an error if it happens.
354  */
355 void memory_region_init_ram(MemoryRegion *mr,
356                             struct Object *owner,
357                             const char *name,
358                             uint64_t size,
359                             Error **errp);
360 
361 /**
362  * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
363  *                                     RAM.  Accesses into the region will
364  *                                     modify memory directly.  Only an initial
365  *                                     portion of this RAM is actually used.
366  *                                     The used size can change across reboots.
367  *
368  * @mr: the #MemoryRegion to be initialized.
369  * @owner: the object that tracks the region's reference count
370  * @name: the name of the region.
371  * @size: used size of the region.
372  * @max_size: max size of the region.
373  * @resized: callback to notify owner about used size change.
374  * @errp: pointer to Error*, to store an error if it happens.
375  */
376 void memory_region_init_resizeable_ram(MemoryRegion *mr,
377                                        struct Object *owner,
378                                        const char *name,
379                                        uint64_t size,
380                                        uint64_t max_size,
381                                        void (*resized)(const char*,
382                                                        uint64_t length,
383                                                        void *host),
384                                        Error **errp);
385 #ifdef __linux__
386 /**
387  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
388  *                                    mmap-ed backend.
389  *
390  * @mr: the #MemoryRegion to be initialized.
391  * @owner: the object that tracks the region's reference count
392  * @name: the name of the region.
393  * @size: size of the region.
394  * @share: %true if memory must be mmaped with the MAP_SHARED flag
395  * @path: the path in which to allocate the RAM.
396  * @errp: pointer to Error*, to store an error if it happens.
397  */
398 void memory_region_init_ram_from_file(MemoryRegion *mr,
399                                       struct Object *owner,
400                                       const char *name,
401                                       uint64_t size,
402                                       bool share,
403                                       const char *path,
404                                       Error **errp);
405 #endif
406 
407 /**
408  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
409  *                              user-provided pointer.  Accesses into the
410  *                              region will modify memory directly.
411  *
412  * @mr: the #MemoryRegion to be initialized.
413  * @owner: the object that tracks the region's reference count
414  * @name: the name of the region.
415  * @size: size of the region.
416  * @ptr: memory to be mapped; must contain at least @size bytes.
417  */
418 void memory_region_init_ram_ptr(MemoryRegion *mr,
419                                 struct Object *owner,
420                                 const char *name,
421                                 uint64_t size,
422                                 void *ptr);
423 
424 /**
425  * memory_region_init_alias: Initialize a memory region that aliases all or a
426  *                           part of another memory region.
427  *
428  * @mr: the #MemoryRegion to be initialized.
429  * @owner: the object that tracks the region's reference count
430  * @name: used for debugging; not visible to the user or ABI
431  * @orig: the region to be referenced; @mr will be equivalent to
432  *        @orig between @offset and @offset + @size - 1.
433  * @offset: start of the section in @orig to be referenced.
434  * @size: size of the region.
435  */
436 void memory_region_init_alias(MemoryRegion *mr,
437                               struct Object *owner,
438                               const char *name,
439                               MemoryRegion *orig,
440                               hwaddr offset,
441                               uint64_t size);
442 
443 /**
444  * memory_region_init_rom_device:  Initialize a ROM memory region.  Writes are
445  *                                 handled via callbacks.
446  *
447  * If NULL callbacks pointer is given, then I/O space is not supposed to be
448  * handled by QEMU itself. Any access via the memory API will cause an abort().
449  *
450  * @mr: the #MemoryRegion to be initialized.
451  * @owner: the object that tracks the region's reference count
452  * @ops: callbacks for write access handling.
453  * @name: the name of the region.
454  * @size: size of the region.
455  * @errp: pointer to Error*, to store an error if it happens.
456  */
457 void memory_region_init_rom_device(MemoryRegion *mr,
458                                    struct Object *owner,
459                                    const MemoryRegionOps *ops,
460                                    void *opaque,
461                                    const char *name,
462                                    uint64_t size,
463                                    Error **errp);
464 
465 /**
466  * memory_region_init_reservation: Initialize a memory region that reserves
467  *                                 I/O space.
468  *
469  * A reservation region primariy serves debugging purposes.  It claims I/O
470  * space that is not supposed to be handled by QEMU itself.  Any access via
471  * the memory API will cause an abort().
472  * This function is deprecated. Use memory_region_init_io() with NULL
473  * callbacks instead.
474  *
475  * @mr: the #MemoryRegion to be initialized
476  * @owner: the object that tracks the region's reference count
477  * @name: used for debugging; not visible to the user or ABI
478  * @size: size of the region.
