1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef MEMORY_H 15 #define MEMORY_H 16 17 #ifndef CONFIG_USER_ONLY 18 19 #include "exec/cpu-common.h" 20 #include "exec/hwaddr.h" 21 #include "exec/memattrs.h" 22 #include "exec/memop.h" 23 #include "exec/ramlist.h" 24 #include "qemu/bswap.h" 25 #include "qemu/queue.h" 26 #include "qemu/int128.h" 27 #include "qemu/range.h" 28 #include "qemu/notify.h" 29 #include "qom/object.h" 30 #include "qemu/rcu.h" 31 32 #define RAM_ADDR_INVALID (~(ram_addr_t)0) 33 34 #define MAX_PHYS_ADDR_SPACE_BITS 62 35 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 36 37 #define TYPE_MEMORY_REGION "memory-region" 38 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION, 39 TYPE_MEMORY_REGION) 40 41 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region" 42 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass; 43 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass, 44 IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION) 45 46 #define TYPE_RAM_DISCARD_MANAGER "ram-discard-manager" 47 typedef struct RamDiscardManagerClass RamDiscardManagerClass; 48 typedef struct RamDiscardManager RamDiscardManager; 49 DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass, 50 RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER); 51 52 #ifdef CONFIG_FUZZ 53 void fuzz_dma_read_cb(size_t addr, 54 size_t len, 55 MemoryRegion *mr); 56 #else 57 static inline void fuzz_dma_read_cb(size_t addr, 58 size_t len, 59 MemoryRegion *mr) 60 { 61 /* Do Nothing */ 62 } 63 #endif 64 65 /* Possible bits for global_dirty_log_{start|stop} */ 66 67 /* Dirty tracking enabled because migration is running */ 68 #define GLOBAL_DIRTY_MIGRATION (1U << 0) 69 70 /* Dirty tracking enabled because measuring dirty rate */ 71 #define GLOBAL_DIRTY_DIRTY_RATE (1U << 1) 72 73 /* Dirty tracking enabled because dirty limit */ 74 #define GLOBAL_DIRTY_LIMIT (1U << 2) 75 76 #define GLOBAL_DIRTY_MASK (0x7) 77 78 extern unsigned int global_dirty_tracking; 79 80 typedef struct MemoryRegionOps MemoryRegionOps; 81 82 struct ReservedRegion { 83 Range range; 84 unsigned type; 85 }; 86 87 /** 88 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion 89 * 90 * @mr: the region, or %NULL if empty 91 * @fv: the flat view of the address space the region is mapped in 92 * @offset_within_region: the beginning of the section, relative to @mr's start 93 * @size: the size of the section; will not exceed @mr's boundaries 94 * @offset_within_address_space: the address of the first byte of the section 95 * relative to the region's address space 96 * @readonly: writes to this section are ignored 97 * @nonvolatile: this section is non-volatile 98 * @unmergeable: this section should not get merged with adjacent sections 99 */ 100 struct MemoryRegionSection { 101 Int128 size; 102 MemoryRegion *mr; 103 FlatView *fv; 104 hwaddr offset_within_region; 105 hwaddr offset_within_address_space; 106 bool readonly; 107 bool nonvolatile; 108 bool unmergeable; 109 }; 110 111 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 112 113 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 114 typedef enum { 115 IOMMU_NONE = 0, 116 IOMMU_RO = 1, 117 IOMMU_WO = 2, 118 IOMMU_RW = 3, 119 } IOMMUAccessFlags; 120 121 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0)) 122 123 struct IOMMUTLBEntry { 124 AddressSpace *target_as; 125 hwaddr iova; 126 hwaddr translated_addr; 127 hwaddr addr_mask; /* 0xfff = 4k translation */ 128 IOMMUAccessFlags perm; 129 }; 130 131 /* 132 * Bitmap for different IOMMUNotifier capabilities. Each notifier can 133 * register with one or multiple IOMMU Notifier capability bit(s). 134 * 135 * Normally there're two use cases for the notifiers: 136 * 137 * (1) When the device needs accurate synchronizations of the vIOMMU page 138 * tables, it needs to register with both MAP|UNMAP notifies (which 139 * is defined as IOMMU_NOTIFIER_IOTLB_EVENTS below). 140 * 141 * Regarding to accurate synchronization, it's when the notified 142 * device maintains a shadow page table and must be notified on each 143 * guest MAP (page table entry creation) and UNMAP (invalidation) 144 * events (e.g. VFIO). Both notifications must be accurate so that 145 * the shadow page table is fully in sync with the guest view. 146 * 147 * (2) When the device doesn't need accurate synchronizations of the 148 * vIOMMU page tables, it needs to register only with UNMAP or 149 * DEVIOTLB_UNMAP notifies. 150 * 151 * It's when the device maintains a cache of IOMMU translations 152 * (IOTLB) and is able to fill that cache by requesting translations 153 * from the vIOMMU through a protocol similar to ATS (Address 154 * Translation Service). 155 * 156 * Note that in this mode the vIOMMU will not maintain a shadowed 157 * page table for the address space, and the UNMAP messages can cover 158 * more than the pages that used to get mapped. The IOMMU notifiee 159 * should be able to take care of over-sized invalidations. 160 */ 161 typedef enum { 162 IOMMU_NOTIFIER_NONE = 0, 163 /* Notify cache invalidations */ 164 IOMMU_NOTIFIER_UNMAP = 0x1, 165 /* Notify entry changes (newly created entries) */ 166 IOMMU_NOTIFIER_MAP = 0x2, 167 /* Notify changes on device IOTLB entries */ 168 IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04, 169 } IOMMUNotifierFlag; 170 171 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP) 172 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP 173 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \ 174 IOMMU_NOTIFIER_DEVIOTLB_EVENTS) 175 176 struct IOMMUNotifier; 177 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier, 178 IOMMUTLBEntry *data); 179 180 struct IOMMUNotifier { 181 IOMMUNotify notify; 182 IOMMUNotifierFlag notifier_flags; 183 /* Notify for address space range start <= addr <= end */ 184 hwaddr start; 185 hwaddr end; 186 int iommu_idx; 187 QLIST_ENTRY(IOMMUNotifier) node; 188 }; 189 typedef struct IOMMUNotifier IOMMUNotifier; 190 191 typedef struct IOMMUTLBEvent { 192 IOMMUNotifierFlag type; 193 IOMMUTLBEntry entry; 194 } IOMMUTLBEvent; 195 196 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ 197 #define RAM_PREALLOC (1 << 0) 198 199 /* RAM is mmap-ed with MAP_SHARED */ 200 #define RAM_SHARED (1 << 1) 201 202 /* Only a portion of RAM (used_length) is actually used, and migrated. 203 * Resizing RAM while migrating can result in the migration being canceled. 204 */ 205 #define RAM_RESIZEABLE (1 << 2) 206 207 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically 208 * zero the page and wake waiting processes. 209 * (Set during postcopy) 210 */ 211 #define RAM_UF_ZEROPAGE (1 << 3) 212 213 /* RAM can be migrated */ 214 #define RAM_MIGRATABLE (1 << 4) 215 216 /* RAM is a persistent kind memory */ 217 #define RAM_PMEM (1 << 5) 218 219 220 /* 221 * UFFDIO_WRITEPROTECT is used on this RAMBlock to 222 * support 'write-tracking' migration type. 223 * Implies ram_state->ram_wt_enabled. 224 */ 225 #define RAM_UF_WRITEPROTECT (1 << 6) 226 227 /* 228 * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge 229 * pages if applicable) is skipped: will bail out if not supported. When not 230 * set, the OS will do the reservation, if supported for the memory type. 231 */ 232 #define RAM_NORESERVE (1 << 7) 233 234 /* RAM that isn't accessible through normal means. */ 235 #define RAM_PROTECTED (1 << 8) 236 237 /* RAM is an mmap-ed named file */ 238 #define RAM_NAMED_FILE (1 << 9) 239 240 /* RAM is mmap-ed read-only */ 241 #define RAM_READONLY (1 << 10) 242 243 /* RAM FD is opened read-only */ 244 #define RAM_READONLY_FD (1 << 11) 245 246 /* RAM can be private that has kvm guest memfd backend */ 247 #define RAM_GUEST_MEMFD (1 << 12) 248 249 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn, 250 IOMMUNotifierFlag flags, 251 hwaddr start, hwaddr end, 252 int iommu_idx) 253 { 254 n->notify = fn; 255 n->notifier_flags = flags; 256 n->start = start; 257 n->end = end; 258 n->iommu_idx = iommu_idx; 259 } 260 261 /* 262 * Memory region callbacks 263 */ 264 struct MemoryRegionOps { 265 /* Read from the memory region. @addr is relative to @mr; @size is 266 * in bytes. */ 267 uint64_t (*read)(void *opaque, 268 hwaddr addr, 269 unsigned size); 270 /* Write to the memory region. @addr is relative to @mr; @size is 271 * in bytes. */ 272 void (*write)(void *opaque, 273 hwaddr addr, 274 uint64_t data, 275 unsigned size); 276 277 MemTxResult (*read_with_attrs)(void *opaque, 278 hwaddr addr, 279 uint64_t *data, 280 unsigned size, 281 MemTxAttrs attrs); 282 MemTxResult (*write_with_attrs)(void *opaque, 283 hwaddr addr, 284 uint64_t data, 285 unsigned size, 286 MemTxAttrs attrs); 287 288 enum device_endian endianness; 289 /* Guest-visible constraints: */ 290 struct { 291 /* If nonzero, specify bounds on access sizes beyond which a machine 292 * check is thrown. 293 */ 294 unsigned min_access_size; 295 unsigned max_access_size; 296 /* If true, unaligned accesses are supported. Otherwise unaligned 297 * accesses throw machine checks. 298 */ 299 bool unaligned; 300 /* 301 * If present, and returns #false, the transaction is not accepted 302 * by the device (and results in machine dependent behaviour such 303 * as a machine check exception). 304 */ 305 bool (*accepts)(void *opaque, hwaddr addr, 306 unsigned size, bool is_write, 307 MemTxAttrs attrs); 308 } valid; 309 /* Internal implementation constraints: */ 310 struct { 311 /* If nonzero, specifies the minimum size implemented. Smaller sizes 312 * will be rounded upwards and a partial result will be returned. 313 */ 314 unsigned min_access_size; 315 /* If nonzero, specifies the maximum size implemented. Larger sizes 316 * will be done as a series of accesses with smaller sizes. 317 */ 318 unsigned max_access_size; 319 /* If true, unaligned accesses are supported. Otherwise all accesses 320 * are converted to (possibly multiple) naturally aligned accesses. 321 */ 322 bool unaligned; 323 } impl; 324 }; 325 326 typedef struct MemoryRegionClass { 327 /* private */ 328 ObjectClass parent_class; 329 } MemoryRegionClass; 330 331 332 enum IOMMUMemoryRegionAttr { 333 IOMMU_ATTR_SPAPR_TCE_FD 334 }; 335 336 /* 337 * IOMMUMemoryRegionClass: 338 * 339 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION 340 * and provide an implementation of at least the @translate method here 341 * to handle requests to the memory region. Other methods are optional. 