1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef MEMORY_H 15 #define MEMORY_H 16 17 #ifndef CONFIG_USER_ONLY 18 19 #include "exec/cpu-common.h" 20 #include "exec/hwaddr.h" 21 #include "exec/memattrs.h" 22 #include "exec/memop.h" 23 #include "exec/ramlist.h" 24 #include "qemu/bswap.h" 25 #include "qemu/queue.h" 26 #include "qemu/int128.h" 27 #include "qemu/notify.h" 28 #include "qom/object.h" 29 #include "qemu/rcu.h" 30 31 #define RAM_ADDR_INVALID (~(ram_addr_t)0) 32 33 #define MAX_PHYS_ADDR_SPACE_BITS 62 34 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 35 36 #define TYPE_MEMORY_REGION "qemu:memory-region" 37 #define MEMORY_REGION(obj) \ 38 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION) 39 40 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region" 41 #define IOMMU_MEMORY_REGION(obj) \ 42 OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION) 43 #define IOMMU_MEMORY_REGION_CLASS(klass) \ 44 OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \ 45 TYPE_IOMMU_MEMORY_REGION) 46 #define IOMMU_MEMORY_REGION_GET_CLASS(obj) \ 47 OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \ 48 TYPE_IOMMU_MEMORY_REGION) 49 50 extern bool global_dirty_log; 51 52 typedef struct MemoryRegionOps MemoryRegionOps; 53 54 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 55 56 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 57 typedef enum { 58 IOMMU_NONE = 0, 59 IOMMU_RO = 1, 60 IOMMU_WO = 2, 61 IOMMU_RW = 3, 62 } IOMMUAccessFlags; 63 64 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0)) 65 66 struct IOMMUTLBEntry { 67 AddressSpace *target_as; 68 hwaddr iova; 69 hwaddr translated_addr; 70 hwaddr addr_mask; /* 0xfff = 4k translation */ 71 IOMMUAccessFlags perm; 72 }; 73 74 /* 75 * Bitmap for different IOMMUNotifier capabilities. Each notifier can 76 * register with one or multiple IOMMU Notifier capability bit(s). 77 */ 78 typedef enum { 79 IOMMU_NOTIFIER_NONE = 0, 80 /* Notify cache invalidations */ 81 IOMMU_NOTIFIER_UNMAP = 0x1, 82 /* Notify entry changes (newly created entries) */ 83 IOMMU_NOTIFIER_MAP = 0x2, 84 } IOMMUNotifierFlag; 85 86 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP) 87 88 struct IOMMUNotifier; 89 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier, 90 IOMMUTLBEntry *data); 91 92 struct IOMMUNotifier { 93 IOMMUNotify notify; 94 IOMMUNotifierFlag notifier_flags; 95 /* Notify for address space range start <= addr <= end */ 96 hwaddr start; 97 hwaddr end; 98 int iommu_idx; 99 QLIST_ENTRY(IOMMUNotifier) node; 100 }; 101 typedef struct IOMMUNotifier IOMMUNotifier; 102 103 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ 104 #define RAM_PREALLOC (1 << 0) 105 106 /* RAM is mmap-ed with MAP_SHARED */ 107 #define RAM_SHARED (1 << 1) 108 109 /* Only a portion of RAM (used_length) is actually used, and migrated. 110 * This used_length size can change across reboots. 111 */ 112 #define RAM_RESIZEABLE (1 << 2) 113 114 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically 115 * zero the page and wake waiting processes. 116 * (Set during postcopy) 117 */ 118 #define RAM_UF_ZEROPAGE (1 << 3) 119 120 /* RAM can be migrated */ 121 #define RAM_MIGRATABLE (1 << 4) 122 123 /* RAM is a persistent kind memory */ 124 #define RAM_PMEM (1 << 5) 125 126 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn, 127 IOMMUNotifierFlag flags, 128 hwaddr start, hwaddr end, 129 int iommu_idx) 130 { 131 n->notify = fn; 132 n->notifier_flags = flags; 133 n->start = start; 134 n->end = end; 135 n->iommu_idx = iommu_idx; 136 } 137 138 /* 139 * Memory region callbacks 140 */ 141 struct MemoryRegionOps { 142 /* Read from the memory region. @addr is relative to @mr; @size is 143 * in bytes. */ 144 uint64_t (*read)(void *opaque, 145 hwaddr addr, 146 unsigned size); 147 /* Write to the memory region. @addr is relative to @mr; @size is 148 * in bytes. */ 149 void (*write)(void *opaque, 150 hwaddr addr, 151 uint64_t data, 152 unsigned size); 153 154 MemTxResult (*read_with_attrs)(void *opaque, 155 hwaddr addr, 156 uint64_t *data, 157 unsigned size, 158 MemTxAttrs attrs); 159 MemTxResult (*write_with_attrs)(void *opaque, 160 hwaddr addr, 161 uint64_t data, 162 unsigned size, 163 MemTxAttrs attrs); 164 165 enum device_endian endianness; 166 /* Guest-visible constraints: */ 167 struct { 168 /* If nonzero, specify bounds on access sizes beyond which a machine 169 * check is thrown. 170 */ 171 unsigned min_access_size; 172 unsigned max_access_size; 173 /* If true, unaligned accesses are supported. Otherwise unaligned 174 * accesses throw machine checks. 175 */ 176 bool unaligned; 177 /* 178 * If present, and returns #false, the transaction is not accepted 179 * by the device (and results in machine dependent behaviour such 180 * as a machine check exception). 181 */ 182 bool (*accepts)(void *opaque, hwaddr addr, 183 unsigned size, bool is_write, 184 MemTxAttrs attrs); 185 } valid; 186 /* Internal implementation constraints: */ 187 struct { 188 /* If nonzero, specifies the minimum size implemented. Smaller sizes 189 * will be rounded upwards and a partial result will be returned. 190 */ 191 unsigned min_access_size; 192 /* If nonzero, specifies the maximum size implemented. Larger sizes 193 * will be done as a series of accesses with smaller sizes. 194 */ 195 unsigned max_access_size; 196 /* If true, unaligned accesses are supported. Otherwise all accesses 197 * are converted to (possibly multiple) naturally aligned accesses. 198 */ 199 bool unaligned; 200 } impl; 201 }; 202 203 typedef struct MemoryRegionClass { 204 /* private */ 205 ObjectClass parent_class; 206 } MemoryRegionClass; 207 208 209 enum IOMMUMemoryRegionAttr { 210 IOMMU_ATTR_SPAPR_TCE_FD 211 }; 212 213 /** 214 * IOMMUMemoryRegionClass: 215 * 216 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION 217 * and provide an implementation of at least the @translate method here 218 * to handle requests to the memory region. Other methods are optional. 219 * 220 * The IOMMU implementation must use the IOMMU notifier infrastructure 221 * to report whenever mappings are changed, by calling 222 * memory_region_notify_iommu() (or, if necessary, by calling 223 * memory_region_notify_one() for each registered notifier). 224 * 225 * Conceptually an IOMMU provides a mapping from input address 226 * to an output TLB entry. If the IOMMU is aware of memory transaction 227 * attributes and the output TLB entry depends on the transaction 228 * attributes, we represent this using IOMMU indexes. Each index 229 * selects a particular translation table that the IOMMU has: 230 * @attrs_to_index returns the IOMMU index for a set of transaction attributes 231 * @translate takes an input address and an IOMMU index 232 * and the mapping returned can only depend on the input address and the 233 * IOMMU index. 234 * 235 * Most IOMMUs don't care about the transaction attributes and support 236 * only a single IOMMU index. A more complex IOMMU might have one index 237 * for secure transactions and one for non-secure transactions. 238 */ 239 typedef struct IOMMUMemoryRegionClass { 240 /* private */ 241 MemoryRegionClass parent_class; 242 243 /* 244 * Return a TLB entry that contains a given address. 245 * 246 * The IOMMUAccessFlags indicated via @flag are optional and may 247 * be specified as IOMMU_NONE to indicate that the caller needs 248 * the full translation information for both reads and writes. If 249 * the access flags are specified then the IOMMU implementation 250 * may use this as an optimization, to stop doing a page table 251 * walk as soon as it knows that the requested permissions are not 252 * allowed. If IOMMU_NONE is passed then the IOMMU must do the 253 * full page table walk and report the permissions in the returned 254 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not 255 * return different mappings for reads and writes.) 256 * 257 * The returned information remains valid while the caller is 258 * holding the big QEMU lock or is inside an RCU critical section; 259 * if the caller wishes to cache the mapping beyond that it must 260 * register an IOMMU notifier so it can invalidate its cached 261 * information when the IOMMU mapping changes. 262 * 263 * @iommu: the IOMMUMemoryRegion 264 * @hwaddr: address to be translated within the memory region 265 * @flag: requested access permissions 266 * @iommu_idx: IOMMU index for the translation 267 */ 268 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr, 269 IOMMUAccessFlags flag, int iommu_idx); 270 /* Returns minimum supported page size in bytes. 271 * If this method is not provided then the minimum is assumed to 272 * be TARGET_PAGE_SIZE. 273 * 274 * @iommu: the IOMMUMemoryRegion 275 */ 276 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu); 277 /* Called when IOMMU Notifier flag changes (ie when the set of 278 * events which IOMMU users are requesting notification for changes). 279 * Optional method -- need not be provided if the IOMMU does not 280 * need to know exactly which events must be notified. 281 * 282 * @iommu: the IOMMUMemoryRegion 283 * @old_flags: events which previously needed to be notified 284 * @new_flags: events which now need to be notified 285 * 286 * Returns 0 on success, or a negative errno; in particular 287 * returns -EINVAL if the new flag bitmap is not supported by the 288 * IOMMU memory region. In case of failure, the error object 289 * must be created 290 */ 291 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu, 292 IOMMUNotifierFlag old_flags, 293 IOMMUNotifierFlag new_flags, 294 Error **errp); 295 /* Called to handle memory_region_iommu_replay(). 296 * 297 * The default implementation of memory_region_iommu_replay() is to 298 * call the IOMMU translate method for every page in the address space 299 * with flag == IOMMU_NONE and then call the notifier if translate 300 * returns a valid mapping. If this method is implemented then it 301 * overrides the default behaviour, and must provide the full semantics 302 * of memory_region_iommu_replay(), by calling @notifier for every 303 * translation present in the IOMMU. 304 * 305 * Optional method -- an IOMMU only needs to provide this method 306 * if the default is inefficient or produces undesirable side effects. 307 * 308 * Note: this is not related to record-and-replay functionality. 309 */ 310 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier); 311 312 /* Get IOMMU misc attributes. This is an optional method that 313 * can be used to allow users of the IOMMU to get implementation-specific 314 * information. The IOMMU implements this method to handle calls 315 * by IOMMU users to memory_region_iommu_get_attr() by filling in 316 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that 317 * the IOMMU supports. If the method is unimplemented then 318 * memory_region_iommu_get_attr() will always return -EINVAL. 319 * 320 * @iommu: the IOMMUMemoryRegion 321 * @attr: attribute being queried 322 * @data: memory to fill in with the attribute data 323 * 324 * Returns 0 on success, or a negative errno; in particular 325 * returns -EINVAL for unrecognized or unimplemented attribute types. 