479  */
480 static inline void memory_region_init_reservation(MemoryRegion *mr,
481                                     Object *owner,
482                                     const char *name,
483                                     uint64_t size)
484 {
485     memory_region_init_io(mr, owner, NULL, mr, name, size);
486 }
487 
488 /**
489  * memory_region_init_iommu: Initialize a memory region that translates
490  * addresses
491  *
492  * An IOMMU region translates addresses and forwards accesses to a target
493  * memory region.
494  *
495  * @mr: the #MemoryRegion to be initialized
496  * @owner: the object that tracks the region's reference count
497  * @ops: a function that translates addresses into the @target region
498  * @name: used for debugging; not visible to the user or ABI
499  * @size: size of the region.
500  */
501 void memory_region_init_iommu(MemoryRegion *mr,
502                               struct Object *owner,
503                               const MemoryRegionIOMMUOps *ops,
504                               const char *name,
505                               uint64_t size);
506 
507 /**
508  * memory_region_owner: get a memory region's owner.
509  *
510  * @mr: the memory region being queried.
511  */
512 struct Object *memory_region_owner(MemoryRegion *mr);
513 
514 /**
515  * memory_region_size: get a memory region's size.
516  *
517  * @mr: the memory region being queried.
518  */
519 uint64_t memory_region_size(MemoryRegion *mr);
520 
521 /**
522  * memory_region_is_ram: check whether a memory region is random access
523  *
524  * Returns %true is a memory region is random access.
525  *
526  * @mr: the memory region being queried
527  */
528 static inline bool memory_region_is_ram(MemoryRegion *mr)
529 {
530     return mr->ram;
531 }
532 
533 /**
534  * memory_region_is_skip_dump: check whether a memory region should not be
535  *                             dumped
536  *
537  * Returns %true is a memory region should not be dumped(e.g. VFIO BAR MMAP).
538  *
539  * @mr: the memory region being queried
540  */
541 bool memory_region_is_skip_dump(MemoryRegion *mr);
542 
543 /**
544  * memory_region_set_skip_dump: Set skip_dump flag, dump will ignore this memory
545  *                              region
546  *
547  * @mr: the memory region being queried
548  */
549 void memory_region_set_skip_dump(MemoryRegion *mr);
550 
551 /**
552  * memory_region_is_romd: check whether a memory region is in ROMD mode
553  *
554  * Returns %true if a memory region is a ROM device and currently set to allow
555  * direct reads.
556  *
557  * @mr: the memory region being queried
558  */
559 static inline bool memory_region_is_romd(MemoryRegion *mr)
560 {
561     return mr->rom_device && mr->romd_mode;
562 }
563 
564 /**
565  * memory_region_is_iommu: check whether a memory region is an iommu
566  *
567  * Returns %true is a memory region is an iommu.
568  *
569  * @mr: the memory region being queried
570  */
571 static inline bool memory_region_is_iommu(MemoryRegion *mr)
572 {
573     return mr->iommu_ops;
574 }
575 
576 
577 /**
578  * memory_region_iommu_get_min_page_size: get minimum supported page size
579  * for an iommu
580  *
581  * Returns minimum supported page size for an iommu.
582  *
583  * @mr: the memory region being queried
584  */
585 uint64_t memory_region_iommu_get_min_page_size(MemoryRegion *mr);
586 
587 /**
588  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
589  *
590  * @mr: the memory region that was changed
591  * @entry: the new entry in the IOMMU translation table.  The entry
592  *         replaces all old entries for the same virtual I/O address range.
593  *         Deleted entries have .@perm == 0.
594  */
595 void memory_region_notify_iommu(MemoryRegion *mr,
596                                 IOMMUTLBEntry entry);
597 
598 /**
599  * memory_region_register_iommu_notifier: register a notifier for changes to
600  * IOMMU translation entries.
601  *
602  * @mr: the memory region to observe
603  * @n: the notifier to be added; the notifier receives a pointer to an
604  *     #IOMMUTLBEntry as the opaque value; the pointer ceases to be
605  *     valid on exit from the notifier.
606  */
607 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n);
608 
609 /**
610  * memory_region_iommu_replay: replay existing IOMMU translations to
611  * a notifier with the minimum page granularity returned by
612  * mr->iommu_ops->get_page_size().
613  *
614  * @mr: the memory region to observe
615  * @n: the notifier to which to replay iommu mappings
616  * @is_write: Whether to treat the replay as a translate "write"
617  *     through the iommu
618  */
619 void memory_region_iommu_replay(MemoryRegion *mr, Notifier *n, bool is_write);
620 
621 /**
622  * memory_region_unregister_iommu_notifier: unregister a notifier for
623  * changes to IOMMU translation entries.
624  *
625  * @n: the notifier to be removed.