342 * 343 * The IOMMU implementation must use the IOMMU notifier infrastructure 344 * to report whenever mappings are changed, by calling 345 * memory_region_notify_iommu() (or, if necessary, by calling 346 * memory_region_notify_iommu_one() for each registered notifier). 347 * 348 * Conceptually an IOMMU provides a mapping from input address 349 * to an output TLB entry. If the IOMMU is aware of memory transaction 350 * attributes and the output TLB entry depends on the transaction 351 * attributes, we represent this using IOMMU indexes. Each index 352 * selects a particular translation table that the IOMMU has: 353 * 354 * @attrs_to_index returns the IOMMU index for a set of transaction attributes 355 * 356 * @translate takes an input address and an IOMMU index 357 * 358 * and the mapping returned can only depend on the input address and the 359 * IOMMU index. 360 * 361 * Most IOMMUs don't care about the transaction attributes and support 362 * only a single IOMMU index. A more complex IOMMU might have one index 363 * for secure transactions and one for non-secure transactions. 364 */ 365 struct IOMMUMemoryRegionClass { 366 /* private: */ 367 MemoryRegionClass parent_class; 368 369 /* public: */ 370 /** 371 * @translate: 372 * 373 * Return a TLB entry that contains a given address. 374 * 375 * The IOMMUAccessFlags indicated via @flag are optional and may 376 * be specified as IOMMU_NONE to indicate that the caller needs 377 * the full translation information for both reads and writes. If 378 * the access flags are specified then the IOMMU implementation 379 * may use this as an optimization, to stop doing a page table 380 * walk as soon as it knows that the requested permissions are not 381 * allowed. If IOMMU_NONE is passed then the IOMMU must do the 382 * full page table walk and report the permissions in the returned 383 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not 384 * return different mappings for reads and writes.) 385 * 386 * The returned information remains valid while the caller is 387 * holding the big QEMU lock or is inside an RCU critical section; 388 * if the caller wishes to cache the mapping beyond that it must 389 * register an IOMMU notifier so it can invalidate its cached 390 * information when the IOMMU mapping changes. 391 * 392 * @iommu: the IOMMUMemoryRegion 393 * 394 * @hwaddr: address to be translated within the memory region 395 * 396 * @flag: requested access permission 397 * 398 * @iommu_idx: IOMMU index for the translation 399 */ 400 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr, 401 IOMMUAccessFlags flag, int iommu_idx); 402 /** 403 * @get_min_page_size: 404 * 405 * Returns minimum supported page size in bytes. 406 * 407 * If this method is not provided then the minimum is assumed to 408 * be TARGET_PAGE_SIZE. 409 * 410 * @iommu: the IOMMUMemoryRegion 411 */ 412 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu); 413 /** 414 * @notify_flag_changed: 415 * 416 * Called when IOMMU Notifier flag changes (ie when the set of 417 * events which IOMMU users are requesting notification for changes). 418 * Optional method -- need not be provided if the IOMMU does not 419 * need to know exactly which events must be notified. 420 * 421 * @iommu: the IOMMUMemoryRegion 422 * 423 * @old_flags: events which previously needed to be notified 424 * 425 * @new_flags: events which now need to be notified 426 * 427 * Returns 0 on success, or a negative errno; in particular 428 * returns -EINVAL if the new flag bitmap is not supported by the 429 * IOMMU memory region. In case of failure, the error object 430 * must be created 431 */ 432 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu, 433 IOMMUNotifierFlag old_flags, 434 IOMMUNotifierFlag new_flags, 435 Error **errp); 436 /** 437 * @replay: 438 * 439 * Called to handle memory_region_iommu_replay(). 440 * 441 * The default implementation of memory_region_iommu_replay() is to 442 * call the IOMMU translate method for every page in the address space 443 * with flag == IOMMU_NONE and then call the notifier if translate 444 * returns a valid mapping. If this method is implemented then it 445 * overrides the default behaviour, and must provide the full semantics 446 * of memory_region_iommu_replay(), by calling @notifier for every 447 * translation present in the IOMMU. 448 * 449 * Optional method -- an IOMMU only needs to provide this method 450 * if the default is inefficient or produces undesirable side effects. 451 * 452 * Note: this is not related to record-and-replay functionality. 453 */ 454 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier); 455 456 /** 457 * @get_attr: 458 * 459 * Get IOMMU misc attributes. This is an optional method that 460 * can be used to allow users of the IOMMU to get implementation-specific 461 * information. The IOMMU implements this method to handle calls 462 * by IOMMU users to memory_region_iommu_get_attr() by filling in 463 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that 464 * the IOMMU supports. If the method is unimplemented then 465 * memory_region_iommu_get_attr() will always return -EINVAL. 466 * 467 * @iommu: the IOMMUMemoryRegion 468 * 469 * @attr: attribute being queried 470 * 471 * @data: memory to fill in with the attribute data 472 * 473 * Returns 0 on success, or a negative errno; in particular 474 * returns -EINVAL for unrecognized or unimplemented attribute types. 475 */ 476 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr, 477 void *data); 478 479 /** 480 * @attrs_to_index: 481 * 482 * Return the IOMMU index to use for a given set of transaction attributes. 483 * 484 * Optional method: if an IOMMU only supports a single IOMMU index then 485 * the default implementation of memory_region_iommu_attrs_to_index() 486 * will return 0. 487 * 488 * The indexes supported by an IOMMU must be contiguous, starting at 0. 489 * 490 * @iommu: the IOMMUMemoryRegion 491 * @attrs: memory transaction attributes 492 */ 493 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs); 494 495 /** 496 * @num_indexes: 497 * 498 * Return the number of IOMMU indexes this IOMMU supports. 499 * 500 * Optional method: if this method is not provided, then 501 * memory_region_iommu_num_indexes() will return 1, indicating that 502 * only a single IOMMU index is supported. 503 * 504 * @iommu: the IOMMUMemoryRegion 505 */ 506 int (*num_indexes)(IOMMUMemoryRegion *iommu); 507 508 /** 509 * @iommu_set_page_size_mask: 510 * 511 * Restrict the page size mask that can be supported with a given IOMMU 512 * memory region. Used for example to propagate host physical IOMMU page 513 * size mask limitations to the virtual IOMMU. 514 * 515 * Optional method: if this method is not provided, then the default global 516 * page mask is used. 517 * 518 * @iommu: the IOMMUMemoryRegion 519 * 520 * @page_size_mask: a bitmask of supported page sizes. At least one bit, 521 * representing the smallest page size, must be set. Additional set bits 522 * represent supported block sizes. For example a host physical IOMMU that 523 * uses page tables with a page size of 4kB, and supports 2MB and 4GB 524 * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate 525 * block sizes is specified with mask 0xfffffffffffff000. 526 * 527 * Returns 0 on success, or a negative error. In case of failure, the error 528 * object must be created. 529 */ 530 int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu, 531 uint64_t page_size_mask, 532 Error **errp); 533 /** 534 * @iommu_set_iova_ranges: 535 * 536 * Propagate information about the usable IOVA ranges for a given IOMMU 537 * memory region. Used for example to propagate host physical device 538 * reserved memory region constraints to the virtual IOMMU. 539 * 540 * Optional method: if this method is not provided, then the default IOVA 541 * aperture is used. 542 * 543 * @iommu: the IOMMUMemoryRegion 544 * 545 * @iova_ranges: list of ordered IOVA ranges (at least one range) 546 * 547 * Returns 0 on success, or a negative error. In case of failure, the error 548 * object must be created. 549 */ 550 int (*iommu_set_iova_ranges)(IOMMUMemoryRegion *iommu, 551 GList *iova_ranges, 552 Error **errp); 553 }; 554 555 typedef struct RamDiscardListener RamDiscardListener; 556 typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl, 557 MemoryRegionSection *section); 558 typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl, 559 MemoryRegionSection *section); 560 561 struct RamDiscardListener { 562 /* 563 * @notify_populate: 564 * 565 * Notification that previously discarded memory is about to get populated. 566 * Listeners are able to object. If any listener objects, already 567 * successfully notified listeners are notified about a discard again. 568 * 569 * @rdl: the #RamDiscardListener getting notified 570 * @section: the #MemoryRegionSection to get populated. The section 571 * is aligned within the memory region to the minimum granularity 572 * unless it would exceed the registered section. 573 * 574 * Returns 0 on success. If the notification is rejected by the listener, 575 * an error is returned. 576 */ 577 NotifyRamPopulate notify_populate; 578 579 /* 580 * @notify_discard: 581 * 582 * Notification that previously populated memory was discarded successfully 583 * and listeners should drop all references to such memory and prevent 584 * new population (e.g., unmap). 585 * 586 * @rdl: the #RamDiscardListener getting notified 587 * @section: the #MemoryRegionSection to get populated. The section 588 * is aligned within the memory region to the minimum granularity 589 * unless it would exceed the registered section. 590 */ 591 NotifyRamDiscard notify_discard; 592 593 /* 594 * @double_discard_supported: 595 * 596 * The listener suppors getting @notify_discard notifications that span 597 * already discarded parts. 