326 */ 327 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr, 328 void *data); 329 330 /* Return the IOMMU index to use for a given set of transaction attributes. 331 * 332 * Optional method: if an IOMMU only supports a single IOMMU index then 333 * the default implementation of memory_region_iommu_attrs_to_index() 334 * will return 0. 335 * 336 * The indexes supported by an IOMMU must be contiguous, starting at 0. 337 * 338 * @iommu: the IOMMUMemoryRegion 339 * @attrs: memory transaction attributes 340 */ 341 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs); 342 343 /* Return the number of IOMMU indexes this IOMMU supports. 344 * 345 * Optional method: if this method is not provided, then 346 * memory_region_iommu_num_indexes() will return 1, indicating that 347 * only a single IOMMU index is supported. 348 * 349 * @iommu: the IOMMUMemoryRegion 350 */ 351 int (*num_indexes)(IOMMUMemoryRegion *iommu); 352 } IOMMUMemoryRegionClass; 353 354 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 355 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 356 357 /** MemoryRegion: 358 * 359 * A struct representing a memory region. 360 */ 361 struct MemoryRegion { 362 Object parent_obj; 363 364 /* private: */ 365 366 /* The following fields should fit in a cache line */ 367 bool romd_mode; 368 bool ram; 369 bool subpage; 370 bool readonly; /* For RAM regions */ 371 bool nonvolatile; 372 bool rom_device; 373 bool flush_coalesced_mmio; 374 bool global_locking; 375 uint8_t dirty_log_mask; 376 bool is_iommu; 377 RAMBlock *ram_block; 378 Object *owner; 379 380 const MemoryRegionOps *ops; 381 void *opaque; 382 MemoryRegion *container; 383 Int128 size; 384 hwaddr addr; 385 void (*destructor)(MemoryRegion *mr); 386 uint64_t align; 387 bool terminates; 388 bool ram_device; 389 bool enabled; 390 bool warning_printed; /* For reservations */ 391 uint8_t vga_logging_count; 392 MemoryRegion *alias; 393 hwaddr alias_offset; 394 int32_t priority; 395 QTAILQ_HEAD(, MemoryRegion) subregions; 396 QTAILQ_ENTRY(MemoryRegion) subregions_link; 397 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced; 398 const char *name; 399 unsigned ioeventfd_nb; 400 MemoryRegionIoeventfd *ioeventfds; 401 }; 402 403 struct IOMMUMemoryRegion { 404 MemoryRegion parent_obj; 405 406 QLIST_HEAD(, IOMMUNotifier) iommu_notify; 407 IOMMUNotifierFlag iommu_notify_flags; 408 }; 409 410 #define IOMMU_NOTIFIER_FOREACH(n, mr) \ 411 QLIST_FOREACH((n), &(mr)->iommu_notify, node) 412 413 /** 414 * MemoryListener: callbacks structure for updates to the physical memory map 415 * 416 * Allows a component to adjust to changes in the guest-visible memory map. 417 * Use with memory_listener_register() and memory_listener_unregister(). 418 */ 419 struct MemoryListener { 420 /** 421 * @begin: 422 * 423 * Called at the beginning of an address space update transaction. 424 * Followed by calls to #MemoryListener.region_add(), 425 * #MemoryListener.region_del(), #MemoryListener.region_nop(), 426 * #MemoryListener.log_start() and #MemoryListener.log_stop() in 427 * increasing address order. 428 * 429 * @listener: The #MemoryListener. 430 */ 431 void (*begin)(MemoryListener *listener); 432 433 /** 434 * @commit: 435 * 436 * Called at the end of an address space update transaction, 437 * after the last call to #MemoryListener.region_add(), 438 * #MemoryListener.region_del() or #MemoryListener.region_nop(), 439 * #MemoryListener.log_start() and #MemoryListener.log_stop(). 440 * 441 * @listener: The #MemoryListener. 442 */ 443 void (*commit)(MemoryListener *listener); 444 445 /** 446 * @region_add: 447 * 448 * Called during an address space update transaction, 449 * for a section of the address space that is new in this address space 450 * space since the last transaction. 451 * 452 * @listener: The #MemoryListener. 453 * @section: The new #MemoryRegionSection. 454 */ 455 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 456 457 /** 458 * @region_del: 459 * 460 * Called during an address space update transaction, 461 * for a section of the address space that has disappeared in the address 462 * space since the last transaction. 463 * 464 * @listener: The #MemoryListener. 465 * @section: The old #MemoryRegionSection. 466 */ 467 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 468 469 /** 470 * @region_nop: 471 * 472 * Called during an address space update transaction, 473 * for a section of the address space that is in the same place in the address 474 * space as in the last transaction. 475 * 476 * @listener: The #MemoryListener. 477 * @section: The #MemoryRegionSection. 478 */ 479 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 480 481 /** 482 * @log_start: 483 * 484 * Called during an address space update transaction, after 485 * one of #MemoryListener.region_add(),#MemoryListener.region_del() or 486 * #MemoryListener.region_nop(), if dirty memory logging clients have 487 * become active since the last transaction. 488 * 489 * @listener: The #MemoryListener. 490 * @section: The #MemoryRegionSection. 491 * @old: A bitmap of dirty memory logging clients that were active in 492 * the previous transaction. 493 * @new: A bitmap of dirty memory logging clients that are active in 494 * the current transaction. 495 */ 496 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 497 int old, int new); 498 499 /** 500 * @log_stop: 501 * 502 * Called during an address space update transaction, after 503 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or 504 * #MemoryListener.region_nop() and possibly after 505 * #MemoryListener.log_start(), if dirty memory logging clients have 506 * become inactive since the last transaction. 507 * 508 * @listener: The #MemoryListener. 509 * @section: The #MemoryRegionSection. 510 * @old: A bitmap of dirty memory logging clients that were active in 511 * the previous transaction. 512 * @new: A bitmap of dirty memory logging clients that are active in 513 * the current transaction. 514 */ 515 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 516 int old, int new); 517 518 /** 519 * @log_sync: 520 * 521 * Called by memory_region_snapshot_and_clear_dirty() and 522 * memory_global_dirty_log_sync(), before accessing QEMU's "official" 523 * copy of the dirty memory bitmap for a #MemoryRegionSection. 524 * 525 * @listener: The #MemoryListener. 526 * @section: The #MemoryRegionSection. 527 */ 528 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 529 530 /** 531 * @log_clear: 532 * 533 * Called before reading the dirty memory bitmap for a 534 * #MemoryRegionSection. 535 * 536 * @listener: The #MemoryListener. 537 * @section: The #MemoryRegionSection. 538 */ 539 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section); 540 541 /** 542 * @log_global_start: 543 * 544 * Called by memory_global_dirty_log_start(), which 545 * enables the %DIRTY_LOG_MIGRATION client on all memory regions in 546 * the address space. #MemoryListener.log_global_start() is also 547 * called when a #MemoryListener is added, if global dirty logging is 548 * active at that time. 549 * 550 * @listener: The #MemoryListener. 551 */ 552 void (*log_global_start)(MemoryListener *listener); 553 554 /** 555 * @log_global_stop: 556 * 557 * Called by memory_global_dirty_log_stop(), which 558 * disables the %DIRTY_LOG_MIGRATION client on all memory regions in 559 * the address space. 560 * 561 * @listener: The #MemoryListener. 562 */ 563 void (*log_global_stop)(MemoryListener *listener); 564 565 /** 566 * @log_global_after_sync: 567 * 568 * Called after reading the dirty memory bitmap 569 * for any #MemoryRegionSection. 570 * 571 * @listener: The #MemoryListener. 572 */ 573 void (*log_global_after_sync)(MemoryListener *listener); 574 575 /** 576 * @eventfd_add: 577 * 578 * Called during an address space update transaction, 579 * for a section of the address space that has had a new ioeventfd 580 * registration since the last transaction. 581 * 582 * @listener: The #MemoryListener. 583 * @section: The new #MemoryRegionSection. 584 * @match_data: The @match_data parameter for the new ioeventfd. 585 * @data: The @data parameter for the new ioeventfd. 586 * @e: The #EventNotifier parameter for the new ioeventfd. 587 */ 588 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 589 bool match_data, uint64_t data, EventNotifier *e); 590 591 /** 592 * @eventfd_del: 593 * 594 * Called during an address space update transaction, 595 * for a section of the address space that has dropped an ioeventfd 596 * registration since the last transaction. 597 * 598 * @listener: The #MemoryListener. 599 * @section: The new #MemoryRegionSection. 600 * @match_data: The @match_data parameter for the dropped ioeventfd. 601 * @data: The @data parameter for the dropped ioeventfd. 602 * @e: The #EventNotifier parameter for the dropped ioeventfd. 603 */ 604 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 605 bool match_data, uint64_t data, EventNotifier *e); 606 607 /** 608 * @coalesced_io_add: 609 * 610 * Called during an address space update transaction, 611 * for a section of the address space that has had a new coalesced 612 * MMIO range registration since the last transaction. 613 * 614 * @listener: The #MemoryListener. 615 * @section: The new #MemoryRegionSection. 616 * @addr: The starting address for the coalesced MMIO range. 617 * @len: The length of the coalesced MMIO range. 618 */ 619 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section, 620 hwaddr addr, hwaddr len); 621 622 /** 623 * @coalesced_io_del: 624 * 625 * Called during an address space update transaction, 626 * for a section of the address space that has dropped a coalesced 627 * MMIO range since the last transaction. 628 * 629 * @listener: The #MemoryListener. 630 * @section: The new #MemoryRegionSection. 631 * @addr: The starting address for the coalesced MMIO range. 632 * @len: The length of the coalesced MMIO range. 633 */ 634 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section, 635 hwaddr addr, hwaddr len); 636 /** 637 * @priority: 638 * 639 * Govern the order in which memory listeners are invoked. Lower priorities 640 * are invoked earlier for "add" or "start" callbacks, and later for "delete" 641 * or "stop" callbacks. 642 */ 643 unsigned priority; 644 645 /* private: */ 646 AddressSpace *address_space; 647 QTAILQ_ENTRY(MemoryListener) link; 648 QTAILQ_ENTRY(MemoryListener) link_as; 649 }; 650 651 /** 652 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects 653 */ 654 struct AddressSpace { 655 /* private: */ 656 struct rcu_head rcu; 657 char *name; 658 MemoryRegion *root; 659 660 /* Accessed via RCU. */ 661 struct FlatView *current_map; 662 663 int ioeventfd_nb; 664 struct MemoryRegionIoeventfd *ioeventfds; 665 QTAILQ_HEAD(, MemoryListener) listeners; 666 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 667 }; 668 669 typedef struct AddressSpaceDispatch AddressSpaceDispatch; 670 typedef struct FlatRange FlatRange; 671 672 /* Flattened global view of current active memory hierarchy. Kept in sorted 673 * order. 