626  */
627 void memory_region_unregister_iommu_notifier(Notifier *n);
628 
629 /**
630  * memory_region_name: get a memory region's name
631  *
632  * Returns the string that was used to initialize the memory region.
633  *
634  * @mr: the memory region being queried
635  */
636 const char *memory_region_name(const MemoryRegion *mr);
637 
638 /**
639  * memory_region_is_logging: return whether a memory region is logging writes
640  *
641  * Returns %true if the memory region is logging writes for the given client
642  *
643  * @mr: the memory region being queried
644  * @client: the client being queried
645  */
646 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
647 
648 /**
649  * memory_region_get_dirty_log_mask: return the clients for which a
650  * memory region is logging writes.
651  *
652  * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
653  * are the bit indices.
654  *
655  * @mr: the memory region being queried
656  */
657 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
658 
659 /**
660  * memory_region_is_rom: check whether a memory region is ROM
661  *
662  * Returns %true is a memory region is read-only memory.
663  *
664  * @mr: the memory region being queried
665  */
666 static inline bool memory_region_is_rom(MemoryRegion *mr)
667 {
668     return mr->ram && mr->readonly;
669 }
670 
671 
672 /**
673  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
674  *
675  * Returns a file descriptor backing a file-based RAM memory region,
676  * or -1 if the region is not a file-based RAM memory region.
677  *
678  * @mr: the RAM or alias memory region being queried.
679  */
680 int memory_region_get_fd(MemoryRegion *mr);
681 
682 /**
683  * memory_region_set_fd: Mark a RAM memory region as backed by a
684  * file descriptor.
685  *
686  * This function is typically used after memory_region_init_ram_ptr().
687  *
688  * @mr: the memory region being queried.
689  * @fd: the file descriptor that backs @mr.
690  */
691 void memory_region_set_fd(MemoryRegion *mr, int fd);
692 
693 /**
694  * memory_region_from_host: Convert a pointer into a RAM memory region
695  * and an offset within it.
696  *
697  * Given a host pointer inside a RAM memory region (created with
698  * memory_region_init_ram() or memory_region_init_ram_ptr()), return
699  * the MemoryRegion and the offset within it.
700  *
701  * Use with care; by the time this function returns, the returned pointer is
702  * not protected by RCU anymore.  If the caller is not within an RCU critical
703  * section and does not hold the iothread lock, it must have other means of
704  * protecting the pointer, such as a reference to the region that includes
705  * the incoming ram_addr_t.
706  *
707  * @mr: the memory region being queried.
708  */
709 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
710 
711 /**
712  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
713  *
714  * Returns a host pointer to a RAM memory region (created with
715  * memory_region_init_ram() or memory_region_init_ram_ptr()).
716  *
717  * Use with care; by the time this function returns, the returned pointer is
718  * not protected by RCU anymore.  If the caller is not within an RCU critical
719  * section and does not hold the iothread lock, it must have other means of
720  * protecting the pointer, such as a reference to the region that includes
721  * the incoming ram_addr_t.
722  *
723  * @mr: the memory region being queried.
724  */
725 void *memory_region_get_ram_ptr(MemoryRegion *mr);
726 
727 /* memory_region_ram_resize: Resize a RAM region.
728  *
729  * Only legal before guest might have detected the memory size: e.g. on
730  * incoming migration, or right after reset.
731  *
732  * @mr: a memory region created with @memory_region_init_resizeable_ram.
733  * @newsize: the new size the region
734  * @errp: pointer to Error*, to store an error if it happens.
735  */
736 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
737                               Error **errp);
738 
739 /**
740  * memory_region_set_log: Turn dirty logging on or off for a region.
741  *
742  * Turns dirty logging on or off for a specified client (display, migration).
743  * Only meaningful for RAM regions.
744  *
745  * @mr: the memory region being updated.
746  * @log: whether dirty logging is to be enabled or disabled.
747  * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
748  */
749 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
750 
751 /**
752  * memory_region_get_dirty: Check whether a range of bytes is dirty
753  *                          for a specified client.
754  *
755  * Checks whether a range of bytes has been written to since the last
756  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
757  * must be enabled.
758  *
759  * @mr: the memory region being queried.
760  * @addr: the address (relative to the start of the region) being queried.
761  * @size: the size of the range being queried.
762  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
763  *          %DIRTY_MEMORY_VGA.
764  */
765 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
766                              hwaddr size, unsigned client);
767 
768 /**
769  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
770  *
771  * Marks a range of bytes as dirty, after it has been dirtied outside
772  * guest code.
773  *
774  * @mr: the memory region being dirtied.
775  * @addr: the address (relative to the start of the region) being dirtied.
776  * @size: size of the range being dirtied.
777  */
778 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
779                              hwaddr size);
780 
781 /**
782  * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
783  *                                     for a specified client. It clears them.