598 */ 599 bool double_discard_supported; 600 601 MemoryRegionSection *section; 602 QLIST_ENTRY(RamDiscardListener) next; 603 }; 604 605 static inline void ram_discard_listener_init(RamDiscardListener *rdl, 606 NotifyRamPopulate populate_fn, 607 NotifyRamDiscard discard_fn, 608 bool double_discard_supported) 609 { 610 rdl->notify_populate = populate_fn; 611 rdl->notify_discard = discard_fn; 612 rdl->double_discard_supported = double_discard_supported; 613 } 614 615 typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque); 616 typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque); 617 618 /* 619 * RamDiscardManagerClass: 620 * 621 * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion 622 * regions are currently populated to be used/accessed by the VM, notifying 623 * after parts were discarded (freeing up memory) and before parts will be 624 * populated (consuming memory), to be used/accessed by the VM. 625 * 626 * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the 627 * #MemoryRegion isn't mapped into an address space yet (either directly 628 * or via an alias); it cannot change while the #MemoryRegion is 629 * mapped into an address space. 630 * 631 * The #RamDiscardManager is intended to be used by technologies that are 632 * incompatible with discarding of RAM (e.g., VFIO, which may pin all 633 * memory inside a #MemoryRegion), and require proper coordination to only 634 * map the currently populated parts, to hinder parts that are expected to 635 * remain discarded from silently getting populated and consuming memory. 636 * Technologies that support discarding of RAM don't have to bother and can 637 * simply map the whole #MemoryRegion. 638 * 639 * An example #RamDiscardManager is virtio-mem, which logically (un)plugs 640 * memory within an assigned RAM #MemoryRegion, coordinated with the VM. 641 * Logically unplugging memory consists of discarding RAM. The VM agreed to not 642 * access unplugged (discarded) memory - especially via DMA. virtio-mem will 643 * properly coordinate with listeners before memory is plugged (populated), 644 * and after memory is unplugged (discarded). 645 * 646 * Listeners are called in multiples of the minimum granularity (unless it 647 * would exceed the registered range) and changes are aligned to the minimum 648 * granularity within the #MemoryRegion. Listeners have to prepare for memory 649 * becoming discarded in a different granularity than it was populated and the 650 * other way around. 651 */ 652 struct RamDiscardManagerClass { 653 /* private */ 654 InterfaceClass parent_class; 655 656 /* public */ 657 658 /** 659 * @get_min_granularity: 660 * 661 * Get the minimum granularity in which listeners will get notified 662 * about changes within the #MemoryRegion via the #RamDiscardManager. 663 * 664 * @rdm: the #RamDiscardManager 665 * @mr: the #MemoryRegion 666 * 667 * Returns the minimum granularity. 668 */ 669 uint64_t (*get_min_granularity)(const RamDiscardManager *rdm, 670 const MemoryRegion *mr); 671 672 /** 673 * @is_populated: 674 * 675 * Check whether the given #MemoryRegionSection is completely populated 676 * (i.e., no parts are currently discarded) via the #RamDiscardManager. 677 * There are no alignment requirements. 678 * 679 * @rdm: the #RamDiscardManager 680 * @section: the #MemoryRegionSection 681 * 682 * Returns whether the given range is completely populated. 683 */ 684 bool (*is_populated)(const RamDiscardManager *rdm, 685 const MemoryRegionSection *section); 686 687 /** 688 * @replay_populated: 689 * 690 * Call the #ReplayRamPopulate callback for all populated parts within the 691 * #MemoryRegionSection via the #RamDiscardManager. 692 * 693 * In case any call fails, no further calls are made. 694 * 695 * @rdm: the #RamDiscardManager 696 * @section: the #MemoryRegionSection 697 * @replay_fn: the #ReplayRamPopulate callback 698 * @opaque: pointer to forward to the callback 699 * 700 * Returns 0 on success, or a negative error if any notification failed. 701 */ 702 int (*replay_populated)(const RamDiscardManager *rdm, 703 MemoryRegionSection *section, 704 ReplayRamPopulate replay_fn, void *opaque); 705 706 /** 707 * @replay_discarded: 708 * 709 * Call the #ReplayRamDiscard callback for all discarded parts within the 710 * #MemoryRegionSection via the #RamDiscardManager. 711 * 712 * @rdm: the #RamDiscardManager 713 * @section: the #MemoryRegionSection 714 * @replay_fn: the #ReplayRamDiscard callback 715 * @opaque: pointer to forward to the callback 716 */ 717 void (*replay_discarded)(const RamDiscardManager *rdm, 718 MemoryRegionSection *section, 719 ReplayRamDiscard replay_fn, void *opaque); 720 721 /** 722 * @register_listener: 723 * 724 * Register a #RamDiscardListener for the given #MemoryRegionSection and 725 * immediately notify the #RamDiscardListener about all populated parts 726 * within the #MemoryRegionSection via the #RamDiscardManager. 727 * 728 * In case any notification fails, no further notifications are triggered 729 * and an error is logged. 730 * 731 * @rdm: the #RamDiscardManager 732 * @rdl: the #RamDiscardListener 733 * @section: the #MemoryRegionSection 734 */ 735 void (*register_listener)(RamDiscardManager *rdm, 736 RamDiscardListener *rdl, 737 MemoryRegionSection *section); 738 739 /** 740 * @unregister_listener: 741 * 742 * Unregister a previously registered #RamDiscardListener via the 743 * #RamDiscardManager after notifying the #RamDiscardListener about all 744 * populated parts becoming unpopulated within the registered 745 * #MemoryRegionSection. 746 * 747 * @rdm: the #RamDiscardManager 748 * @rdl: the #RamDiscardListener 749 */ 750 void (*unregister_listener)(RamDiscardManager *rdm, 751 RamDiscardListener *rdl); 752 }; 753 754 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm, 755 const MemoryRegion *mr); 756 757 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm, 758 const MemoryRegionSection *section); 759 760 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm, 761 MemoryRegionSection *section, 762 ReplayRamPopulate replay_fn, 763 void *opaque); 764 765 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm, 766 MemoryRegionSection *section, 767 ReplayRamDiscard replay_fn, 768 void *opaque); 769 770 void ram_discard_manager_register_listener(RamDiscardManager *rdm, 771 RamDiscardListener *rdl, 772 MemoryRegionSection *section); 773 774 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm, 775 RamDiscardListener *rdl); 776 777 bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr, 778 ram_addr_t *ram_addr, bool *read_only, 779 bool *mr_has_discard_manager); 780 781 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 782 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 783 784 /** MemoryRegion: 785 * 786 * A struct representing a memory region. 787 */ 788 struct MemoryRegion { 789 Object parent_obj; 790 791 /* private: */ 792 793 /* The following fields should fit in a cache line */ 794 bool romd_mode; 795 bool ram; 796 bool subpage; 797 bool readonly; /* For RAM regions */ 798 bool nonvolatile; 799 bool rom_device; 800 bool flush_coalesced_mmio; 801 bool unmergeable; 802 uint8_t dirty_log_mask; 803 bool is_iommu; 804 RAMBlock *ram_block; 805 Object *owner; 806 /* owner as TYPE_DEVICE. Used for re-entrancy checks in MR access hotpath */ 807 DeviceState *dev; 808 809 const MemoryRegionOps *ops; 810 void *opaque; 811 MemoryRegion *container; 812 int mapped_via_alias; /* Mapped via an alias, container might be NULL */ 813 Int128 size; 814 hwaddr addr; 815 void (*destructor)(MemoryRegion *mr); 816 uint64_t align; 817 bool terminates; 818 bool ram_device; 819 bool enabled; 820 bool warning_printed; /* For reservations */ 821 uint8_t vga_logging_count; 822 MemoryRegion *alias; 823 hwaddr alias_offset; 824 int32_t priority; 825 QTAILQ_HEAD(, MemoryRegion) subregions; 826 QTAILQ_ENTRY(MemoryRegion) subregions_link; 827 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced; 828 const char *name; 829 unsigned ioeventfd_nb; 830 MemoryRegionIoeventfd *ioeventfds; 831 RamDiscardManager *rdm; /* Only for RAM */ 832 833 /* For devices designed to perform re-entrant IO into their own IO MRs */ 834 bool disable_reentrancy_guard; 835 }; 836 837 struct IOMMUMemoryRegion { 838 MemoryRegion parent_obj; 839 840 QLIST_HEAD(, IOMMUNotifier) iommu_notify; 841 IOMMUNotifierFlag iommu_notify_flags; 842 }; 843 844 #define IOMMU_NOTIFIER_FOREACH(n, mr) \ 845 QLIST_FOREACH((n), &(mr)->iommu_notify, node) 846 847 #define MEMORY_LISTENER_PRIORITY_MIN 0 848 #define MEMORY_LISTENER_PRIORITY_ACCEL 10 849 #define MEMORY_LISTENER_PRIORITY_DEV_BACKEND 10 850 851 /** 852 * struct MemoryListener: callbacks structure for updates to the physical memory map 853 * 854 * Allows a component to adjust to changes in the guest-visible memory map. 855 * Use with memory_listener_register() and memory_listener_unregister(). 856 */ 857 struct MemoryListener { 858 /** 859 * @begin: 860 * 861 * Called at the beginning of an address space update transaction. 862 * Followed by calls to #MemoryListener.region_add(), 863 * #MemoryListener.region_del(), #MemoryListener.region_nop(), 864 * #MemoryListener.log_start() and #MemoryListener.log_stop() in 865 * increasing address order. 866 * 867 * @listener: The #MemoryListener. 868 */ 869 void (*begin)(MemoryListener *listener); 870 871 /** 872 * @commit: 873 * 874 * Called at the end of an address space update transaction, 875 * after the last call to #MemoryListener.region_add(), 876 * #MemoryListener.region_del() or #MemoryListener.region_nop(), 877 * #MemoryListener.log_start() and #MemoryListener.log_stop(). 878 * 879 * @listener: The #MemoryListener. 880 */ 881 void (*commit)(MemoryListener *listener); 882 883 /** 884 * @region_add: 885 * 886 * Called during an address space update transaction, 887 * for a section of the address space that is new in this address space 888 * space since the last transaction. 889 * 890 * @listener: The #MemoryListener. 891 * @section: The new #MemoryRegionSection. 892 */ 893 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 894 895 /** 896 * @region_del: 897 * 898 * Called during an address space update transaction, 899 * for a section of the address space that has disappeared in the address 900 * space since the last transaction. 901 * 902 * @listener: The #MemoryListener. 903 * @section: The old #MemoryRegionSection. 904 */ 905 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 906 907 /** 908 * @region_nop: 909 * 910 * Called during an address space update transaction, 911 * for a section of the address space that is in the same place in the address 912 * space as in the last transaction. 913 * 914 * @listener: The #MemoryListener. 915 * @section: The #MemoryRegionSection. 