674 */ 675 struct FlatView { 676 struct rcu_head rcu; 677 unsigned ref; 678 FlatRange *ranges; 679 unsigned nr; 680 unsigned nr_allocated; 681 struct AddressSpaceDispatch *dispatch; 682 MemoryRegion *root; 683 }; 684 685 static inline FlatView *address_space_to_flatview(AddressSpace *as) 686 { 687 return atomic_rcu_read(&as->current_map); 688 } 689 690 691 /** 692 * MemoryRegionSection: describes a fragment of a #MemoryRegion 693 * 694 * @mr: the region, or %NULL if empty 695 * @fv: the flat view of the address space the region is mapped in 696 * @offset_within_region: the beginning of the section, relative to @mr's start 697 * @size: the size of the section; will not exceed @mr's boundaries 698 * @offset_within_address_space: the address of the first byte of the section 699 * relative to the region's address space 700 * @readonly: writes to this section are ignored 701 * @nonvolatile: this section is non-volatile 702 */ 703 struct MemoryRegionSection { 704 Int128 size; 705 MemoryRegion *mr; 706 FlatView *fv; 707 hwaddr offset_within_region; 708 hwaddr offset_within_address_space; 709 bool readonly; 710 bool nonvolatile; 711 }; 712 713 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a, 714 MemoryRegionSection *b) 715 { 716 return a->mr == b->mr && 717 a->fv == b->fv && 718 a->offset_within_region == b->offset_within_region && 719 a->offset_within_address_space == b->offset_within_address_space && 720 int128_eq(a->size, b->size) && 721 a->readonly == b->readonly && 722 a->nonvolatile == b->nonvolatile; 723 } 724 725 /** 726 * memory_region_init: Initialize a memory region 727 * 728 * The region typically acts as a container for other memory regions. Use 729 * memory_region_add_subregion() to add subregions. 730 * 731 * @mr: the #MemoryRegion to be initialized 732 * @owner: the object that tracks the region's reference count 733 * @name: used for debugging; not visible to the user or ABI 734 * @size: size of the region; any subregions beyond this size will be clipped 735 */ 736 void memory_region_init(MemoryRegion *mr, 737 struct Object *owner, 738 const char *name, 739 uint64_t size); 740 741 /** 742 * memory_region_ref: Add 1 to a memory region's reference count 743 * 744 * Whenever memory regions are accessed outside the BQL, they need to be 745 * preserved against hot-unplug. MemoryRegions actually do not have their 746 * own reference count; they piggyback on a QOM object, their "owner". 747 * This function adds a reference to the owner. 748 * 749 * All MemoryRegions must have an owner if they can disappear, even if the 750 * device they belong to operates exclusively under the BQL. This is because 751 * the region could be returned at any time by memory_region_find, and this 752 * is usually under guest control. 753 * 754 * @mr: the #MemoryRegion 755 */ 756 void memory_region_ref(MemoryRegion *mr); 757 758 /** 759 * memory_region_unref: Remove 1 to a memory region's reference count 760 * 761 * Whenever memory regions are accessed outside the BQL, they need to be 762 * preserved against hot-unplug. MemoryRegions actually do not have their 763 * own reference count; they piggyback on a QOM object, their "owner". 764 * This function removes a reference to the owner and possibly destroys it. 765 * 766 * @mr: the #MemoryRegion 767 */ 768 void memory_region_unref(MemoryRegion *mr); 769 770 /** 771 * memory_region_init_io: Initialize an I/O memory region. 772 * 773 * Accesses into the region will cause the callbacks in @ops to be called. 774 * if @size is nonzero, subregions will be clipped to @size. 775 * 776 * @mr: the #MemoryRegion to be initialized. 777 * @owner: the object that tracks the region's reference count 778 * @ops: a structure containing read and write callbacks to be used when 779 * I/O is performed on the region. 780 * @opaque: passed to the read and write callbacks of the @ops structure. 781 * @name: used for debugging; not visible to the user or ABI 782 * @size: size of the region. 783 */ 784 void memory_region_init_io(MemoryRegion *mr, 785 struct Object *owner, 786 const MemoryRegionOps *ops, 787 void *opaque, 788 const char *name, 789 uint64_t size); 790 791 /** 792 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses 793 * into the region will modify memory 794 * directly. 795 * 796 * @mr: the #MemoryRegion to be initialized. 797 * @owner: the object that tracks the region's reference count 798 * @name: Region name, becomes part of RAMBlock name used in migration stream 799 * must be unique within any device 800 * @size: size of the region. 801 * @errp: pointer to Error*, to store an error if it happens. 802 * 803 * Note that this function does not do anything to cause the data in the 804 * RAM memory region to be migrated; that is the responsibility of the caller. 805 */ 806 void memory_region_init_ram_nomigrate(MemoryRegion *mr, 807 struct Object *owner, 808 const char *name, 809 uint64_t size, 810 Error **errp); 811 812 /** 813 * memory_region_init_ram_shared_nomigrate: Initialize RAM memory region. 814 * Accesses into the region will 815 * modify memory directly. 816 * 817 * @mr: the #MemoryRegion to be initialized. 818 * @owner: the object that tracks the region's reference count 819 * @name: Region name, becomes part of RAMBlock name used in migration stream 820 * must be unique within any device 821 * @size: size of the region. 822 * @share: allow remapping RAM to different addresses 823 * @errp: pointer to Error*, to store an error if it happens. 824 * 825 * Note that this function is similar to memory_region_init_ram_nomigrate. 826 * The only difference is part of the RAM region can be remapped. 827 */ 828 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr, 829 struct Object *owner, 830 const char *name, 831 uint64_t size, 832 bool share, 833 Error **errp); 834 835 /** 836 * memory_region_init_resizeable_ram: Initialize memory region with resizeable 837 * RAM. Accesses into the region will 838 * modify memory directly. Only an initial 839 * portion of this RAM is actually used. 840 * The used size can change across reboots. 841 * 842 * @mr: the #MemoryRegion to be initialized. 843 * @owner: the object that tracks the region's reference count 844 * @name: Region name, becomes part of RAMBlock name used in migration stream 845 * must be unique within any device 846 * @size: used size of the region. 847 * @max_size: max size of the region. 848 * @resized: callback to notify owner about used size change. 849 * @errp: pointer to Error*, to store an error if it happens. 850 * 851 * Note that this function does not do anything to cause the data in the 852 * RAM memory region to be migrated; that is the responsibility of the caller. 853 */ 854 void memory_region_init_resizeable_ram(MemoryRegion *mr, 855 struct Object *owner, 856 const char *name, 857 uint64_t size, 858 uint64_t max_size, 859 void (*resized)(const char*, 860 uint64_t length, 861 void *host), 862 Error **errp); 863 #ifdef CONFIG_POSIX 864 865 /** 866 * memory_region_init_ram_from_file: Initialize RAM memory region with a 867 * mmap-ed backend. 868 * 869 * @mr: the #MemoryRegion to be initialized. 870 * @owner: the object that tracks the region's reference count 871 * @name: Region name, becomes part of RAMBlock name used in migration stream 872 * must be unique within any device 873 * @size: size of the region. 874 * @align: alignment of the region base address; if 0, the default alignment 875 * (getpagesize()) will be used. 876 * @ram_flags: Memory region features: 877 * - RAM_SHARED: memory must be mmaped with the MAP_SHARED flag 878 * - RAM_PMEM: the memory is persistent memory 879 * Other bits are ignored now. 880 * @path: the path in which to allocate the RAM. 881 * @errp: pointer to Error*, to store an error if it happens. 882 * 883 * Note that this function does not do anything to cause the data in the 884 * RAM memory region to be migrated; that is the responsibility of the caller. 885 */ 886 void memory_region_init_ram_from_file(MemoryRegion *mr, 887 struct Object *owner, 888 const char *name, 889 uint64_t size, 890 uint64_t align, 891 uint32_t ram_flags, 892 const char *path, 893 Error **errp); 894 895 /** 896 * memory_region_init_ram_from_fd: Initialize RAM memory region with a 897 * mmap-ed backend. 898 * 899 * @mr: the #MemoryRegion to be initialized. 900 * @owner: the object that tracks the region's reference count 901 * @name: the name of the region. 902 * @size: size of the region. 903 * @share: %true if memory must be mmaped with the MAP_SHARED flag 904 * @fd: the fd to mmap. 905 * @errp: pointer to Error*, to store an error if it happens. 906 * 907 * Note that this function does not do anything to cause the data in the 908 * RAM memory region to be migrated; that is the responsibility of the caller. 909 */ 910 void memory_region_init_ram_from_fd(MemoryRegion *mr, 911 struct Object *owner, 912 const char *name, 913 uint64_t size, 914 bool share, 915 int fd, 916 Error **errp); 917 #endif 918 919 /** 920 * memory_region_init_ram_ptr: Initialize RAM memory region from a 921 * user-provided pointer. Accesses into the 922 * region will modify memory directly. 923 * 924 * @mr: the #MemoryRegion to be initialized. 925 * @owner: the object that tracks the region's reference count 926 * @name: Region name, becomes part of RAMBlock name used in migration stream 927 * must be unique within any device 928 * @size: size of the region. 929 * @ptr: memory to be mapped; must contain at least @size bytes. 930 * 931 * Note that this function does not do anything to cause the data in the 932 * RAM memory region to be migrated; that is the responsibility of the caller. 933 */ 934 void memory_region_init_ram_ptr(MemoryRegion *mr, 935 struct Object *owner, 936 const char *name, 937 uint64_t size, 938 void *ptr); 939 940 /** 941 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from 942 * a user-provided pointer. 943 * 944 * A RAM device represents a mapping to a physical device, such as to a PCI 945 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped 946 * into the VM address space and access to the region will modify memory 947 * directly. However, the memory region should not be included in a memory 948 * dump (device may not be enabled/mapped at the time of the dump), and 949 * operations incompatible with manipulating MMIO should be avoided. Replaces 950 * skip_dump flag. 951 * 952 * @mr: the #MemoryRegion to be initialized. 953 * @owner: the object that tracks the region's reference count 954 * @name: the name of the region. 955 * @size: size of the region. 956 * @ptr: memory to be mapped; must contain at least @size bytes. 957 * 958 * Note that this function does not do anything to cause the data in the 959 * RAM memory region to be migrated; that is the responsibility of the caller. 960 * (For RAM device memory regions, migrating the contents rarely makes sense.) 961 */ 962 void memory_region_init_ram_device_ptr(MemoryRegion *mr, 963 struct Object *owner, 964 const char *name, 965 uint64_t size, 966 void *ptr); 967 968 /** 969 * memory_region_init_alias: Initialize a memory region that aliases all or a 970 * part of another memory region. 971 * 972 * @mr: the #MemoryRegion to be initialized. 