784  *
785  * Checks whether a range of bytes has been written to since the last
786  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
787  * must be enabled.
788  *
789  * @mr: the memory region being queried.
790  * @addr: the address (relative to the start of the region) being queried.
791  * @size: the size of the range being queried.
792  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
793  *          %DIRTY_MEMORY_VGA.
794  */
795 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
796                                         hwaddr size, unsigned client);
797 /**
798  * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
799  *                                  any external TLBs (e.g. kvm)
800  *
801  * Flushes dirty information from accelerators such as kvm and vhost-net
802  * and makes it available to users of the memory API.
803  *
804  * @mr: the region being flushed.
805  */
806 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
807 
808 /**
809  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
810  *                            client.
811  *
812  * Marks a range of pages as no longer dirty.
813  *
814  * @mr: the region being updated.
815  * @addr: the start of the subrange being cleaned.
816  * @size: the size of the subrange being cleaned.
817  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
818  *          %DIRTY_MEMORY_VGA.
819  */
820 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
821                                hwaddr size, unsigned client);
822 
823 /**
824  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
825  *
826  * Allows a memory region to be marked as read-only (turning it into a ROM).
827  * only useful on RAM regions.
828  *
829  * @mr: the region being updated.
830  * @readonly: whether rhe region is to be ROM or RAM.
831  */
832 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
833 
834 /**
835  * memory_region_rom_device_set_romd: enable/disable ROMD mode
836  *
837  * Allows a ROM device (initialized with memory_region_init_rom_device() to
838  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
839  * device is mapped to guest memory and satisfies read access directly.
840  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
841  * Writes are always handled by the #MemoryRegion.write function.
842  *
843  * @mr: the memory region to be updated
844  * @romd_mode: %true to put the region into ROMD mode
845  */
846 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
847 
848 /**
849  * memory_region_set_coalescing: Enable memory coalescing for the region.
850  *
851  * Enabled writes to a region to be queued for later processing. MMIO ->write
852  * callbacks may be delayed until a non-coalesced MMIO is issued.
853  * Only useful for IO regions.  Roughly similar to write-combining hardware.
854  *
855  * @mr: the memory region to be write coalesced
856  */
857 void memory_region_set_coalescing(MemoryRegion *mr);
858 
859 /**
860  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
861  *                               a region.
862  *
863  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
864  * Multiple calls can be issued coalesced disjoint ranges.
865  *
866  * @mr: the memory region to be updated.
867  * @offset: the start of the range within the region to be coalesced.
868  * @size: the size of the subrange to be coalesced.
869  */
870 void memory_region_add_coalescing(MemoryRegion *mr,
871                                   hwaddr offset,
872                                   uint64_t size);
873 
874 /**
875  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
876  *
877  * Disables any coalescing caused by memory_region_set_coalescing() or
878  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
879  * hardware.
880  *
881  * @mr: the memory region to be updated.
882  */
883 void memory_region_clear_coalescing(MemoryRegion *mr);
884 
885 /**
886  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
887  *                                    accesses.
888  *
889  * Ensure that pending coalesced MMIO request are flushed before the memory
890  * region is accessed. This property is automatically enabled for all regions
891  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
892  *
893  * @mr: the memory region to be updated.
894  */
895 void memory_region_set_flush_coalesced(MemoryRegion *mr);
896 
897 /**
898  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
899  *                                      accesses.
900  *
901  * Clear the automatic coalesced MMIO flushing enabled via
902  * memory_region_set_flush_coalesced. Note that this service has no effect on
903  * memory regions that have MMIO coalescing enabled for themselves. For them,
904  * automatic flushing will stop once coalescing is disabled.
905  *
906  * @mr: the memory region to be updated.
907  */
908 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
909 
910 /**
911  * memory_region_set_global_locking: Declares the access processing requires
912  *                                   QEMU's global lock.
913  *
914  * When this is invoked, accesses to the memory region will be processed while
915  * holding the global lock of QEMU. This is the default behavior of memory
916  * regions.
917  *
918  * @mr: the memory region to be updated.
919  */
920 void memory_region_set_global_locking(MemoryRegion *mr);
921 
922 /**
923  * memory_region_clear_global_locking: Declares that access processing does
924  *                                     not depend on the QEMU global lock.
925  *
926  * By clearing this property, accesses to the memory region will be processed
927  * outside of QEMU's global lock (unless the lock is held on when issuing the
928  * access request). In this case, the device model implementing the access
929  * handlers is responsible for synchronization of concurrency.
930  *
931  * @mr: the memory region to be updated.
932  */
933 void memory_region_clear_global_locking(MemoryRegion *mr);
934 
935 /**
936  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
937  *                            is written to a location.