916 */ 917 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 918 919 /** 920 * @log_start: 921 * 922 * Called during an address space update transaction, after 923 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or 924 * #MemoryListener.region_nop(), if dirty memory logging clients have 925 * become active since the last transaction. 926 * 927 * @listener: The #MemoryListener. 928 * @section: The #MemoryRegionSection. 929 * @old: A bitmap of dirty memory logging clients that were active in 930 * the previous transaction. 931 * @new: A bitmap of dirty memory logging clients that are active in 932 * the current transaction. 933 */ 934 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 935 int old, int new); 936 937 /** 938 * @log_stop: 939 * 940 * Called during an address space update transaction, after 941 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or 942 * #MemoryListener.region_nop() and possibly after 943 * #MemoryListener.log_start(), if dirty memory logging clients have 944 * become inactive since the last transaction. 945 * 946 * @listener: The #MemoryListener. 947 * @section: The #MemoryRegionSection. 948 * @old: A bitmap of dirty memory logging clients that were active in 949 * the previous transaction. 950 * @new: A bitmap of dirty memory logging clients that are active in 951 * the current transaction. 952 */ 953 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 954 int old, int new); 955 956 /** 957 * @log_sync: 958 * 959 * Called by memory_region_snapshot_and_clear_dirty() and 960 * memory_global_dirty_log_sync(), before accessing QEMU's "official" 961 * copy of the dirty memory bitmap for a #MemoryRegionSection. 962 * 963 * @listener: The #MemoryListener. 964 * @section: The #MemoryRegionSection. 965 */ 966 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 967 968 /** 969 * @log_sync_global: 970 * 971 * This is the global version of @log_sync when the listener does 972 * not have a way to synchronize the log with finer granularity. 973 * When the listener registers with @log_sync_global defined, then 974 * its @log_sync must be NULL. Vice versa. 975 * 976 * @listener: The #MemoryListener. 977 * @last_stage: The last stage to synchronize the log during migration. 978 * The caller should guarantee that the synchronization with true for 979 * @last_stage is triggered for once after all VCPUs have been stopped. 980 */ 981 void (*log_sync_global)(MemoryListener *listener, bool last_stage); 982 983 /** 984 * @log_clear: 985 * 986 * Called before reading the dirty memory bitmap for a 987 * #MemoryRegionSection. 988 * 989 * @listener: The #MemoryListener. 990 * @section: The #MemoryRegionSection. 991 */ 992 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section); 993 994 /** 995 * @log_global_start: 996 * 997 * Called by memory_global_dirty_log_start(), which 998 * enables the %DIRTY_LOG_MIGRATION client on all memory regions in 999 * the address space. #MemoryListener.log_global_start() is also 1000 * called when a #MemoryListener is added, if global dirty logging is 1001 * active at that time. 1002 * 1003 * @listener: The #MemoryListener. 1004 * @errp: pointer to Error*, to store an error if it happens. 1005 * 1006 * Return: true on success, else false setting @errp with error. 1007 */ 1008 bool (*log_global_start)(MemoryListener *listener, Error **errp); 1009 1010 /** 1011 * @log_global_stop: 1012 * 1013 * Called by memory_global_dirty_log_stop(), which 1014 * disables the %DIRTY_LOG_MIGRATION client on all memory regions in 1015 * the address space. 1016 * 1017 * @listener: The #MemoryListener. 1018 */ 1019 void (*log_global_stop)(MemoryListener *listener); 1020 1021 /** 1022 * @log_global_after_sync: 1023 * 1024 * Called after reading the dirty memory bitmap 1025 * for any #MemoryRegionSection. 1026 * 1027 * @listener: The #MemoryListener. 1028 */ 1029 void (*log_global_after_sync)(MemoryListener *listener); 1030 1031 /** 1032 * @eventfd_add: 1033 * 1034 * Called during an address space update transaction, 1035 * for a section of the address space that has had a new ioeventfd 1036 * registration since the last transaction. 1037 * 1038 * @listener: The #MemoryListener. 1039 * @section: The new #MemoryRegionSection. 1040 * @match_data: The @match_data parameter for the new ioeventfd. 1041 * @data: The @data parameter for the new ioeventfd. 1042 * @e: The #EventNotifier parameter for the new ioeventfd. 1043 */ 1044 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 1045 bool match_data, uint64_t data, EventNotifier *e); 1046 1047 /** 1048 * @eventfd_del: 1049 * 1050 * Called during an address space update transaction, 1051 * for a section of the address space that has dropped an ioeventfd 1052 * registration since the last transaction. 1053 * 1054 * @listener: The #MemoryListener. 1055 * @section: The new #MemoryRegionSection. 1056 * @match_data: The @match_data parameter for the dropped ioeventfd. 1057 * @data: The @data parameter for the dropped ioeventfd. 1058 * @e: The #EventNotifier parameter for the dropped ioeventfd. 1059 */ 1060 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 1061 bool match_data, uint64_t data, EventNotifier *e); 1062 1063 /** 1064 * @coalesced_io_add: 1065 * 1066 * Called during an address space update transaction, 1067 * for a section of the address space that has had a new coalesced 1068 * MMIO range registration since the last transaction. 1069 * 1070 * @listener: The #MemoryListener. 1071 * @section: The new #MemoryRegionSection. 1072 * @addr: The starting address for the coalesced MMIO range. 1073 * @len: The length of the coalesced MMIO range. 1074 */ 1075 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section, 1076 hwaddr addr, hwaddr len); 1077 1078 /** 1079 * @coalesced_io_del: 1080 * 1081 * Called during an address space update transaction, 1082 * for a section of the address space that has dropped a coalesced 1083 * MMIO range since the last transaction. 1084 * 1085 * @listener: The #MemoryListener. 1086 * @section: The new #MemoryRegionSection. 1087 * @addr: The starting address for the coalesced MMIO range. 1088 * @len: The length of the coalesced MMIO range. 1089 */ 1090 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section, 1091 hwaddr addr, hwaddr len); 1092 /** 1093 * @priority: 1094 * 1095 * Govern the order in which memory listeners are invoked. Lower priorities 1096 * are invoked earlier for "add" or "start" callbacks, and later for "delete" 1097 * or "stop" callbacks. 1098 */ 1099 unsigned priority; 1100 1101 /** 1102 * @name: 1103 * 1104 * Name of the listener. It can be used in contexts where we'd like to 1105 * identify one memory listener with the rest. 1106 */ 1107 const char *name; 1108 1109 /* private: */ 1110 AddressSpace *address_space; 1111 QTAILQ_ENTRY(MemoryListener) link; 1112 QTAILQ_ENTRY(MemoryListener) link_as; 1113 }; 1114 1115 /** 1116 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects 1117 */ 1118 struct AddressSpace { 1119 /* private: */ 1120 struct rcu_head rcu; 1121 char *name; 1122 MemoryRegion *root; 1123 1124 /* Accessed via RCU. */ 1125 struct FlatView *current_map; 1126 1127 int ioeventfd_nb; 1128 int ioeventfd_notifiers; 1129 struct MemoryRegionIoeventfd *ioeventfds; 1130 QTAILQ_HEAD(, MemoryListener) listeners; 1131 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 1132 }; 1133 1134 typedef struct AddressSpaceDispatch AddressSpaceDispatch; 1135 typedef struct FlatRange FlatRange; 1136 1137 /* Flattened global view of current active memory hierarchy. Kept in sorted 1138 * order. 1139 */ 1140 struct FlatView { 1141 struct rcu_head rcu; 1142 unsigned ref; 1143 FlatRange *ranges; 1144 unsigned nr; 1145 unsigned nr_allocated; 1146 struct AddressSpaceDispatch *dispatch; 1147 MemoryRegion *root; 1148 }; 1149 1150 static inline FlatView *address_space_to_flatview(AddressSpace *as) 1151 { 1152 return qatomic_rcu_read(&as->current_map); 1153 } 1154 1155 /** 1156 * typedef flatview_cb: callback for flatview_for_each_range() 1157 * 1158 * @start: start address of the range within the FlatView 1159 * @len: length of the range in bytes 1160 * @mr: MemoryRegion covering this range 1161 * @offset_in_region: offset of the first byte of the range within @mr 1162 * @opaque: data pointer passed to flatview_for_each_range() 1163 * 1164 * Returns: true to stop the iteration, false to keep going. 1165 */ 1166 typedef bool (*flatview_cb)(Int128 start, 1167 Int128 len, 1168 const MemoryRegion *mr, 1169 hwaddr offset_in_region, 1170 void *opaque); 1171 1172 /** 1173 * flatview_for_each_range: Iterate through a FlatView 1174 * @fv: the FlatView to iterate through 1175 * @cb: function to call for each range 1176 * @opaque: opaque data pointer to pass to @cb 1177 * 1178 * A FlatView is made up of a list of non-overlapping ranges, each of 1179 * which is a slice of a MemoryRegion. This function iterates through 1180 * each range in @fv, calling @cb. The callback function can terminate 1181 * iteration early by returning 'true'. 1182 */ 1183 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque); 1184 1185 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a, 1186 MemoryRegionSection *b) 1187 { 1188 return a->mr == b->mr && 1189 a->fv == b->fv && 1190 a->offset_within_region == b->offset_within_region && 1191 a->offset_within_address_space == b->offset_within_address_space && 1192 int128_eq(a->size, b->size) && 1193 a->readonly == b->readonly && 1194 a->nonvolatile == b->nonvolatile; 1195 } 1196 1197 /** 1198 * memory_region_section_new_copy: Copy a memory region section 1199 * 1200 * Allocate memory for a new copy, copy the memory region section, and 1201 * properly take a reference on all relevant members. 1202 * 1203 * @s: the #MemoryRegionSection to copy 1204 */ 1205 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s); 1206 1207 /** 1208 * memory_region_section_new_copy: Free a copied memory region section 1209 * 1210 * Free a copy of a memory section created via memory_region_section_new_copy(). 1211 * properly dropping references on all relevant members. 1212 * 1213 * @s: the #MemoryRegionSection to copy 1214 */ 1215 void memory_region_section_free_copy(MemoryRegionSection *s); 1216 1217 /** 1218 * memory_region_init: Initialize a memory region 1219 * 1220 * The region typically acts as a container for other memory regions. Use 1221 * memory_region_add_subregion() to add subregions. 