973 * @owner: the object that tracks the region's reference count 974 * @name: used for debugging; not visible to the user or ABI 975 * @orig: the region to be referenced; @mr will be equivalent to 976 * @orig between @offset and @offset + @size - 1. 977 * @offset: start of the section in @orig to be referenced. 978 * @size: size of the region. 979 */ 980 void memory_region_init_alias(MemoryRegion *mr, 981 struct Object *owner, 982 const char *name, 983 MemoryRegion *orig, 984 hwaddr offset, 985 uint64_t size); 986 987 /** 988 * memory_region_init_rom_nomigrate: Initialize a ROM memory region. 989 * 990 * This has the same effect as calling memory_region_init_ram_nomigrate() 991 * and then marking the resulting region read-only with 992 * memory_region_set_readonly(). 993 * 994 * Note that this function does not do anything to cause the data in the 995 * RAM side of the memory region to be migrated; that is the responsibility 996 * of the caller. 997 * 998 * @mr: the #MemoryRegion to be initialized. 999 * @owner: the object that tracks the region's reference count 1000 * @name: Region name, becomes part of RAMBlock name used in migration stream 1001 * must be unique within any device 1002 * @size: size of the region. 1003 * @errp: pointer to Error*, to store an error if it happens. 1004 */ 1005 void memory_region_init_rom_nomigrate(MemoryRegion *mr, 1006 struct Object *owner, 1007 const char *name, 1008 uint64_t size, 1009 Error **errp); 1010 1011 /** 1012 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region. 1013 * Writes are handled via callbacks. 1014 * 1015 * Note that this function does not do anything to cause the data in the 1016 * RAM side of the memory region to be migrated; that is the responsibility 1017 * of the caller. 1018 * 1019 * @mr: the #MemoryRegion to be initialized. 1020 * @owner: the object that tracks the region's reference count 1021 * @ops: callbacks for write access handling (must not be NULL). 1022 * @opaque: passed to the read and write callbacks of the @ops structure. 1023 * @name: Region name, becomes part of RAMBlock name used in migration stream 1024 * must be unique within any device 1025 * @size: size of the region. 1026 * @errp: pointer to Error*, to store an error if it happens. 1027 */ 1028 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr, 1029 struct Object *owner, 1030 const MemoryRegionOps *ops, 1031 void *opaque, 1032 const char *name, 1033 uint64_t size, 1034 Error **errp); 1035 1036 /** 1037 * memory_region_init_iommu: Initialize a memory region of a custom type 1038 * that translates addresses 1039 * 1040 * An IOMMU region translates addresses and forwards accesses to a target 1041 * memory region. 1042 * 1043 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION. 1044 * @_iommu_mr should be a pointer to enough memory for an instance of 1045 * that subclass, @instance_size is the size of that subclass, and 1046 * @mrtypename is its name. This function will initialize @_iommu_mr as an 1047 * instance of the subclass, and its methods will then be called to handle 1048 * accesses to the memory region. See the documentation of 1049 * #IOMMUMemoryRegionClass for further details. 1050 * 1051 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized 1052 * @instance_size: the IOMMUMemoryRegion subclass instance size 1053 * @mrtypename: the type name of the #IOMMUMemoryRegion 1054 * @owner: the object that tracks the region's reference count 1055 * @name: used for debugging; not visible to the user or ABI 1056 * @size: size of the region. 1057 */ 1058 void memory_region_init_iommu(void *_iommu_mr, 1059 size_t instance_size, 1060 const char *mrtypename, 1061 Object *owner, 1062 const char *name, 1063 uint64_t size); 1064 1065 /** 1066 * memory_region_init_ram - Initialize RAM memory region. Accesses into the 1067 * region will modify memory directly. 1068 * 1069 * @mr: the #MemoryRegion to be initialized 1070 * @owner: the object that tracks the region's reference count (must be 1071 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL) 1072 * @name: name of the memory region 1073 * @size: size of the region in bytes 1074 * @errp: pointer to Error*, to store an error if it happens. 1075 * 1076 * This function allocates RAM for a board model or device, and 1077 * arranges for it to be migrated (by calling vmstate_register_ram() 1078 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1079 * @owner is NULL). 1080 * 1081 * TODO: Currently we restrict @owner to being either NULL (for 1082 * global RAM regions with no owner) or devices, so that we can 1083 * give the RAM block a unique name for migration purposes. 1084 * We should lift this restriction and allow arbitrary Objects. 1085 * If you pass a non-NULL non-device @owner then we will assert. 1086 */ 1087 void memory_region_init_ram(MemoryRegion *mr, 1088 struct Object *owner, 1089 const char *name, 1090 uint64_t size, 1091 Error **errp); 1092 1093 /** 1094 * memory_region_init_rom: Initialize a ROM memory region. 1095 * 1096 * This has the same effect as calling memory_region_init_ram() 1097 * and then marking the resulting region read-only with 1098 * memory_region_set_readonly(). This includes arranging for the 1099 * contents to be migrated. 1100 * 1101 * TODO: Currently we restrict @owner to being either NULL (for 1102 * global RAM regions with no owner) or devices, so that we can 1103 * give the RAM block a unique name for migration purposes. 1104 * We should lift this restriction and allow arbitrary Objects. 1105 * If you pass a non-NULL non-device @owner then we will assert. 1106 * 1107 * @mr: the #MemoryRegion to be initialized. 1108 * @owner: the object that tracks the region's reference count 1109 * @name: Region name, becomes part of RAMBlock name used in migration stream 1110 * must be unique within any device 1111 * @size: size of the region. 1112 * @errp: pointer to Error*, to store an error if it happens. 1113 */ 1114 void memory_region_init_rom(MemoryRegion *mr, 1115 struct Object *owner, 1116 const char *name, 1117 uint64_t size, 1118 Error **errp); 1119 1120 /** 1121 * memory_region_init_rom_device: Initialize a ROM memory region. 1122 * Writes are handled via callbacks. 1123 * 1124 * This function initializes a memory region backed by RAM for reads 1125 * and callbacks for writes, and arranges for the RAM backing to 1126 * be migrated (by calling vmstate_register_ram() 1127 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1128 * @owner is NULL). 1129 * 1130 * TODO: Currently we restrict @owner to being either NULL (for 1131 * global RAM regions with no owner) or devices, so that we can 1132 * give the RAM block a unique name for migration purposes. 1133 * We should lift this restriction and allow arbitrary Objects. 1134 * If you pass a non-NULL non-device @owner then we will assert. 1135 * 1136 * @mr: the #MemoryRegion to be initialized. 1137 * @owner: the object that tracks the region's reference count 1138 * @ops: callbacks for write access handling (must not be NULL). 1139 * @opaque: passed to the read and write callbacks of the @ops structure. 1140 * @name: Region name, becomes part of RAMBlock name used in migration stream 1141 * must be unique within any device 1142 * @size: size of the region. 1143 * @errp: pointer to Error*, to store an error if it happens. 1144 */ 1145 void memory_region_init_rom_device(MemoryRegion *mr, 1146 struct Object *owner, 1147 const MemoryRegionOps *ops, 1148 void *opaque, 1149 const char *name, 1150 uint64_t size, 1151 Error **errp); 1152 1153 1154 /** 1155 * memory_region_owner: get a memory region's owner. 1156 * 1157 * @mr: the memory region being queried. 1158 */ 1159 struct Object *memory_region_owner(MemoryRegion *mr); 1160 1161 /** 1162 * memory_region_size: get a memory region's size. 1163 * 1164 * @mr: the memory region being queried. 1165 */ 1166 uint64_t memory_region_size(MemoryRegion *mr); 1167 1168 /** 1169 * memory_region_is_ram: check whether a memory region is random access 1170 * 1171 * Returns %true if a memory region is random access. 1172 * 1173 * @mr: the memory region being queried 1174 */ 1175 static inline bool memory_region_is_ram(MemoryRegion *mr) 1176 { 1177 return mr->ram; 1178 } 1179 1180 /** 1181 * memory_region_is_ram_device: check whether a memory region is a ram device 1182 * 1183 * Returns %true if a memory region is a device backed ram region 1184 * 1185 * @mr: the memory region being queried 1186 */ 1187 bool memory_region_is_ram_device(MemoryRegion *mr); 1188 1189 /** 1190 * memory_region_is_romd: check whether a memory region is in ROMD mode 1191 * 1192 * Returns %true if a memory region is a ROM device and currently set to allow 1193 * direct reads. 1194 * 1195 * @mr: the memory region being queried 1196 */ 1197 static inline bool memory_region_is_romd(MemoryRegion *mr) 1198 { 1199 return mr->rom_device && mr->romd_mode; 1200 } 1201 1202 /** 1203 * memory_region_get_iommu: check whether a memory region is an iommu 1204 * 1205 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu, 1206 * otherwise NULL. 1207 * 1208 * @mr: the memory region being queried 1209 */ 1210 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr) 1211 { 1212 if (mr->alias) { 1213 return memory_region_get_iommu(mr->alias); 1214 } 1215 if (mr->is_iommu) { 1216 return (IOMMUMemoryRegion *) mr; 1217 } 1218 return NULL; 1219 } 1220 1221 /** 1222 * memory_region_get_iommu_class_nocheck: returns iommu memory region class 1223 * if an iommu or NULL if not 1224 * 1225 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu, 1226 * otherwise NULL. This is fast path avoiding QOM checking, use with caution. 1227 * 1228 * @iommu_mr: the memory region being queried 1229 */ 1230 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck( 1231 IOMMUMemoryRegion *iommu_mr) 1232 { 1233 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class); 1234 } 1235 1236 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL) 1237 1238 /** 1239 * memory_region_iommu_get_min_page_size: get minimum supported page size 1240 * for an iommu 1241 * 1242 * Returns minimum supported page size for an iommu. 1243 * 1244 * @iommu_mr: the memory region being queried 1245 */ 1246 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr); 1247 1248 /** 1249 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 1250 * 1251 * The notification type will be decided by entry.perm bits: 1252 * 1253 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE. 1254 * - For MAP (newly added entry) notifies: set entry.perm to the 1255 * permission of the page (which is definitely !IOMMU_NONE). 1256 * 1257 * Note: for any IOMMU implementation, an in-place mapping change 1258 * should be notified with an UNMAP followed by a MAP. 1259 * 1260 * @iommu_mr: the memory region that was changed 1261 * @iommu_idx: the IOMMU index for the translation table which has changed 1262 * @entry: the new entry in the IOMMU translation table. The entry 1263 * replaces all old entries for the same virtual I/O address range. 1264 * Deleted entries have .@perm == 0. 