938  *
939  * Marks a word in an IO region (initialized with memory_region_init_io())
940  * as a trigger for an eventfd event.  The I/O callback will not be called.
941  * The caller must be prepared to handle failure (that is, take the required
942  * action if the callback _is_ called).
943  *
944  * @mr: the memory region being updated.
945  * @addr: the address within @mr that is to be monitored
946  * @size: the size of the access to trigger the eventfd
947  * @match_data: whether to match against @data, instead of just @addr
948  * @data: the data to match against the guest write
949  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
950  **/
951 void memory_region_add_eventfd(MemoryRegion *mr,
952                                hwaddr addr,
953                                unsigned size,
954                                bool match_data,
955                                uint64_t data,
956                                EventNotifier *e);
957 
958 /**
959  * memory_region_del_eventfd: Cancel an eventfd.
960  *
961  * Cancels an eventfd trigger requested by a previous
962  * memory_region_add_eventfd() call.
963  *
964  * @mr: the memory region being updated.
965  * @addr: the address within @mr that is to be monitored
966  * @size: the size of the access to trigger the eventfd
967  * @match_data: whether to match against @data, instead of just @addr
968  * @data: the data to match against the guest write
969  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
970  */
971 void memory_region_del_eventfd(MemoryRegion *mr,
972                                hwaddr addr,
973                                unsigned size,
974                                bool match_data,
975                                uint64_t data,
976                                EventNotifier *e);
977 
978 /**
979  * memory_region_add_subregion: Add a subregion to a container.
980  *
981  * Adds a subregion at @offset.  The subregion may not overlap with other
982  * subregions (except for those explicitly marked as overlapping).  A region
983  * may only be added once as a subregion (unless removed with
984  * memory_region_del_subregion()); use memory_region_init_alias() if you
985  * want a region to be a subregion in multiple locations.
986  *
987  * @mr: the region to contain the new subregion; must be a container
988  *      initialized with memory_region_init().
989  * @offset: the offset relative to @mr where @subregion is added.
990  * @subregion: the subregion to be added.
991  */
992 void memory_region_add_subregion(MemoryRegion *mr,
993                                  hwaddr offset,
994                                  MemoryRegion *subregion);
995 /**
996  * memory_region_add_subregion_overlap: Add a subregion to a container
997  *                                      with overlap.
998  *
999  * Adds a subregion at @offset.  The subregion may overlap with other
1000  * subregions.  Conflicts are resolved by having a higher @priority hide a
1001  * lower @priority. Subregions without priority are taken as @priority 0.
1002  * A region may only be added once as a subregion (unless removed with
1003  * memory_region_del_subregion()); use memory_region_init_alias() if you
1004  * want a region to be a subregion in multiple locations.
1005  *
1006  * @mr: the region to contain the new subregion; must be a container
1007  *      initialized with memory_region_init().
1008  * @offset: the offset relative to @mr where @subregion is added.
1009  * @subregion: the subregion to be added.
1010  * @priority: used for resolving overlaps; highest priority wins.
1011  */
1012 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1013                                          hwaddr offset,
1014                                          MemoryRegion *subregion,
1015                                          int priority);
1016 
1017 /**
1018  * memory_region_get_ram_addr: Get the ram address associated with a memory
1019  *                             region
1020  */
1021 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1022 
1023 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1024 /**
1025  * memory_region_del_subregion: Remove a subregion.
1026  *
1027  * Removes a subregion from its container.
1028  *
1029  * @mr: the container to be updated.
1030  * @subregion: the region being removed; must be a current subregion of @mr.
1031  */
1032 void memory_region_del_subregion(MemoryRegion *mr,
1033                                  MemoryRegion *subregion);
1034 
1035 /*
1036  * memory_region_set_enabled: dynamically enable or disable a region
1037  *
1038  * Enables or disables a memory region.  A disabled memory region
1039  * ignores all accesses to itself and its subregions.  It does not
1040  * obscure sibling subregions with lower priority - it simply behaves as
1041  * if it was removed from the hierarchy.
1042  *
1043  * Regions default to being enabled.
1044  *
1045  * @mr: the region to be updated
1046  * @enabled: whether to enable or disable the region
1047  */
1048 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1049 
1050 /*
1051  * memory_region_set_address: dynamically update the address of a region
1052  *
1053  * Dynamically updates the address of a region, relative to its container.
1054  * May be used on regions are currently part of a memory hierarchy.
1055  *
1056  * @mr: the region to be updated
1057  * @addr: new address, relative to container region
1058  */
1059 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1060 
1061 /*
1062  * memory_region_set_size: dynamically update the size of a region.
1063  *
1064  * Dynamically updates the size of a region.