1222 * 1223 * @mr: the #MemoryRegion to be initialized 1224 * @owner: the object that tracks the region's reference count 1225 * @name: used for debugging; not visible to the user or ABI 1226 * @size: size of the region; any subregions beyond this size will be clipped 1227 */ 1228 void memory_region_init(MemoryRegion *mr, 1229 Object *owner, 1230 const char *name, 1231 uint64_t size); 1232 1233 /** 1234 * memory_region_ref: Add 1 to a memory region's reference count 1235 * 1236 * Whenever memory regions are accessed outside the BQL, they need to be 1237 * preserved against hot-unplug. MemoryRegions actually do not have their 1238 * own reference count; they piggyback on a QOM object, their "owner". 1239 * This function adds a reference to the owner. 1240 * 1241 * All MemoryRegions must have an owner if they can disappear, even if the 1242 * device they belong to operates exclusively under the BQL. This is because 1243 * the region could be returned at any time by memory_region_find, and this 1244 * is usually under guest control. 1245 * 1246 * @mr: the #MemoryRegion 1247 */ 1248 void memory_region_ref(MemoryRegion *mr); 1249 1250 /** 1251 * memory_region_unref: Remove 1 to a memory region's reference count 1252 * 1253 * Whenever memory regions are accessed outside the BQL, they need to be 1254 * preserved against hot-unplug. MemoryRegions actually do not have their 1255 * own reference count; they piggyback on a QOM object, their "owner". 1256 * This function removes a reference to the owner and possibly destroys it. 1257 * 1258 * @mr: the #MemoryRegion 1259 */ 1260 void memory_region_unref(MemoryRegion *mr); 1261 1262 /** 1263 * memory_region_init_io: Initialize an I/O memory region. 1264 * 1265 * Accesses into the region will cause the callbacks in @ops to be called. 1266 * if @size is nonzero, subregions will be clipped to @size. 1267 * 1268 * @mr: the #MemoryRegion to be initialized. 1269 * @owner: the object that tracks the region's reference count 1270 * @ops: a structure containing read and write callbacks to be used when 1271 * I/O is performed on the region. 1272 * @opaque: passed to the read and write callbacks of the @ops structure. 1273 * @name: used for debugging; not visible to the user or ABI 1274 * @size: size of the region. 1275 */ 1276 void memory_region_init_io(MemoryRegion *mr, 1277 Object *owner, 1278 const MemoryRegionOps *ops, 1279 void *opaque, 1280 const char *name, 1281 uint64_t size); 1282 1283 /** 1284 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses 1285 * into the region will modify memory 1286 * directly. 1287 * 1288 * @mr: the #MemoryRegion to be initialized. 1289 * @owner: the object that tracks the region's reference count 1290 * @name: Region name, becomes part of RAMBlock name used in migration stream 1291 * must be unique within any device 1292 * @size: size of the region. 1293 * @errp: pointer to Error*, to store an error if it happens. 1294 * 1295 * Note that this function does not do anything to cause the data in the 1296 * RAM memory region to be migrated; that is the responsibility of the caller. 1297 * 1298 * Return: true on success, else false setting @errp with error. 1299 */ 1300 bool memory_region_init_ram_nomigrate(MemoryRegion *mr, 1301 Object *owner, 1302 const char *name, 1303 uint64_t size, 1304 Error **errp); 1305 1306 /** 1307 * memory_region_init_ram_flags_nomigrate: Initialize RAM memory region. 1308 * Accesses into the region will 1309 * modify memory directly. 1310 * 1311 * @mr: the #MemoryRegion to be initialized. 1312 * @owner: the object that tracks the region's reference count 1313 * @name: Region name, becomes part of RAMBlock name used in migration stream 1314 * must be unique within any device 1315 * @size: size of the region. 1316 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE, 1317 * RAM_GUEST_MEMFD. 1318 * @errp: pointer to Error*, to store an error if it happens. 1319 * 1320 * Note that this function does not do anything to cause the data in the 1321 * RAM memory region to be migrated; that is the responsibility of the caller. 1322 * 1323 * Return: true on success, else false setting @errp with error. 1324 */ 1325 bool memory_region_init_ram_flags_nomigrate(MemoryRegion *mr, 1326 Object *owner, 1327 const char *name, 1328 uint64_t size, 1329 uint32_t ram_flags, 1330 Error **errp); 1331 1332 /** 1333 * memory_region_init_resizeable_ram: Initialize memory region with resizable 1334 * RAM. Accesses into the region will 1335 * modify memory directly. Only an initial 1336 * portion of this RAM is actually used. 1337 * Changing the size while migrating 1338 * can result in the migration being 1339 * canceled. 1340 * 1341 * @mr: the #MemoryRegion to be initialized. 1342 * @owner: the object that tracks the region's reference count 1343 * @name: Region name, becomes part of RAMBlock name used in migration stream 1344 * must be unique within any device 1345 * @size: used size of the region. 1346 * @max_size: max size of the region. 1347 * @resized: callback to notify owner about used size change. 1348 * @errp: pointer to Error*, to store an error if it happens. 1349 * 1350 * Note that this function does not do anything to cause the data in the 1351 * RAM memory region to be migrated; that is the responsibility of the caller. 1352 * 1353 * Return: true on success, else false setting @errp with error. 1354 */ 1355 bool memory_region_init_resizeable_ram(MemoryRegion *mr, 1356 Object *owner, 1357 const char *name, 1358 uint64_t size, 1359 uint64_t max_size, 1360 void (*resized)(const char*, 1361 uint64_t length, 1362 void *host), 1363 Error **errp); 1364 #ifdef CONFIG_POSIX 1365 1366 /** 1367 * memory_region_init_ram_from_file: Initialize RAM memory region with a 1368 * mmap-ed backend. 1369 * 1370 * @mr: the #MemoryRegion to be initialized. 1371 * @owner: the object that tracks the region's reference count 1372 * @name: Region name, becomes part of RAMBlock name used in migration stream 1373 * must be unique within any device 1374 * @size: size of the region. 1375 * @align: alignment of the region base address; if 0, the default alignment 1376 * (getpagesize()) will be used. 1377 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM, 1378 * RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY, 1379 * RAM_READONLY_FD, RAM_GUEST_MEMFD 1380 * @path: the path in which to allocate the RAM. 1381 * @offset: offset within the file referenced by path 1382 * @errp: pointer to Error*, to store an error if it happens. 1383 * 1384 * Note that this function does not do anything to cause the data in the 1385 * RAM memory region to be migrated; that is the responsibility of the caller. 1386 * 1387 * Return: true on success, else false setting @errp with error. 1388 */ 1389 bool memory_region_init_ram_from_file(MemoryRegion *mr, 1390 Object *owner, 1391 const char *name, 1392 uint64_t size, 1393 uint64_t align, 1394 uint32_t ram_flags, 1395 const char *path, 1396 ram_addr_t offset, 1397 Error **errp); 1398 1399 /** 1400 * memory_region_init_ram_from_fd: Initialize RAM memory region with a 1401 * mmap-ed backend. 1402 * 1403 * @mr: the #MemoryRegion to be initialized. 1404 * @owner: the object that tracks the region's reference count 1405 * @name: the name of the region. 1406 * @size: size of the region. 1407 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM, 1408 * RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY, 1409 * RAM_READONLY_FD, RAM_GUEST_MEMFD 1410 * @fd: the fd to mmap. 1411 * @offset: offset within the file referenced by fd 1412 * @errp: pointer to Error*, to store an error if it happens. 1413 * 1414 * Note that this function does not do anything to cause the data in the 1415 * RAM memory region to be migrated; that is the responsibility of the caller. 1416 * 1417 * Return: true on success, else false setting @errp with error. 1418 */ 1419 bool memory_region_init_ram_from_fd(MemoryRegion *mr, 1420 Object *owner, 1421 const char *name, 1422 uint64_t size, 1423 uint32_t ram_flags, 1424 int fd, 1425 ram_addr_t offset, 1426 Error **errp); 1427 #endif 1428 1429 /** 1430 * memory_region_init_ram_ptr: Initialize RAM memory region from a 1431 * user-provided pointer. Accesses into the 1432 * region will modify memory directly. 1433 * 1434 * @mr: the #MemoryRegion to be initialized. 1435 * @owner: the object that tracks the region's reference count 1436 * @name: Region name, becomes part of RAMBlock name used in migration stream 1437 * must be unique within any device 1438 * @size: size of the region. 1439 * @ptr: memory to be mapped; must contain at least @size bytes. 1440 * 1441 * Note that this function does not do anything to cause the data in the 1442 * RAM memory region to be migrated; that is the responsibility of the caller. 1443 */ 1444 void memory_region_init_ram_ptr(MemoryRegion *mr, 1445 Object *owner, 1446 const char *name, 1447 uint64_t size, 1448 void *ptr); 1449 1450 /** 1451 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from 1452 * a user-provided pointer. 1453 * 1454 * A RAM device represents a mapping to a physical device, such as to a PCI 1455 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped 1456 * into the VM address space and access to the region will modify memory 1457 * directly. However, the memory region should not be included in a memory 1458 * dump (device may not be enabled/mapped at the time of the dump), and 1459 * operations incompatible with manipulating MMIO should be avoided. Replaces 1460 * skip_dump flag. 1461 * 1462 * @mr: the #MemoryRegion to be initialized. 1463 * @owner: the object that tracks the region's reference count 1464 * @name: the name of the region. 1465 * @size: size of the region. 1466 * @ptr: memory to be mapped; must contain at least @size bytes. 1467 * 1468 * Note that this function does not do anything to cause the data in the 1469 * RAM memory region to be migrated; that is the responsibility of the caller. 1470 * (For RAM device memory regions, migrating the contents rarely makes sense.) 1471 */ 1472 void memory_region_init_ram_device_ptr(MemoryRegion *mr, 1473 Object *owner, 1474 const char *name, 1475 uint64_t size, 1476 void *ptr); 1477 1478 /** 1479 * memory_region_init_alias: Initialize a memory region that aliases all or a 1480 * part of another memory region. 1481 * 1482 * @mr: the #MemoryRegion to be initialized. 