1265 */ 1266 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr, 1267 int iommu_idx, 1268 IOMMUTLBEntry entry); 1269 1270 /** 1271 * memory_region_notify_one: notify a change in an IOMMU translation 1272 * entry to a single notifier 1273 * 1274 * This works just like memory_region_notify_iommu(), but it only 1275 * notifies a specific notifier, not all of them. 1276 * 1277 * @notifier: the notifier to be notified 1278 * @entry: the new entry in the IOMMU translation table. The entry 1279 * replaces all old entries for the same virtual I/O address range. 1280 * Deleted entries have .@perm == 0. 1281 */ 1282 void memory_region_notify_one(IOMMUNotifier *notifier, 1283 IOMMUTLBEntry *entry); 1284 1285 /** 1286 * memory_region_register_iommu_notifier: register a notifier for changes to 1287 * IOMMU translation entries. 1288 * 1289 * Returns 0 on success, or a negative errno otherwise. In particular, 1290 * -EINVAL indicates that at least one of the attributes of the notifier 1291 * is not supported (flag/range) by the IOMMU memory region. In case of error 1292 * the error object must be created. 1293 * 1294 * @mr: the memory region to observe 1295 * @n: the IOMMUNotifier to be added; the notify callback receives a 1296 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer 1297 * ceases to be valid on exit from the notifier. 1298 * @errp: pointer to Error*, to store an error if it happens. 1299 */ 1300 int memory_region_register_iommu_notifier(MemoryRegion *mr, 1301 IOMMUNotifier *n, Error **errp); 1302 1303 /** 1304 * memory_region_iommu_replay: replay existing IOMMU translations to 1305 * a notifier with the minimum page granularity returned by 1306 * mr->iommu_ops->get_page_size(). 1307 * 1308 * Note: this is not related to record-and-replay functionality. 1309 * 1310 * @iommu_mr: the memory region to observe 1311 * @n: the notifier to which to replay iommu mappings 1312 */ 1313 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n); 1314 1315 /** 1316 * memory_region_unregister_iommu_notifier: unregister a notifier for 1317 * changes to IOMMU translation entries. 1318 * 1319 * @mr: the memory region which was observed and for which notity_stopped() 1320 * needs to be called 1321 * @n: the notifier to be removed. 1322 */ 1323 void memory_region_unregister_iommu_notifier(MemoryRegion *mr, 1324 IOMMUNotifier *n); 1325 1326 /** 1327 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is 1328 * defined on the IOMMU. 1329 * 1330 * Returns 0 on success, or a negative errno otherwise. In particular, 1331 * -EINVAL indicates that the IOMMU does not support the requested 1332 * attribute. 1333 * 1334 * @iommu_mr: the memory region 1335 * @attr: the requested attribute 1336 * @data: a pointer to the requested attribute data 1337 */ 1338 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr, 1339 enum IOMMUMemoryRegionAttr attr, 1340 void *data); 1341 1342 /** 1343 * memory_region_iommu_attrs_to_index: return the IOMMU index to 1344 * use for translations with the given memory transaction attributes. 1345 * 1346 * @iommu_mr: the memory region 1347 * @attrs: the memory transaction attributes 1348 */ 1349 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr, 1350 MemTxAttrs attrs); 1351 1352 /** 1353 * memory_region_iommu_num_indexes: return the total number of IOMMU 1354 * indexes that this IOMMU supports. 1355 * 1356 * @iommu_mr: the memory region 1357 */ 1358 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr); 1359 1360 /** 1361 * memory_region_name: get a memory region's name 1362 * 1363 * Returns the string that was used to initialize the memory region. 1364 * 1365 * @mr: the memory region being queried 1366 */ 1367 const char *memory_region_name(const MemoryRegion *mr); 1368 1369 /** 1370 * memory_region_is_logging: return whether a memory region is logging writes 1371 * 1372 * Returns %true if the memory region is logging writes for the given client 1373 * 1374 * @mr: the memory region being queried 1375 * @client: the client being queried 1376 */ 1377 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 1378 1379 /** 1380 * memory_region_get_dirty_log_mask: return the clients for which a 1381 * memory region is logging writes. 1382 * 1383 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 1384 * are the bit indices. 1385 * 1386 * @mr: the memory region being queried 1387 */ 1388 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 1389 1390 /** 1391 * memory_region_is_rom: check whether a memory region is ROM 1392 * 1393 * Returns %true if a memory region is read-only memory. 1394 * 1395 * @mr: the memory region being queried 1396 */ 1397 static inline bool memory_region_is_rom(MemoryRegion *mr) 1398 { 1399 return mr->ram && mr->readonly; 1400 } 1401 1402 /** 1403 * memory_region_is_nonvolatile: check whether a memory region is non-volatile 1404 * 1405 * Returns %true is a memory region is non-volatile memory. 1406 * 1407 * @mr: the memory region being queried 1408 */ 1409 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr) 1410 { 1411 return mr->nonvolatile; 1412 } 1413 1414 /** 1415 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 1416 * 1417 * Returns a file descriptor backing a file-based RAM memory region, 1418 * or -1 if the region is not a file-based RAM memory region. 1419 * 1420 * @mr: the RAM or alias memory region being queried. 1421 */ 1422 int memory_region_get_fd(MemoryRegion *mr); 1423 1424 /** 1425 * memory_region_from_host: Convert a pointer into a RAM memory region 1426 * and an offset within it. 1427 * 1428 * Given a host pointer inside a RAM memory region (created with 1429 * memory_region_init_ram() or memory_region_init_ram_ptr()), return 1430 * the MemoryRegion and the offset within it. 1431 * 1432 * Use with care; by the time this function returns, the returned pointer is 1433 * not protected by RCU anymore. If the caller is not within an RCU critical 1434 * section and does not hold the iothread lock, it must have other means of 1435 * protecting the pointer, such as a reference to the region that includes 1436 * the incoming ram_addr_t. 1437 * 1438 * @ptr: the host pointer to be converted 1439 * @offset: the offset within memory region 1440 */ 1441 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset); 1442 1443 /** 1444 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 1445 * 1446 * Returns a host pointer to a RAM memory region (created with 1447 * memory_region_init_ram() or memory_region_init_ram_ptr()). 1448 * 1449 * Use with care; by the time this function returns, the returned pointer is 1450 * not protected by RCU anymore. If the caller is not within an RCU critical 1451 * section and does not hold the iothread lock, it must have other means of 1452 * protecting the pointer, such as a reference to the region that includes 1453 * the incoming ram_addr_t. 1454 * 1455 * @mr: the memory region being queried. 1456 */ 1457 void *memory_region_get_ram_ptr(MemoryRegion *mr); 1458 1459 /* memory_region_ram_resize: Resize a RAM region. 1460 * 1461 * Only legal before guest might have detected the memory size: e.g. on 1462 * incoming migration, or right after reset. 1463 * 1464 * @mr: a memory region created with @memory_region_init_resizeable_ram. 1465 * @newsize: the new size the region 1466 * @errp: pointer to Error*, to store an error if it happens. 1467 */ 1468 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 1469 Error **errp); 1470 1471 /** 1472 * memory_region_msync: Synchronize selected address range of 1473 * a memory mapped region 1474 * 1475 * @mr: the memory region to be msync 1476 * @addr: the initial address of the range to be sync 1477 * @size: the size of the range to be sync 1478 */ 1479 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size); 1480 1481 /** 1482 * memory_region_writeback: Trigger cache writeback for 1483 * selected address range 1484 * 1485 * @mr: the memory region to be updated 1486 * @addr: the initial address of the range to be written back 1487 * @size: the size of the range to be written back 1488 */ 1489 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size); 1490 1491 /** 1492 * memory_region_set_log: Turn dirty logging on or off for a region. 1493 * 1494 * Turns dirty logging on or off for a specified client (display, migration). 1495 * Only meaningful for RAM regions. 1496 * 1497 * @mr: the memory region being updated. 1498 * @log: whether dirty logging is to be enabled or disabled. 1499 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 1500 */ 1501 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 1502 1503 /** 1504 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 1505 * 1506 * Marks a range of bytes as dirty, after it has been dirtied outside 1507 * guest code. 1508 * 1509 * @mr: the memory region being dirtied. 1510 * @addr: the address (relative to the start of the region) being dirtied. 1511 * @size: size of the range being dirtied. 1512 */ 1513 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 1514 hwaddr size); 1515 1516 /** 1517 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range 1518 * 1519 * This function is called when the caller wants to clear the remote 1520 * dirty bitmap of a memory range within the memory region. This can 1521 * be used by e.g. KVM to manually clear dirty log when 1522 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host 1523 * kernel. 1524 * 1525 * @mr: the memory region to clear the dirty log upon 1526 * @start: start address offset within the memory region 1527 * @len: length of the memory region to clear dirty bitmap 1528 */ 1529 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start, 1530 hwaddr len); 1531 1532 /** 1533 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty 1534 * bitmap and clear it. 1535 * 1536 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and 1537 * returns the snapshot. The snapshot can then be used to query dirty 1538 * status, using memory_region_snapshot_get_dirty. Snapshotting allows 1539 * querying the same page multiple times, which is especially useful for 1540 * display updates where the scanlines often are not page aligned. 1541 * 1542 * The dirty bitmap region which gets copyed into the snapshot (and 1543 * cleared afterwards) can be larger than requested. The boundaries 1544 * are rounded up/down so complete bitmap longs (covering 64 pages on 1545 * 64bit hosts) can be copied over into the bitmap snapshot. Which 1546 * isn't a problem for display updates as the extra pages are outside 1547 * the visible area, and in case the visible area changes a full 1548 * display redraw is due anyway. Should other use cases for this 1549 * function emerge we might have to revisit this implementation 1550 * detail. 1551 * 1552 * Use g_free to release DirtyBitmapSnapshot. 1553 * 1554 * @mr: the memory region being queried. 1555 * @addr: the address (relative to the start of the region) being queried. 1556 * @size: the size of the range being queried. 1557 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA. 1558 */ 1559 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr, 1560 hwaddr addr, 1561 hwaddr size, 1562 unsigned client); 1563 1564 /** 1565 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty 1566 * in the specified dirty bitmap snapshot. 