1065  *
1066  * @mr: the region to be updated
1067  * @size: used size of the region.
1068  */
1069 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1070 
1071 /*
1072  * memory_region_set_alias_offset: dynamically update a memory alias's offset
1073  *
1074  * Dynamically updates the offset into the target region that an alias points
1075  * to, as if the fourth argument to memory_region_init_alias() has changed.
1076  *
1077  * @mr: the #MemoryRegion to be updated; should be an alias.
1078  * @offset: the new offset into the target memory region
1079  */
1080 void memory_region_set_alias_offset(MemoryRegion *mr,
1081                                     hwaddr offset);
1082 
1083 /**
1084  * memory_region_present: checks if an address relative to a @container
1085  * translates into #MemoryRegion within @container
1086  *
1087  * Answer whether a #MemoryRegion within @container covers the address
1088  * @addr.
1089  *
1090  * @container: a #MemoryRegion within which @addr is a relative address
1091  * @addr: the area within @container to be searched
1092  */
1093 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1094 
1095 /**
1096  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1097  * into any address space.
1098  *
1099  * @mr: a #MemoryRegion which should be checked if it's mapped
1100  */
1101 bool memory_region_is_mapped(MemoryRegion *mr);
1102 
1103 /**
1104  * memory_region_find: translate an address/size relative to a
1105  * MemoryRegion into a #MemoryRegionSection.
1106  *
1107  * Locates the first #MemoryRegion within @mr that overlaps the range
1108  * given by @addr and @size.
1109  *
1110  * Returns a #MemoryRegionSection that describes a contiguous overlap.
1111  * It will have the following characteristics:
1112  *    .@size = 0 iff no overlap was found
1113  *    .@mr is non-%NULL iff an overlap was found
1114  *
1115  * Remember that in the return value the @offset_within_region is
1116  * relative to the returned region (in the .@mr field), not to the
1117  * @mr argument.
1118  *
1119  * Similarly, the .@offset_within_address_space is relative to the
1120  * address space that contains both regions, the passed and the
1121  * returned one.  However, in the special case where the @mr argument
1122  * has no container (and thus is the root of the address space), the
1123  * following will hold:
1124  *    .@offset_within_address_space >= @addr
1125  *    .@offset_within_address_space + .@size <= @addr + @size
1126  *
1127  * @mr: a MemoryRegion within which @addr is a relative address
1128  * @addr: start of the area within @as to be searched
1129  * @size: size of the area to be searched
1130  */
1131 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1132                                        hwaddr addr, uint64_t size);
1133 
1134 /**
1135  * address_space_sync_dirty_bitmap: synchronize the dirty log for all memory
1136  *
1137  * Synchronizes the dirty page log for an entire address space.
1138  * @as: the address space that contains the memory being synchronized
1139  */
1140 void address_space_sync_dirty_bitmap(AddressSpace *as);
1141 
1142 /**
1143  * memory_region_transaction_begin: Start a transaction.
1144  *
1145  * During a transaction, changes will be accumulated and made visible
1146  * only when the transaction ends (is committed).
1147  */
1148 void memory_region_transaction_begin(void);
1149 
1150 /**
1151  * memory_region_transaction_commit: Commit a transaction and make changes
1152  *                                   visible to the guest.
1153  */
1154 void memory_region_transaction_commit(void);
1155 
1156 /**
1157  * memory_listener_register: register callbacks to be called when memory
1158  *                           sections are mapped or unmapped into an address
1159  *                           space
1160  *
1161  * @listener: an object containing the callbacks to be called
1162  * @filter: if non-%NULL, only regions in this address space will be observed
1163  */
1164 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1165 
1166 /**
1167  * memory_listener_unregister: undo the effect of memory_listener_register()
1168  *
1169  * @listener: an object containing the callbacks to be removed
1170  */
1171 void memory_listener_unregister(MemoryListener *listener);
1172 
1173 /**
1174  * memory_global_dirty_log_start: begin dirty logging for all regions
1175  */
1176 void memory_global_dirty_log_start(void);
1177 
1178 /**
1179  * memory_global_dirty_log_stop: end dirty logging for all regions
1180  */
1181 void memory_global_dirty_log_stop(void);
1182 
1183 void mtree_info(fprintf_function mon_printf, void *f);
1184 
1185 /**
1186  * memory_region_dispatch_read: perform a read directly to the specified
1187  * MemoryRegion.
1188  *
1189  * @mr: #MemoryRegion to access
1190  * @addr: address within that region
1191  * @pval: pointer to uint64_t which the data is written to
1192  * @size: size of the access in bytes
1193  * @attrs: memory transaction attributes to use for the access
1194  */
1195 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1196                                         hwaddr addr,
1197                                         uint64_t *pval,
1198                                         unsigned size,
1199                                         MemTxAttrs attrs);
1200 /**
1201  * memory_region_dispatch_write: perform a write directly to the specified
1202  * MemoryRegion.