1483 * @owner: the object that tracks the region's reference count 1484 * @name: used for debugging; not visible to the user or ABI 1485 * @orig: the region to be referenced; @mr will be equivalent to 1486 * @orig between @offset and @offset + @size - 1. 1487 * @offset: start of the section in @orig to be referenced. 1488 * @size: size of the region. 1489 */ 1490 void memory_region_init_alias(MemoryRegion *mr, 1491 Object *owner, 1492 const char *name, 1493 MemoryRegion *orig, 1494 hwaddr offset, 1495 uint64_t size); 1496 1497 /** 1498 * memory_region_init_rom_nomigrate: Initialize a ROM memory region. 1499 * 1500 * This has the same effect as calling memory_region_init_ram_nomigrate() 1501 * and then marking the resulting region read-only with 1502 * memory_region_set_readonly(). 1503 * 1504 * Note that this function does not do anything to cause the data in the 1505 * RAM side of the memory region to be migrated; that is the responsibility 1506 * of the caller. 1507 * 1508 * @mr: the #MemoryRegion to be initialized. 1509 * @owner: the object that tracks the region's reference count 1510 * @name: Region name, becomes part of RAMBlock name used in migration stream 1511 * must be unique within any device 1512 * @size: size of the region. 1513 * @errp: pointer to Error*, to store an error if it happens. 1514 * 1515 * Return: true on success, else false setting @errp with error. 1516 */ 1517 bool memory_region_init_rom_nomigrate(MemoryRegion *mr, 1518 Object *owner, 1519 const char *name, 1520 uint64_t size, 1521 Error **errp); 1522 1523 /** 1524 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region. 1525 * Writes are handled via callbacks. 1526 * 1527 * Note that this function does not do anything to cause the data in the 1528 * RAM side of the memory region to be migrated; that is the responsibility 1529 * of the caller. 1530 * 1531 * @mr: the #MemoryRegion to be initialized. 1532 * @owner: the object that tracks the region's reference count 1533 * @ops: callbacks for write access handling (must not be NULL). 1534 * @opaque: passed to the read and write callbacks of the @ops structure. 1535 * @name: Region name, becomes part of RAMBlock name used in migration stream 1536 * must be unique within any device 1537 * @size: size of the region. 1538 * @errp: pointer to Error*, to store an error if it happens. 1539 * 1540 * Return: true on success, else false setting @errp with error. 1541 */ 1542 bool memory_region_init_rom_device_nomigrate(MemoryRegion *mr, 1543 Object *owner, 1544 const MemoryRegionOps *ops, 1545 void *opaque, 1546 const char *name, 1547 uint64_t size, 1548 Error **errp); 1549 1550 /** 1551 * memory_region_init_iommu: Initialize a memory region of a custom type 1552 * that translates addresses 1553 * 1554 * An IOMMU region translates addresses and forwards accesses to a target 1555 * memory region. 1556 * 1557 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION. 1558 * @_iommu_mr should be a pointer to enough memory for an instance of 1559 * that subclass, @instance_size is the size of that subclass, and 1560 * @mrtypename is its name. This function will initialize @_iommu_mr as an 1561 * instance of the subclass, and its methods will then be called to handle 1562 * accesses to the memory region. See the documentation of 1563 * #IOMMUMemoryRegionClass for further details. 1564 * 1565 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized 1566 * @instance_size: the IOMMUMemoryRegion subclass instance size 1567 * @mrtypename: the type name of the #IOMMUMemoryRegion 1568 * @owner: the object that tracks the region's reference count 1569 * @name: used for debugging; not visible to the user or ABI 1570 * @size: size of the region. 1571 */ 1572 void memory_region_init_iommu(void *_iommu_mr, 1573 size_t instance_size, 1574 const char *mrtypename, 1575 Object *owner, 1576 const char *name, 1577 uint64_t size); 1578 1579 /** 1580 * memory_region_init_ram - Initialize RAM memory region. Accesses into the 1581 * region will modify memory directly. 1582 * 1583 * @mr: the #MemoryRegion to be initialized 1584 * @owner: the object that tracks the region's reference count (must be 1585 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL) 1586 * @name: name of the memory region 1587 * @size: size of the region in bytes 1588 * @errp: pointer to Error*, to store an error if it happens. 1589 * 1590 * This function allocates RAM for a board model or device, and 1591 * arranges for it to be migrated (by calling vmstate_register_ram() 1592 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1593 * @owner is NULL). 1594 * 1595 * TODO: Currently we restrict @owner to being either NULL (for 1596 * global RAM regions with no owner) or devices, so that we can 1597 * give the RAM block a unique name for migration purposes. 1598 * We should lift this restriction and allow arbitrary Objects. 1599 * If you pass a non-NULL non-device @owner then we will assert. 1600 * 1601 * Return: true on success, else false setting @errp with error. 1602 */ 1603 bool memory_region_init_ram(MemoryRegion *mr, 1604 Object *owner, 1605 const char *name, 1606 uint64_t size, 1607 Error **errp); 1608 1609 /** 1610 * memory_region_init_rom: Initialize a ROM memory region. 1611 * 1612 * This has the same effect as calling memory_region_init_ram() 1613 * and then marking the resulting region read-only with 1614 * memory_region_set_readonly(). This includes arranging for the 1615 * contents to be migrated. 1616 * 1617 * TODO: Currently we restrict @owner to being either NULL (for 1618 * global RAM regions with no owner) or devices, so that we can 1619 * give the RAM block a unique name for migration purposes. 1620 * We should lift this restriction and allow arbitrary Objects. 1621 * If you pass a non-NULL non-device @owner then we will assert. 1622 * 1623 * @mr: the #MemoryRegion to be initialized. 1624 * @owner: the object that tracks the region's reference count 1625 * @name: Region name, becomes part of RAMBlock name used in migration stream 1626 * must be unique within any device 1627 * @size: size of the region. 1628 * @errp: pointer to Error*, to store an error if it happens. 1629 * 1630 * Return: true on success, else false setting @errp with error. 1631 */ 1632 bool memory_region_init_rom(MemoryRegion *mr, 1633 Object *owner, 1634 const char *name, 1635 uint64_t size, 1636 Error **errp); 1637 1638 /** 1639 * memory_region_init_rom_device: Initialize a ROM memory region. 1640 * Writes are handled via callbacks. 1641 * 1642 * This function initializes a memory region backed by RAM for reads 1643 * and callbacks for writes, and arranges for the RAM backing to 1644 * be migrated (by calling vmstate_register_ram() 1645 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1646 * @owner is NULL). 1647 * 1648 * TODO: Currently we restrict @owner to being either NULL (for 1649 * global RAM regions with no owner) or devices, so that we can 1650 * give the RAM block a unique name for migration purposes. 1651 * We should lift this restriction and allow arbitrary Objects. 1652 * If you pass a non-NULL non-device @owner then we will assert. 1653 * 1654 * @mr: the #MemoryRegion to be initialized. 1655 * @owner: the object that tracks the region's reference count 1656 * @ops: callbacks for write access handling (must not be NULL). 1657 * @opaque: passed to the read and write callbacks of the @ops structure. 1658 * @name: Region name, becomes part of RAMBlock name used in migration stream 1659 * must be unique within any device 1660 * @size: size of the region. 1661 * @errp: pointer to Error*, to store an error if it happens. 1662 * 1663 * Return: true on success, else false setting @errp with error. 1664 */ 1665 bool memory_region_init_rom_device(MemoryRegion *mr, 1666 Object *owner, 1667 const MemoryRegionOps *ops, 1668 void *opaque, 1669 const char *name, 1670 uint64_t size, 1671 Error **errp); 1672 1673 1674 /** 1675 * memory_region_owner: get a memory region's owner. 1676 * 1677 * @mr: the memory region being queried. 1678 */ 1679 Object *memory_region_owner(MemoryRegion *mr); 1680 1681 /** 1682 * memory_region_size: get a memory region's size. 1683 * 1684 * @mr: the memory region being queried. 1685 */ 1686 uint64_t memory_region_size(MemoryRegion *mr); 1687 1688 /** 1689 * memory_region_is_ram: check whether a memory region is random access 1690 * 1691 * Returns %true if a memory region is random access. 1692 * 1693 * @mr: the memory region being queried 1694 */ 1695 static inline bool memory_region_is_ram(MemoryRegion *mr) 1696 { 1697 return mr->ram; 1698 } 1699 1700 /** 1701 * memory_region_is_ram_device: check whether a memory region is a ram device 1702 * 1703 * Returns %true if a memory region is a device backed ram region 1704 * 1705 * @mr: the memory region being queried 1706 */ 1707 bool memory_region_is_ram_device(MemoryRegion *mr); 1708 1709 /** 1710 * memory_region_is_romd: check whether a memory region is in ROMD mode 1711 * 1712 * Returns %true if a memory region is a ROM device and currently set to allow 1713 * direct reads. 1714 * 1715 * @mr: the memory region being queried 1716 */ 1717 static inline bool memory_region_is_romd(MemoryRegion *mr) 1718 { 1719 return mr->rom_device && mr->romd_mode; 1720 } 1721 1722 /** 1723 * memory_region_is_protected: check whether a memory region is protected 1724 * 1725 * Returns %true if a memory region is protected RAM and cannot be accessed 1726 * via standard mechanisms, e.g. DMA. 1727 * 1728 * @mr: the memory region being queried 1729 */ 1730 bool memory_region_is_protected(MemoryRegion *mr); 1731 1732 /** 1733 * memory_region_has_guest_memfd: check whether a memory region has guest_memfd 1734 * associated 1735 * 1736 * Returns %true if a memory region's ram_block has valid guest_memfd assigned. 1737 * 1738 * @mr: the memory region being queried 1739 */ 1740 bool memory_region_has_guest_memfd(MemoryRegion *mr); 1741 1742 /** 1743 * memory_region_get_iommu: check whether a memory region is an iommu 1744 * 1745 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu, 1746 * otherwise NULL. 1747 * 1748 * @mr: the memory region being queried 1749 */ 1750 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr) 1751 { 1752 if (mr->alias) { 1753 return memory_region_get_iommu(mr->alias); 1754 } 1755 if (mr->is_iommu) { 1756 return (IOMMUMemoryRegion *) mr; 1757 } 1758 return NULL; 1759 } 1760 1761 /** 1762 * memory_region_get_iommu_class_nocheck: returns iommu memory region class 1763 * if an iommu or NULL if not 1764 * 1765 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu, 1766 * otherwise NULL. This is fast path avoiding QOM checking, use with caution. 