1567 * 1568 * @mr: the memory region being queried. 1569 * @snap: the dirty bitmap snapshot 1570 * @addr: the address (relative to the start of the region) being queried. 1571 * @size: the size of the range being queried. 1572 */ 1573 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, 1574 DirtyBitmapSnapshot *snap, 1575 hwaddr addr, hwaddr size); 1576 1577 /** 1578 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 1579 * client. 1580 * 1581 * Marks a range of pages as no longer dirty. 1582 * 1583 * @mr: the region being updated. 1584 * @addr: the start of the subrange being cleaned. 1585 * @size: the size of the subrange being cleaned. 1586 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 1587 * %DIRTY_MEMORY_VGA. 1588 */ 1589 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 1590 hwaddr size, unsigned client); 1591 1592 /** 1593 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate 1594 * TBs (for self-modifying code). 1595 * 1596 * The MemoryRegionOps->write() callback of a ROM device must use this function 1597 * to mark byte ranges that have been modified internally, such as by directly 1598 * accessing the memory returned by memory_region_get_ram_ptr(). 1599 * 1600 * This function marks the range dirty and invalidates TBs so that TCG can 1601 * detect self-modifying code. 1602 * 1603 * @mr: the region being flushed. 1604 * @addr: the start, relative to the start of the region, of the range being 1605 * flushed. 1606 * @size: the size, in bytes, of the range being flushed. 1607 */ 1608 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size); 1609 1610 /** 1611 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 1612 * 1613 * Allows a memory region to be marked as read-only (turning it into a ROM). 1614 * only useful on RAM regions. 1615 * 1616 * @mr: the region being updated. 1617 * @readonly: whether rhe region is to be ROM or RAM. 1618 */ 1619 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 1620 1621 /** 1622 * memory_region_set_nonvolatile: Turn a memory region non-volatile 1623 * 1624 * Allows a memory region to be marked as non-volatile. 1625 * only useful on RAM regions. 1626 * 1627 * @mr: the region being updated. 1628 * @nonvolatile: whether rhe region is to be non-volatile. 1629 */ 1630 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile); 1631 1632 /** 1633 * memory_region_rom_device_set_romd: enable/disable ROMD mode 1634 * 1635 * Allows a ROM device (initialized with memory_region_init_rom_device() to 1636 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 1637 * device is mapped to guest memory and satisfies read access directly. 1638 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 1639 * Writes are always handled by the #MemoryRegion.write function. 1640 * 1641 * @mr: the memory region to be updated 1642 * @romd_mode: %true to put the region into ROMD mode 1643 */ 1644 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 1645 1646 /** 1647 * memory_region_set_coalescing: Enable memory coalescing for the region. 1648 * 1649 * Enabled writes to a region to be queued for later processing. MMIO ->write 1650 * callbacks may be delayed until a non-coalesced MMIO is issued. 1651 * Only useful for IO regions. Roughly similar to write-combining hardware. 1652 * 1653 * @mr: the memory region to be write coalesced 1654 */ 1655 void memory_region_set_coalescing(MemoryRegion *mr); 1656 1657 /** 1658 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 1659 * a region. 1660 * 1661 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 1662 * Multiple calls can be issued coalesced disjoint ranges. 1663 * 1664 * @mr: the memory region to be updated. 1665 * @offset: the start of the range within the region to be coalesced. 1666 * @size: the size of the subrange to be coalesced. 1667 */ 1668 void memory_region_add_coalescing(MemoryRegion *mr, 1669 hwaddr offset, 1670 uint64_t size); 1671 1672 /** 1673 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 1674 * 1675 * Disables any coalescing caused by memory_region_set_coalescing() or 1676 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 1677 * hardware. 1678 * 1679 * @mr: the memory region to be updated. 1680 */ 1681 void memory_region_clear_coalescing(MemoryRegion *mr); 1682 1683 /** 1684 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 1685 * accesses. 1686 * 1687 * Ensure that pending coalesced MMIO request are flushed before the memory 1688 * region is accessed. This property is automatically enabled for all regions 1689 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 1690 * 1691 * @mr: the memory region to be updated. 1692 */ 1693 void memory_region_set_flush_coalesced(MemoryRegion *mr); 1694 1695 /** 1696 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 1697 * accesses. 1698 * 1699 * Clear the automatic coalesced MMIO flushing enabled via 1700 * memory_region_set_flush_coalesced. Note that this service has no effect on 1701 * memory regions that have MMIO coalescing enabled for themselves. For them, 1702 * automatic flushing will stop once coalescing is disabled. 1703 * 1704 * @mr: the memory region to be updated. 1705 */ 1706 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 1707 1708 /** 1709 * memory_region_clear_global_locking: Declares that access processing does 1710 * not depend on the QEMU global lock. 1711 * 1712 * By clearing this property, accesses to the memory region will be processed 1713 * outside of QEMU's global lock (unless the lock is held on when issuing the 1714 * access request). In this case, the device model implementing the access 1715 * handlers is responsible for synchronization of concurrency. 1716 * 1717 * @mr: the memory region to be updated. 1718 */ 1719 void memory_region_clear_global_locking(MemoryRegion *mr); 1720 1721 /** 1722 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 1723 * is written to a location. 1724 * 1725 * Marks a word in an IO region (initialized with memory_region_init_io()) 1726 * as a trigger for an eventfd event. The I/O callback will not be called. 1727 * The caller must be prepared to handle failure (that is, take the required 1728 * action if the callback _is_ called). 1729 * 1730 * @mr: the memory region being updated. 1731 * @addr: the address within @mr that is to be monitored 1732 * @size: the size of the access to trigger the eventfd 1733 * @match_data: whether to match against @data, instead of just @addr 1734 * @data: the data to match against the guest write 1735 * @e: event notifier to be triggered when @addr, @size, and @data all match. 1736 **/ 1737 void memory_region_add_eventfd(MemoryRegion *mr, 1738 hwaddr addr, 1739 unsigned size, 1740 bool match_data, 1741 uint64_t data, 1742 EventNotifier *e); 1743 1744 /** 1745 * memory_region_del_eventfd: Cancel an eventfd. 1746 * 1747 * Cancels an eventfd trigger requested by a previous 1748 * memory_region_add_eventfd() call. 1749 * 1750 * @mr: the memory region being updated. 1751 * @addr: the address within @mr that is to be monitored 1752 * @size: the size of the access to trigger the eventfd 1753 * @match_data: whether to match against @data, instead of just @addr 1754 * @data: the data to match against the guest write 1755 * @e: event notifier to be triggered when @addr, @size, and @data all match. 1756 */ 1757 void memory_region_del_eventfd(MemoryRegion *mr, 1758 hwaddr addr, 1759 unsigned size, 1760 bool match_data, 1761 uint64_t data, 1762 EventNotifier *e); 1763 1764 /** 1765 * memory_region_add_subregion: Add a subregion to a container. 1766 * 1767 * Adds a subregion at @offset. The subregion may not overlap with other 1768 * subregions (except for those explicitly marked as overlapping). A region 1769 * may only be added once as a subregion (unless removed with 1770 * memory_region_del_subregion()); use memory_region_init_alias() if you 1771 * want a region to be a subregion in multiple locations. 1772 * 1773 * @mr: the region to contain the new subregion; must be a container 1774 * initialized with memory_region_init(). 1775 * @offset: the offset relative to @mr where @subregion is added. 1776 * @subregion: the subregion to be added. 1777 */ 1778 void memory_region_add_subregion(MemoryRegion *mr, 1779 hwaddr offset, 1780 MemoryRegion *subregion); 1781 /** 1782 * memory_region_add_subregion_overlap: Add a subregion to a container 1783 * with overlap. 1784 * 1785 * Adds a subregion at @offset. The subregion may overlap with other 1786 * subregions. Conflicts are resolved by having a higher @priority hide a 1787 * lower @priority. Subregions without priority are taken as @priority 0. 1788 * A region may only be added once as a subregion (unless removed with 1789 * memory_region_del_subregion()); use memory_region_init_alias() if you 1790 * want a region to be a subregion in multiple locations. 1791 * 1792 * @mr: the region to contain the new subregion; must be a container 1793 * initialized with memory_region_init(). 1794 * @offset: the offset relative to @mr where @subregion is added. 1795 * @subregion: the subregion to be added. 1796 * @priority: used for resolving overlaps; highest priority wins. 1797 */ 1798 void memory_region_add_subregion_overlap(MemoryRegion *mr, 1799 hwaddr offset, 1800 MemoryRegion *subregion, 1801 int priority); 1802 1803 /** 1804 * memory_region_get_ram_addr: Get the ram address associated with a memory 1805 * region 1806 * 1807 * @mr: the region to be queried 1808 */ 1809 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 1810 1811 uint64_t memory_region_get_alignment(const MemoryRegion *mr); 1812 /** 1813 * memory_region_del_subregion: Remove a subregion. 1814 * 1815 * Removes a subregion from its container. 1816 * 1817 * @mr: the container to be updated. 1818 * @subregion: the region being removed; must be a current subregion of @mr. 1819 */ 1820 void memory_region_del_subregion(MemoryRegion *mr, 1821 MemoryRegion *subregion); 1822 1823 /* 1824 * memory_region_set_enabled: dynamically enable or disable a region 1825 * 1826 * Enables or disables a memory region. A disabled memory region 1827 * ignores all accesses to itself and its subregions. It does not 1828 * obscure sibling subregions with lower priority - it simply behaves as 1829 * if it was removed from the hierarchy. 1830 * 1831 * Regions default to being enabled. 1832 * 1833 * @mr: the region to be updated 1834 * @enabled: whether to enable or disable the region 1835 */ 1836 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 1837 1838 /* 1839 * memory_region_set_address: dynamically update the address of a region 1840 * 1841 * Dynamically updates the address of a region, relative to its container. 1842 * May be used on regions are currently part of a memory hierarchy. 1843 * 1844 * @mr: the region to be updated 1845 * @addr: new address, relative to container region 1846 */ 1847 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 1848 1849 /* 1850 * memory_region_set_size: dynamically update the size of a region. 1851 * 1852 * Dynamically updates the size of a region. 1853 * 1854 * @mr: the region to be updated 1855 * @size: used size of the region. 