1203  *
1204  * @mr: #MemoryRegion to access
1205  * @addr: address within that region
1206  * @data: data to write
1207  * @size: size of the access in bytes
1208  * @attrs: memory transaction attributes to use for the access
1209  */
1210 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1211                                          hwaddr addr,
1212                                          uint64_t data,
1213                                          unsigned size,
1214                                          MemTxAttrs attrs);
1215 
1216 /**
1217  * address_space_init: initializes an address space
1218  *
1219  * @as: an uninitialized #AddressSpace
1220  * @root: a #MemoryRegion that routes addresses for the address space
1221  * @name: an address space name.  The name is only used for debugging
1222  *        output.
1223  */
1224 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1225 
1226 /**
1227  * address_space_init_shareable: return an address space for a memory region,
1228  *                               creating it if it does not already exist
1229  *
1230  * @root: a #MemoryRegion that routes addresses for the address space
1231  * @name: an address space name.  The name is only used for debugging
1232  *        output.
1233  *
1234  * This function will return a pointer to an existing AddressSpace
1235  * which was initialized with the specified MemoryRegion, or it will
1236  * create and initialize one if it does not already exist. The ASes
1237  * are reference-counted, so the memory will be freed automatically
1238  * when the AddressSpace is destroyed via address_space_destroy.
1239  */
1240 AddressSpace *address_space_init_shareable(MemoryRegion *root,
1241                                            const char *name);
1242 
1243 /**
1244  * address_space_destroy: destroy an address space
1245  *
1246  * Releases all resources associated with an address space.  After an address space
1247  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1248  * as well.
1249  *
1250  * @as: address space to be destroyed
1251  */
1252 void address_space_destroy(AddressSpace *as);
1253 
1254 /**
1255  * address_space_rw: read from or write to an address space.
1256  *
1257  * Return a MemTxResult indicating whether the operation succeeded
1258  * or failed (eg unassigned memory, device rejected the transaction,
1259  * IOMMU fault).
1260  *
1261  * @as: #AddressSpace to be accessed
1262  * @addr: address within that address space
1263  * @attrs: memory transaction attributes
1264  * @buf: buffer with the data transferred
1265  * @is_write: indicates the transfer direction
1266  */
1267 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1268                              MemTxAttrs attrs, uint8_t *buf,
1269                              int len, bool is_write);
1270 
1271 /**
1272  * address_space_write: write to address space.
1273  *
1274  * Return a MemTxResult indicating whether the operation succeeded
1275  * or failed (eg unassigned memory, device rejected the transaction,
1276  * IOMMU fault).
1277  *
1278  * @as: #AddressSpace to be accessed
1279  * @addr: address within that address space
1280  * @attrs: memory transaction attributes
1281  * @buf: buffer with the data transferred
1282  */
1283 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1284                                 MemTxAttrs attrs,
1285                                 const uint8_t *buf, int len);
1286 
1287 /* address_space_ld*: load from an address space
1288  * address_space_st*: store to an address space
1289  *
1290  * These functions perform a load or store of the byte, word,
1291  * longword or quad to the specified address within the AddressSpace.
1292  * The _le suffixed functions treat the data as little endian;
1293  * _be indicates big endian; no suffix indicates "same endianness
1294  * as guest CPU".
1295  *
1296  * The "guest CPU endianness" accessors are deprecated for use outside
1297  * target-* code; devices should be CPU-agnostic and use either the LE
1298  * or the BE accessors.
1299  *
1300  * @as #AddressSpace to be accessed
1301  * @addr: address within that address space
1302  * @val: data value, for stores
1303  * @attrs: memory transaction attributes
1304  * @result: location to write the success/failure of the transaction;
1305  *   if NULL, this information is discarded
1306  */
1307 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1308                             MemTxAttrs attrs, MemTxResult *result);
1309 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1310                             MemTxAttrs attrs, MemTxResult *result);
1311 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1312                             MemTxAttrs attrs, MemTxResult *result);
1313 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1314                             MemTxAttrs attrs, MemTxResult *result);
1315 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1316                             MemTxAttrs attrs, MemTxResult *result);
1317 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1318                             MemTxAttrs attrs, MemTxResult *result);
1319 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1320                             MemTxAttrs attrs, MemTxResult *result);
1321 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1322                             MemTxAttrs attrs, MemTxResult *result);
1323 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1324                             MemTxAttrs attrs, MemTxResult *result);
1325 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1326                             MemTxAttrs attrs, MemTxResult *result);
1327 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1328                             MemTxAttrs attrs, MemTxResult *result);
1329 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1330                             MemTxAttrs attrs, MemTxResult *result);
1331 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1332                             MemTxAttrs attrs, MemTxResult *result);
1333 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1334                             MemTxAttrs attrs, MemTxResult *result);
1335 
1336 /* address_space_translate: translate an address range into an address space
1337  * into a MemoryRegion and an address range into that section.  Should be
1338  * called from an RCU critical section, to avoid that the last reference
1339  * to the returned region disappears after address_space_translate returns.