1767 * 1768 * @iommu_mr: the memory region being queried 1769 */ 1770 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck( 1771 IOMMUMemoryRegion *iommu_mr) 1772 { 1773 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class); 1774 } 1775 1776 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL) 1777 1778 /** 1779 * memory_region_iommu_get_min_page_size: get minimum supported page size 1780 * for an iommu 1781 * 1782 * Returns minimum supported page size for an iommu. 1783 * 1784 * @iommu_mr: the memory region being queried 1785 */ 1786 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr); 1787 1788 /** 1789 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 1790 * 1791 * Note: for any IOMMU implementation, an in-place mapping change 1792 * should be notified with an UNMAP followed by a MAP. 1793 * 1794 * @iommu_mr: the memory region that was changed 1795 * @iommu_idx: the IOMMU index for the translation table which has changed 1796 * @event: TLB event with the new entry in the IOMMU translation table. 1797 * The entry replaces all old entries for the same virtual I/O address 1798 * range. 1799 */ 1800 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr, 1801 int iommu_idx, 1802 IOMMUTLBEvent event); 1803 1804 /** 1805 * memory_region_notify_iommu_one: notify a change in an IOMMU translation 1806 * entry to a single notifier 1807 * 1808 * This works just like memory_region_notify_iommu(), but it only 1809 * notifies a specific notifier, not all of them. 1810 * 1811 * @notifier: the notifier to be notified 1812 * @event: TLB event with the new entry in the IOMMU translation table. 1813 * The entry replaces all old entries for the same virtual I/O address 1814 * range. 1815 */ 1816 void memory_region_notify_iommu_one(IOMMUNotifier *notifier, 1817 IOMMUTLBEvent *event); 1818 1819 /** 1820 * memory_region_unmap_iommu_notifier_range: notify a unmap for an IOMMU 1821 * translation that covers the 1822 * range of a notifier 1823 * 1824 * @notifier: the notifier to be notified 1825 */ 1826 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier); 1827 1828 1829 /** 1830 * memory_region_register_iommu_notifier: register a notifier for changes to 1831 * IOMMU translation entries. 1832 * 1833 * Returns 0 on success, or a negative errno otherwise. In particular, 1834 * -EINVAL indicates that at least one of the attributes of the notifier 1835 * is not supported (flag/range) by the IOMMU memory region. In case of error 1836 * the error object must be created. 1837 * 1838 * @mr: the memory region to observe 1839 * @n: the IOMMUNotifier to be added; the notify callback receives a 1840 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer 1841 * ceases to be valid on exit from the notifier. 1842 * @errp: pointer to Error*, to store an error if it happens. 1843 */ 1844 int memory_region_register_iommu_notifier(MemoryRegion *mr, 1845 IOMMUNotifier *n, Error **errp); 1846 1847 /** 1848 * memory_region_iommu_replay: replay existing IOMMU translations to 1849 * a notifier with the minimum page granularity returned by 1850 * mr->iommu_ops->get_page_size(). 1851 * 1852 * Note: this is not related to record-and-replay functionality. 1853 * 1854 * @iommu_mr: the memory region to observe 1855 * @n: the notifier to which to replay iommu mappings 1856 */ 1857 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n); 1858 1859 /** 1860 * memory_region_unregister_iommu_notifier: unregister a notifier for 1861 * changes to IOMMU translation entries. 1862 * 1863 * @mr: the memory region which was observed and for which notity_stopped() 1864 * needs to be called 1865 * @n: the notifier to be removed. 1866 */ 1867 void memory_region_unregister_iommu_notifier(MemoryRegion *mr, 1868 IOMMUNotifier *n); 1869 1870 /** 1871 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is 1872 * defined on the IOMMU. 1873 * 1874 * Returns 0 on success, or a negative errno otherwise. In particular, 1875 * -EINVAL indicates that the IOMMU does not support the requested 1876 * attribute. 1877 * 1878 * @iommu_mr: the memory region 1879 * @attr: the requested attribute 1880 * @data: a pointer to the requested attribute data 1881 */ 1882 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr, 1883 enum IOMMUMemoryRegionAttr attr, 1884 void *data); 1885 1886 /** 1887 * memory_region_iommu_attrs_to_index: return the IOMMU index to 1888 * use for translations with the given memory transaction attributes. 1889 * 1890 * @iommu_mr: the memory region 1891 * @attrs: the memory transaction attributes 1892 */ 1893 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr, 1894 MemTxAttrs attrs); 1895 1896 /** 1897 * memory_region_iommu_num_indexes: return the total number of IOMMU 1898 * indexes that this IOMMU supports. 1899 * 1900 * @iommu_mr: the memory region 1901 */ 1902 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr); 1903 1904 /** 1905 * memory_region_iommu_set_page_size_mask: set the supported page 1906 * sizes for a given IOMMU memory region 1907 * 1908 * @iommu_mr: IOMMU memory region 1909 * @page_size_mask: supported page size mask 1910 * @errp: pointer to Error*, to store an error if it happens. 1911 */ 1912 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr, 1913 uint64_t page_size_mask, 1914 Error **errp); 1915 1916 /** 1917 * memory_region_iommu_set_iova_ranges - Set the usable IOVA ranges 1918 * for a given IOMMU MR region 1919 * 1920 * @iommu: IOMMU memory region 1921 * @iova_ranges: list of ordered IOVA ranges (at least one range) 1922 * @errp: pointer to Error*, to store an error if it happens. 1923 */ 1924 int memory_region_iommu_set_iova_ranges(IOMMUMemoryRegion *iommu, 1925 GList *iova_ranges, 1926 Error **errp); 1927 1928 /** 1929 * memory_region_name: get a memory region's name 1930 * 1931 * Returns the string that was used to initialize the memory region. 1932 * 1933 * @mr: the memory region being queried 1934 */ 1935 const char *memory_region_name(const MemoryRegion *mr); 1936 1937 /** 1938 * memory_region_is_logging: return whether a memory region is logging writes 1939 * 1940 * Returns %true if the memory region is logging writes for the given client 1941 * 1942 * @mr: the memory region being queried 1943 * @client: the client being queried 1944 */ 1945 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 1946 1947 /** 1948 * memory_region_get_dirty_log_mask: return the clients for which a 1949 * memory region is logging writes. 1950 * 1951 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 1952 * are the bit indices. 1953 * 1954 * @mr: the memory region being queried 1955 */ 1956 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 1957 1958 /** 1959 * memory_region_is_rom: check whether a memory region is ROM 1960 * 1961 * Returns %true if a memory region is read-only memory. 1962 * 1963 * @mr: the memory region being queried 1964 */ 1965 static inline bool memory_region_is_rom(MemoryRegion *mr) 1966 { 1967 return mr->ram && mr->readonly; 1968 } 1969 1970 /** 1971 * memory_region_is_nonvolatile: check whether a memory region is non-volatile 1972 * 1973 * Returns %true is a memory region is non-volatile memory. 1974 * 1975 * @mr: the memory region being queried 1976 */ 1977 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr) 1978 { 1979 return mr->nonvolatile; 1980 } 1981 1982 /** 1983 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 1984 * 1985 * Returns a file descriptor backing a file-based RAM memory region, 1986 * or -1 if the region is not a file-based RAM memory region. 1987 * 1988 * @mr: the RAM or alias memory region being queried. 1989 */ 1990 int memory_region_get_fd(MemoryRegion *mr); 1991 1992 /** 1993 * memory_region_from_host: Convert a pointer into a RAM memory region 1994 * and an offset within it. 1995 * 1996 * Given a host pointer inside a RAM memory region (created with 1997 * memory_region_init_ram() or memory_region_init_ram_ptr()), return 1998 * the MemoryRegion and the offset within it. 1999 * 2000 * Use with care; by the time this function returns, the returned pointer is 2001 * not protected by RCU anymore. If the caller is not within an RCU critical 2002 * section and does not hold the BQL, it must have other means of 2003 * protecting the pointer, such as a reference to the region that includes 2004 * the incoming ram_addr_t. 2005 * 2006 * @ptr: the host pointer to be converted 2007 * @offset: the offset within memory region 2008 */ 2009 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset); 2010 2011 /** 2012 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 2013 * 2014 * Returns a host pointer to a RAM memory region (created with 2015 * memory_region_init_ram() or memory_region_init_ram_ptr()). 2016 * 2017 * Use with care; by the time this function returns, the returned pointer is 2018 * not protected by RCU anymore. If the caller is not within an RCU critical 2019 * section and does not hold the BQL, it must have other means of 2020 * protecting the pointer, such as a reference to the region that includes 2021 * the incoming ram_addr_t. 2022 * 2023 * @mr: the memory region being queried. 2024 */ 2025 void *memory_region_get_ram_ptr(MemoryRegion *mr); 2026 2027 /* memory_region_ram_resize: Resize a RAM region. 2028 * 2029 * Resizing RAM while migrating can result in the migration being canceled. 2030 * Care has to be taken if the guest might have already detected the memory. 2031 * 2032 * @mr: a memory region created with @memory_region_init_resizeable_ram. 2033 * @newsize: the new size the region 2034 * @errp: pointer to Error*, to store an error if it happens. 2035 */ 2036 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 2037 Error **errp); 2038 2039 /** 2040 * memory_region_msync: Synchronize selected address range of 2041 * a memory mapped region 2042 * 2043 * @mr: the memory region to be msync 2044 * @addr: the initial address of the range to be sync 2045 * @size: the size of the range to be sync 2046 */ 2047 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size); 2048 2049 /** 2050 * memory_region_writeback: Trigger cache writeback for 2051 * selected address range 2052 * 2053 * @mr: the memory region to be updated 2054 * @addr: the initial address of the range to be written back 2055 * @size: the size of the range to be written back 2056 */ 2057 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size); 2058 2059 /** 2060 * memory_region_set_log: Turn dirty logging on or off for a region. 