1856 */ 1857 void memory_region_set_size(MemoryRegion *mr, uint64_t size); 1858 1859 /* 1860 * memory_region_set_alias_offset: dynamically update a memory alias's offset 1861 * 1862 * Dynamically updates the offset into the target region that an alias points 1863 * to, as if the fourth argument to memory_region_init_alias() has changed. 1864 * 1865 * @mr: the #MemoryRegion to be updated; should be an alias. 1866 * @offset: the new offset into the target memory region 1867 */ 1868 void memory_region_set_alias_offset(MemoryRegion *mr, 1869 hwaddr offset); 1870 1871 /** 1872 * memory_region_present: checks if an address relative to a @container 1873 * translates into #MemoryRegion within @container 1874 * 1875 * Answer whether a #MemoryRegion within @container covers the address 1876 * @addr. 1877 * 1878 * @container: a #MemoryRegion within which @addr is a relative address 1879 * @addr: the area within @container to be searched 1880 */ 1881 bool memory_region_present(MemoryRegion *container, hwaddr addr); 1882 1883 /** 1884 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 1885 * into any address space. 1886 * 1887 * @mr: a #MemoryRegion which should be checked if it's mapped 1888 */ 1889 bool memory_region_is_mapped(MemoryRegion *mr); 1890 1891 /** 1892 * memory_region_find: translate an address/size relative to a 1893 * MemoryRegion into a #MemoryRegionSection. 1894 * 1895 * Locates the first #MemoryRegion within @mr that overlaps the range 1896 * given by @addr and @size. 1897 * 1898 * Returns a #MemoryRegionSection that describes a contiguous overlap. 1899 * It will have the following characteristics: 1900 * - @size = 0 iff no overlap was found 1901 * - @mr is non-%NULL iff an overlap was found 1902 * 1903 * Remember that in the return value the @offset_within_region is 1904 * relative to the returned region (in the .@mr field), not to the 1905 * @mr argument. 1906 * 1907 * Similarly, the .@offset_within_address_space is relative to the 1908 * address space that contains both regions, the passed and the 1909 * returned one. However, in the special case where the @mr argument 1910 * has no container (and thus is the root of the address space), the 1911 * following will hold: 1912 * - @offset_within_address_space >= @addr 1913 * - @offset_within_address_space + .@size <= @addr + @size 1914 * 1915 * @mr: a MemoryRegion within which @addr is a relative address 1916 * @addr: start of the area within @as to be searched 1917 * @size: size of the area to be searched 1918 */ 1919 MemoryRegionSection memory_region_find(MemoryRegion *mr, 1920 hwaddr addr, uint64_t size); 1921 1922 /** 1923 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 1924 * 1925 * Synchronizes the dirty page log for all address spaces. 1926 */ 1927 void memory_global_dirty_log_sync(void); 1928 1929 /** 1930 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 1931 * 1932 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap. 1933 * This function must be called after the dirty log bitmap is cleared, and 1934 * before dirty guest memory pages are read. If you are using 1935 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes 1936 * care of doing this. 1937 */ 1938 void memory_global_after_dirty_log_sync(void); 1939 1940 /** 1941 * memory_region_transaction_begin: Start a transaction. 1942 * 1943 * During a transaction, changes will be accumulated and made visible 1944 * only when the transaction ends (is committed). 1945 */ 1946 void memory_region_transaction_begin(void); 1947 1948 /** 1949 * memory_region_transaction_commit: Commit a transaction and make changes 1950 * visible to the guest. 1951 */ 1952 void memory_region_transaction_commit(void); 1953 1954 /** 1955 * memory_listener_register: register callbacks to be called when memory 1956 * sections are mapped or unmapped into an address 1957 * space 1958 * 1959 * @listener: an object containing the callbacks to be called 1960 * @filter: if non-%NULL, only regions in this address space will be observed 1961 */ 1962 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 1963 1964 /** 1965 * memory_listener_unregister: undo the effect of memory_listener_register() 1966 * 1967 * @listener: an object containing the callbacks to be removed 1968 */ 1969 void memory_listener_unregister(MemoryListener *listener); 1970 1971 /** 1972 * memory_global_dirty_log_start: begin dirty logging for all regions 1973 */ 1974 void memory_global_dirty_log_start(void); 1975 1976 /** 1977 * memory_global_dirty_log_stop: end dirty logging for all regions 1978 */ 1979 void memory_global_dirty_log_stop(void); 1980 1981 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled); 1982 1983 /** 1984 * memory_region_dispatch_read: perform a read directly to the specified 1985 * MemoryRegion. 1986 * 1987 * @mr: #MemoryRegion to access 1988 * @addr: address within that region 1989 * @pval: pointer to uint64_t which the data is written to 1990 * @op: size, sign, and endianness of the memory operation 1991 * @attrs: memory transaction attributes to use for the access 1992 */ 1993 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 1994 hwaddr addr, 1995 uint64_t *pval, 1996 MemOp op, 1997 MemTxAttrs attrs); 1998 /** 1999 * memory_region_dispatch_write: perform a write directly to the specified 2000 * MemoryRegion. 2001 * 2002 * @mr: #MemoryRegion to access 2003 * @addr: address within that region 2004 * @data: data to write 2005 * @op: size, sign, and endianness of the memory operation 2006 * @attrs: memory transaction attributes to use for the access 2007 */ 2008 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 2009 hwaddr addr, 2010 uint64_t data, 2011 MemOp op, 2012 MemTxAttrs attrs); 2013 2014 /** 2015 * address_space_init: initializes an address space 2016 * 2017 * @as: an uninitialized #AddressSpace 2018 * @root: a #MemoryRegion that routes addresses for the address space 2019 * @name: an address space name. The name is only used for debugging 2020 * output. 2021 */ 2022 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 2023 2024 /** 2025 * address_space_destroy: destroy an address space 2026 * 2027 * Releases all resources associated with an address space. After an address space 2028 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 2029 * as well. 2030 * 2031 * @as: address space to be destroyed 2032 */ 2033 void address_space_destroy(AddressSpace *as); 2034 2035 /** 2036 * address_space_remove_listeners: unregister all listeners of an address space 2037 * 2038 * Removes all callbacks previously registered with memory_listener_register() 2039 * for @as. 2040 * 2041 * @as: an initialized #AddressSpace 2042 */ 2043 void address_space_remove_listeners(AddressSpace *as); 2044 2045 /** 2046 * address_space_rw: read from or write to an address space. 2047 * 2048 * Return a MemTxResult indicating whether the operation succeeded 2049 * or failed (eg unassigned memory, device rejected the transaction, 2050 * IOMMU fault). 2051 * 2052 * @as: #AddressSpace to be accessed 2053 * @addr: address within that address space 2054 * @attrs: memory transaction attributes 2055 * @buf: buffer with the data transferred 2056 * @len: the number of bytes to read or write 2057 * @is_write: indicates the transfer direction 2058 */ 2059 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 2060 MemTxAttrs attrs, void *buf, 2061 hwaddr len, bool is_write); 2062 2063 /** 2064 * address_space_write: write to address space. 2065 * 2066 * Return a MemTxResult indicating whether the operation succeeded 2067 * or failed (eg unassigned memory, device rejected the transaction, 2068 * IOMMU fault). 2069 * 2070 * @as: #AddressSpace to be accessed 2071 * @addr: address within that address space 2072 * @attrs: memory transaction attributes 2073 * @buf: buffer with the data transferred 2074 * @len: the number of bytes to write 2075 */ 2076 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 2077 MemTxAttrs attrs, 2078 const void *buf, hwaddr len); 2079 2080 /** 2081 * address_space_write_rom: write to address space, including ROM. 2082 * 2083 * This function writes to the specified address space, but will 2084 * write data to both ROM and RAM. This is used for non-guest 2085 * writes like writes from the gdb debug stub or initial loading 2086 * of ROM contents. 2087 * 2088 * Note that portions of the write which attempt to write data to 2089 * a device will be silently ignored -- only real RAM and ROM will 2090 * be written to. 2091 * 2092 * Return a MemTxResult indicating whether the operation succeeded 2093 * or failed (eg unassigned memory, device rejected the transaction, 2094 * IOMMU fault). 2095 * 2096 * @as: #AddressSpace to be accessed 2097 * @addr: address within that address space 2098 * @attrs: memory transaction attributes 2099 * @buf: buffer with the data transferred 2100 * @len: the number of bytes to write 2101 */ 2102 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 2103 MemTxAttrs attrs, 2104 const void *buf, hwaddr len); 2105 2106 /* address_space_ld*: load from an address space 2107 * address_space_st*: store to an address space 2108 * 2109 * These functions perform a load or store of the byte, word, 2110 * longword or quad to the specified address within the AddressSpace. 2111 * The _le suffixed functions treat the data as little endian; 2112 * _be indicates big endian; no suffix indicates "same endianness 2113 * as guest CPU". 2114 * 2115 * The "guest CPU endianness" accessors are deprecated for use outside 2116 * target-* code; devices should be CPU-agnostic and use either the LE 2117 * or the BE accessors. 2118 * 2119 * @as #AddressSpace to be accessed 2120 * @addr: address within that address space 2121 * @val: data value, for stores 2122 * @attrs: memory transaction attributes 2123 * @result: location to write the success/failure of the transaction; 2124 * if NULL, this information is discarded 2125 */ 2126 2127 #define SUFFIX 2128 #define ARG1 as 2129 #define ARG1_DECL AddressSpace *as 2130 #include "exec/memory_ldst.inc.h" 2131 2132 #define SUFFIX 2133 #define ARG1 as 2134 #define ARG1_DECL AddressSpace *as 2135 #include "exec/memory_ldst_phys.inc.h" 2136 2137 struct MemoryRegionCache { 2138 void *ptr; 2139 hwaddr xlat; 2140 hwaddr len; 2141 FlatView *fv; 2142 MemoryRegionSection mrs; 2143 bool is_write; 2144 }; 2145 2146 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL }) 2147 2148 2149 /* address_space_ld*_cached: load from a cached #MemoryRegion 2150 * address_space_st*_cached: store into a cached #MemoryRegion 2151 * 2152 * These functions perform a load or store of the byte, word, 2153 * longword or quad to the specified address. The address is 2154 * a physical address in the AddressSpace, but it must lie within 2155 * a #MemoryRegion that was mapped with address_space_cache_init. 2156 * 2157 * The _le suffixed functions treat the data as little endian; 2158 * _be indicates big endian; no suffix indicates "same endianness 2159 * as guest CPU". 2160 * 2161 * The "guest CPU endianness" accessors are deprecated for use outside 2162 * target-* code; devices should be CPU-agnostic and use either the LE 2163 * or the BE accessors. 