1340  *
1341  * @as: #AddressSpace to be accessed
1342  * @addr: address within that address space
1343  * @xlat: pointer to address within the returned memory region section's
1344  * #MemoryRegion.
1345  * @len: pointer to length
1346  * @is_write: indicates the transfer direction
1347  */
1348 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1349                                       hwaddr *xlat, hwaddr *len,
1350                                       bool is_write);
1351 
1352 /* address_space_access_valid: check for validity of accessing an address
1353  * space range
1354  *
1355  * Check whether memory is assigned to the given address space range, and
1356  * access is permitted by any IOMMU regions that are active for the address
1357  * space.
1358  *
1359  * For now, addr and len should be aligned to a page size.  This limitation
1360  * will be lifted in the future.
1361  *
1362  * @as: #AddressSpace to be accessed
1363  * @addr: address within that address space
1364  * @len: length of the area to be checked
1365  * @is_write: indicates the transfer direction
1366  */
1367 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1368 
1369 /* address_space_map: map a physical memory region into a host virtual address
1370  *
1371  * May map a subset of the requested range, given by and returned in @plen.
1372  * May return %NULL if resources needed to perform the mapping are exhausted.
1373  * Use only for reads OR writes - not for read-modify-write operations.
1374  * Use cpu_register_map_client() to know when retrying the map operation is
1375  * likely to succeed.
1376  *
1377  * @as: #AddressSpace to be accessed
1378  * @addr: address within that address space
1379  * @plen: pointer to length of buffer; updated on return
1380  * @is_write: indicates the transfer direction
1381  */
1382 void *address_space_map(AddressSpace *as, hwaddr addr,
1383                         hwaddr *plen, bool is_write);
1384 
1385 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1386  *
1387  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
1388  * the amount of memory that was actually read or written by the caller.
1389  *
1390  * @as: #AddressSpace used
1391  * @addr: address within that address space
1392  * @len: buffer length as returned by address_space_map()
1393  * @access_len: amount of data actually transferred
1394  * @is_write: indicates the transfer direction
1395  */
1396 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1397                          int is_write, hwaddr access_len);
1398 
1399 
1400 /* Internal functions, part of the implementation of address_space_read.  */
1401 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
1402                                         MemTxAttrs attrs, uint8_t *buf,
1403                                         int len, hwaddr addr1, hwaddr l,
1404 					MemoryRegion *mr);
1405 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
1406                                     MemTxAttrs attrs, uint8_t *buf, int len);
1407 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
1408 
1409 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1410 {
1411     if (is_write) {
1412         return memory_region_is_ram(mr) && !mr->readonly;
1413     } else {
1414         return memory_region_is_ram(mr) || memory_region_is_romd(mr);
1415     }
1416 }
1417 
1418 /**
1419  * address_space_read: read from an address space.
1420  *
1421  * Return a MemTxResult indicating whether the operation succeeded
1422  * or failed (eg unassigned memory, device rejected the transaction,
1423  * IOMMU fault).
1424  *
1425  * @as: #AddressSpace to be accessed
1426  * @addr: address within that address space
1427  * @attrs: memory transaction attributes
1428  * @buf: buffer with the data transferred
1429  */
1430 static inline __attribute__((__always_inline__))
1431 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
1432                                uint8_t *buf, int len)
1433 {
1434     MemTxResult result = MEMTX_OK;
1435     hwaddr l, addr1;
1436     void *ptr;
1437     MemoryRegion *mr;
1438 
1439     if (__builtin_constant_p(len)) {
1440         if (len) {
1441             rcu_read_lock();
1442             l = len;
1443             mr = address_space_translate(as, addr, &addr1, &l, false);
1444             if (len == l && memory_access_is_direct(mr, false)) {
1445                 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1446                 memcpy(buf, ptr, len);
1447             } else {
1448                 result = address_space_read_continue(as, addr, attrs, buf, len,
1449                                                      addr1, l, mr);
1450             }
1451             rcu_read_unlock();
1452         }
1453     } else {
1454         result = address_space_read_full(as, addr, attrs, buf, len);
1455     }
1456     return result;
1457 }
1458 
1459 #endif
1460 
1461 #endif
1462