2164 * 2165 * @cache: previously initialized #MemoryRegionCache to be accessed 2166 * @addr: address within the address space 2167 * @val: data value, for stores 2168 * @attrs: memory transaction attributes 2169 * @result: location to write the success/failure of the transaction; 2170 * if NULL, this information is discarded 2171 */ 2172 2173 #define SUFFIX _cached_slow 2174 #define ARG1 cache 2175 #define ARG1_DECL MemoryRegionCache *cache 2176 #include "exec/memory_ldst.inc.h" 2177 2178 /* Inline fast path for direct RAM access. */ 2179 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache, 2180 hwaddr addr, MemTxAttrs attrs, MemTxResult *result) 2181 { 2182 assert(addr < cache->len); 2183 if (likely(cache->ptr)) { 2184 return ldub_p(cache->ptr + addr); 2185 } else { 2186 return address_space_ldub_cached_slow(cache, addr, attrs, result); 2187 } 2188 } 2189 2190 static inline void address_space_stb_cached(MemoryRegionCache *cache, 2191 hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result) 2192 { 2193 assert(addr < cache->len); 2194 if (likely(cache->ptr)) { 2195 stb_p(cache->ptr + addr, val); 2196 } else { 2197 address_space_stb_cached_slow(cache, addr, val, attrs, result); 2198 } 2199 } 2200 2201 #define ENDIANNESS _le 2202 #include "exec/memory_ldst_cached.inc.h" 2203 2204 #define ENDIANNESS _be 2205 #include "exec/memory_ldst_cached.inc.h" 2206 2207 #define SUFFIX _cached 2208 #define ARG1 cache 2209 #define ARG1_DECL MemoryRegionCache *cache 2210 #include "exec/memory_ldst_phys.inc.h" 2211 2212 /* address_space_cache_init: prepare for repeated access to a physical 2213 * memory region 2214 * 2215 * @cache: #MemoryRegionCache to be filled 2216 * @as: #AddressSpace to be accessed 2217 * @addr: address within that address space 2218 * @len: length of buffer 2219 * @is_write: indicates the transfer direction 2220 * 2221 * Will only work with RAM, and may map a subset of the requested range by 2222 * returning a value that is less than @len. On failure, return a negative 2223 * errno value. 2224 * 2225 * Because it only works with RAM, this function can be used for 2226 * read-modify-write operations. In this case, is_write should be %true. 2227 * 2228 * Note that addresses passed to the address_space_*_cached functions 2229 * are relative to @addr. 2230 */ 2231 int64_t address_space_cache_init(MemoryRegionCache *cache, 2232 AddressSpace *as, 2233 hwaddr addr, 2234 hwaddr len, 2235 bool is_write); 2236 2237 /** 2238 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache 2239 * 2240 * @cache: The #MemoryRegionCache to operate on. 2241 * @addr: The first physical address that was written, relative to the 2242 * address that was passed to @address_space_cache_init. 2243 * @access_len: The number of bytes that were written starting at @addr. 2244 */ 2245 void address_space_cache_invalidate(MemoryRegionCache *cache, 2246 hwaddr addr, 2247 hwaddr access_len); 2248 2249 /** 2250 * address_space_cache_destroy: free a #MemoryRegionCache 2251 * 2252 * @cache: The #MemoryRegionCache whose memory should be released. 2253 */ 2254 void address_space_cache_destroy(MemoryRegionCache *cache); 2255 2256 /* address_space_get_iotlb_entry: translate an address into an IOTLB 2257 * entry. Should be called from an RCU critical section. 2258 */ 2259 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 2260 bool is_write, MemTxAttrs attrs); 2261 2262 /* address_space_translate: translate an address range into an address space 2263 * into a MemoryRegion and an address range into that section. Should be 2264 * called from an RCU critical section, to avoid that the last reference 2265 * to the returned region disappears after address_space_translate returns. 2266 * 2267 * @fv: #FlatView to be accessed 2268 * @addr: address within that address space 2269 * @xlat: pointer to address within the returned memory region section's 2270 * #MemoryRegion. 2271 * @len: pointer to length 2272 * @is_write: indicates the transfer direction 2273 * @attrs: memory attributes 2274 */ 2275 MemoryRegion *flatview_translate(FlatView *fv, 2276 hwaddr addr, hwaddr *xlat, 2277 hwaddr *len, bool is_write, 2278 MemTxAttrs attrs); 2279 2280 static inline MemoryRegion *address_space_translate(AddressSpace *as, 2281 hwaddr addr, hwaddr *xlat, 2282 hwaddr *len, bool is_write, 2283 MemTxAttrs attrs) 2284 { 2285 return flatview_translate(address_space_to_flatview(as), 2286 addr, xlat, len, is_write, attrs); 2287 } 2288 2289 /* address_space_access_valid: check for validity of accessing an address 2290 * space range 2291 * 2292 * Check whether memory is assigned to the given address space range, and 2293 * access is permitted by any IOMMU regions that are active for the address 2294 * space. 2295 * 2296 * For now, addr and len should be aligned to a page size. This limitation 2297 * will be lifted in the future. 2298 * 2299 * @as: #AddressSpace to be accessed 2300 * @addr: address within that address space 2301 * @len: length of the area to be checked 2302 * @is_write: indicates the transfer direction 2303 * @attrs: memory attributes 2304 */ 2305 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len, 2306 bool is_write, MemTxAttrs attrs); 2307 2308 /* address_space_map: map a physical memory region into a host virtual address 2309 * 2310 * May map a subset of the requested range, given by and returned in @plen. 2311 * May return %NULL and set *@plen to zero(0), if resources needed to perform 2312 * the mapping are exhausted. 2313 * Use only for reads OR writes - not for read-modify-write operations. 2314 * Use cpu_register_map_client() to know when retrying the map operation is 2315 * likely to succeed. 2316 * 2317 * @as: #AddressSpace to be accessed 2318 * @addr: address within that address space 2319 * @plen: pointer to length of buffer; updated on return 2320 * @is_write: indicates the transfer direction 2321 * @attrs: memory attributes 2322 */ 2323 void *address_space_map(AddressSpace *as, hwaddr addr, 2324 hwaddr *plen, bool is_write, MemTxAttrs attrs); 2325 2326 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 2327 * 2328 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 2329 * the amount of memory that was actually read or written by the caller. 2330 * 2331 * @as: #AddressSpace used 2332 * @buffer: host pointer as returned by address_space_map() 2333 * @len: buffer length as returned by address_space_map() 2334 * @access_len: amount of data actually transferred 2335 * @is_write: indicates the transfer direction 2336 */ 2337 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 2338 bool is_write, hwaddr access_len); 2339 2340 2341 /* Internal functions, part of the implementation of address_space_read. */ 2342 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2343 MemTxAttrs attrs, void *buf, hwaddr len); 2344 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2345 MemTxAttrs attrs, void *buf, 2346 hwaddr len, hwaddr addr1, hwaddr l, 2347 MemoryRegion *mr); 2348 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr); 2349 2350 /* Internal functions, part of the implementation of address_space_read_cached 2351 * and address_space_write_cached. */ 2352 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache, 2353 hwaddr addr, void *buf, hwaddr len); 2354 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache, 2355 hwaddr addr, const void *buf, 2356 hwaddr len); 2357 2358 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) 2359 { 2360 if (is_write) { 2361 return memory_region_is_ram(mr) && !mr->readonly && 2362 !mr->rom_device && !memory_region_is_ram_device(mr); 2363 } else { 2364 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) || 2365 memory_region_is_romd(mr); 2366 } 2367 } 2368 2369 /** 2370 * address_space_read: read from an address space. 2371 * 2372 * Return a MemTxResult indicating whether the operation succeeded 2373 * or failed (eg unassigned memory, device rejected the transaction, 2374 * IOMMU fault). Called within RCU critical section. 2375 * 2376 * @as: #AddressSpace to be accessed 2377 * @addr: address within that address space 2378 * @attrs: memory transaction attributes 2379 * @buf: buffer with the data transferred 2380 * @len: length of the data transferred 2381 */ 2382 static inline __attribute__((__always_inline__)) 2383 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, 2384 MemTxAttrs attrs, void *buf, 2385 hwaddr len) 2386 { 2387 MemTxResult result = MEMTX_OK; 2388 hwaddr l, addr1; 2389 void *ptr; 2390 MemoryRegion *mr; 2391 FlatView *fv; 2392 2393 if (__builtin_constant_p(len)) { 2394 if (len) { 2395 RCU_READ_LOCK_GUARD(); 2396 fv = address_space_to_flatview(as); 2397 l = len; 2398 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2399 if (len == l && memory_access_is_direct(mr, false)) { 2400 ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 2401 memcpy(buf, ptr, len); 2402 } else { 2403 result = flatview_read_continue(fv, addr, attrs, buf, len, 2404 addr1, l, mr); 2405 } 2406 } 2407 } else { 2408 result = address_space_read_full(as, addr, attrs, buf, len); 2409 } 2410 return result; 2411 } 2412 2413 /** 2414 * address_space_read_cached: read from a cached RAM region 2415 * 2416 * @cache: Cached region to be addressed 2417 * @addr: address relative to the base of the RAM region 2418 * @buf: buffer with the data transferred 2419 * @len: length of the data transferred 2420 */ 2421 static inline MemTxResult 2422 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr, 2423 void *buf, hwaddr len) 2424 { 2425 assert(addr < cache->len && len <= cache->len - addr); 2426 if (likely(cache->ptr)) { 2427 memcpy(buf, cache->ptr + addr, len); 2428 return MEMTX_OK; 2429 } else { 2430 return address_space_read_cached_slow(cache, addr, buf, len); 2431 } 2432 } 2433 2434 /** 2435 * address_space_write_cached: write to a cached RAM region 2436 * 2437 * @cache: Cached region to be addressed 2438 * @addr: address relative to the base of the RAM region 2439 * @buf: buffer with the data transferred 2440 * @len: length of the data transferred 2441 */ 2442 static inline MemTxResult 2443 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr, 2444 const void *buf, hwaddr len) 2445 { 2446 assert(addr < cache->len && len <= cache->len - addr); 2447 if (likely(cache->ptr)) { 2448 memcpy(cache->ptr + addr, buf, len); 2449 return MEMTX_OK; 2450 } else { 2451 return address_space_write_cached_slow(cache, addr, buf, len); 2452 } 2453 } 2454 2455 #ifdef NEED_CPU_H 2456 /* enum device_endian to MemOp. */ 2457 static inline MemOp devend_memop(enum device_endian end) 2458 { 2459 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN && 2460 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN); 2461 2462 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 2463 /* Swap if non-host endianness or native (target) endianness */ 2464 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP; 2465 #else 2466 const int non_host_endianness = 2467 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN; 2468 2469 /* In this case, native (target) endianness needs no swap. */ 2470 return (end == non_host_endianness) ? MO_BSWAP : 0; 2471 #endif 2472 } 2473 #endif 2474 2475 #endif 2476 2477 #endif 2478