2061 * 2062 * Turns dirty logging on or off for a specified client (display, migration). 2063 * Only meaningful for RAM regions. 2064 * 2065 * @mr: the memory region being updated. 2066 * @log: whether dirty logging is to be enabled or disabled. 2067 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 2068 */ 2069 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 2070 2071 /** 2072 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 2073 * 2074 * Marks a range of bytes as dirty, after it has been dirtied outside 2075 * guest code. 2076 * 2077 * @mr: the memory region being dirtied. 2078 * @addr: the address (relative to the start of the region) being dirtied. 2079 * @size: size of the range being dirtied. 2080 */ 2081 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 2082 hwaddr size); 2083 2084 /** 2085 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range 2086 * 2087 * This function is called when the caller wants to clear the remote 2088 * dirty bitmap of a memory range within the memory region. This can 2089 * be used by e.g. KVM to manually clear dirty log when 2090 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host 2091 * kernel. 2092 * 2093 * @mr: the memory region to clear the dirty log upon 2094 * @start: start address offset within the memory region 2095 * @len: length of the memory region to clear dirty bitmap 2096 */ 2097 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start, 2098 hwaddr len); 2099 2100 /** 2101 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty 2102 * bitmap and clear it. 2103 * 2104 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and 2105 * returns the snapshot. The snapshot can then be used to query dirty 2106 * status, using memory_region_snapshot_get_dirty. Snapshotting allows 2107 * querying the same page multiple times, which is especially useful for 2108 * display updates where the scanlines often are not page aligned. 2109 * 2110 * The dirty bitmap region which gets copied into the snapshot (and 2111 * cleared afterwards) can be larger than requested. The boundaries 2112 * are rounded up/down so complete bitmap longs (covering 64 pages on 2113 * 64bit hosts) can be copied over into the bitmap snapshot. Which 2114 * isn't a problem for display updates as the extra pages are outside 2115 * the visible area, and in case the visible area changes a full 2116 * display redraw is due anyway. Should other use cases for this 2117 * function emerge we might have to revisit this implementation 2118 * detail. 2119 * 2120 * Use g_free to release DirtyBitmapSnapshot. 2121 * 2122 * @mr: the memory region being queried. 2123 * @addr: the address (relative to the start of the region) being queried. 2124 * @size: the size of the range being queried. 2125 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA. 2126 */ 2127 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr, 2128 hwaddr addr, 2129 hwaddr size, 2130 unsigned client); 2131 2132 /** 2133 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty 2134 * in the specified dirty bitmap snapshot. 2135 * 2136 * @mr: the memory region being queried. 2137 * @snap: the dirty bitmap snapshot 2138 * @addr: the address (relative to the start of the region) being queried. 2139 * @size: the size of the range being queried. 2140 */ 2141 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, 2142 DirtyBitmapSnapshot *snap, 2143 hwaddr addr, hwaddr size); 2144 2145 /** 2146 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 2147 * client. 2148 * 2149 * Marks a range of pages as no longer dirty. 2150 * 2151 * @mr: the region being updated. 2152 * @addr: the start of the subrange being cleaned. 2153 * @size: the size of the subrange being cleaned. 2154 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 2155 * %DIRTY_MEMORY_VGA. 2156 */ 2157 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 2158 hwaddr size, unsigned client); 2159 2160 /** 2161 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate 2162 * TBs (for self-modifying code). 2163 * 2164 * The MemoryRegionOps->write() callback of a ROM device must use this function 2165 * to mark byte ranges that have been modified internally, such as by directly 2166 * accessing the memory returned by memory_region_get_ram_ptr(). 2167 * 2168 * This function marks the range dirty and invalidates TBs so that TCG can 2169 * detect self-modifying code. 2170 * 2171 * @mr: the region being flushed. 2172 * @addr: the start, relative to the start of the region, of the range being 2173 * flushed. 2174 * @size: the size, in bytes, of the range being flushed. 2175 */ 2176 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size); 2177 2178 /** 2179 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 2180 * 2181 * Allows a memory region to be marked as read-only (turning it into a ROM). 2182 * only useful on RAM regions. 2183 * 2184 * @mr: the region being updated. 2185 * @readonly: whether rhe region is to be ROM or RAM. 2186 */ 2187 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 2188 2189 /** 2190 * memory_region_set_nonvolatile: Turn a memory region non-volatile 2191 * 2192 * Allows a memory region to be marked as non-volatile. 2193 * only useful on RAM regions. 2194 * 2195 * @mr: the region being updated. 2196 * @nonvolatile: whether rhe region is to be non-volatile. 2197 */ 2198 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile); 2199 2200 /** 2201 * memory_region_rom_device_set_romd: enable/disable ROMD mode 2202 * 2203 * Allows a ROM device (initialized with memory_region_init_rom_device() to 2204 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 2205 * device is mapped to guest memory and satisfies read access directly. 2206 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 2207 * Writes are always handled by the #MemoryRegion.write function. 2208 * 2209 * @mr: the memory region to be updated 2210 * @romd_mode: %true to put the region into ROMD mode 2211 */ 2212 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 2213 2214 /** 2215 * memory_region_set_coalescing: Enable memory coalescing for the region. 2216 * 2217 * Enabled writes to a region to be queued for later processing. MMIO ->write 2218 * callbacks may be delayed until a non-coalesced MMIO is issued. 2219 * Only useful for IO regions. Roughly similar to write-combining hardware. 2220 * 2221 * @mr: the memory region to be write coalesced 2222 */ 2223 void memory_region_set_coalescing(MemoryRegion *mr); 2224 2225 /** 2226 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 2227 * a region. 2228 * 2229 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 2230 * Multiple calls can be issued coalesced disjoint ranges. 2231 * 2232 * @mr: the memory region to be updated. 2233 * @offset: the start of the range within the region to be coalesced. 2234 * @size: the size of the subrange to be coalesced. 2235 */ 2236 void memory_region_add_coalescing(MemoryRegion *mr, 2237 hwaddr offset, 2238 uint64_t size); 2239 2240 /** 2241 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 2242 * 2243 * Disables any coalescing caused by memory_region_set_coalescing() or 2244 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 2245 * hardware. 2246 * 2247 * @mr: the memory region to be updated. 2248 */ 2249 void memory_region_clear_coalescing(MemoryRegion *mr); 2250 2251 /** 2252 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 2253 * accesses. 2254 * 2255 * Ensure that pending coalesced MMIO request are flushed before the memory 2256 * region is accessed. This property is automatically enabled for all regions 2257 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 2258 * 2259 * @mr: the memory region to be updated. 2260 */ 2261 void memory_region_set_flush_coalesced(MemoryRegion *mr); 2262 2263 /** 2264 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 2265 * accesses. 2266 * 2267 * Clear the automatic coalesced MMIO flushing enabled via 2268 * memory_region_set_flush_coalesced. Note that this service has no effect on 2269 * memory regions that have MMIO coalescing enabled for themselves. For them, 2270 * automatic flushing will stop once coalescing is disabled. 2271 * 2272 * @mr: the memory region to be updated. 2273 */ 2274 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 2275 2276 /** 2277 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 2278 * is written to a location. 2279 * 2280 * Marks a word in an IO region (initialized with memory_region_init_io()) 2281 * as a trigger for an eventfd event. The I/O callback will not be called. 2282 * The caller must be prepared to handle failure (that is, take the required 2283 * action if the callback _is_ called). 2284 * 2285 * @mr: the memory region being updated. 2286 * @addr: the address within @mr that is to be monitored 2287 * @size: the size of the access to trigger the eventfd 2288 * @match_data: whether to match against @data, instead of just @addr 2289 * @data: the data to match against the guest write 2290 * @e: event notifier to be triggered when @addr, @size, and @data all match. 2291 **/ 2292 void memory_region_add_eventfd(MemoryRegion *mr, 2293 hwaddr addr, 2294 unsigned size, 2295 bool match_data, 2296 uint64_t data, 2297 EventNotifier *e); 2298 2299 /** 2300 * memory_region_del_eventfd: Cancel an eventfd. 2301 * 2302 * Cancels an eventfd trigger requested by a previous 2303 * memory_region_add_eventfd() call. 2304 * 2305 * @mr: the memory region being updated. 2306 * @addr: the address within @mr that is to be monitored 2307 * @size: the size of the access to trigger the eventfd 2308 * @match_data: whether to match against @data, instead of just @addr 2309 * @data: the data to match against the guest write 2310 * @e: event notifier to be triggered when @addr, @size, and @data all match. 2311 */ 2312 void memory_region_del_eventfd(MemoryRegion *mr, 2313 hwaddr addr, 2314 unsigned size, 2315 bool match_data, 2316 uint64_t data, 2317 EventNotifier *e); 2318 2319 /** 2320 * memory_region_add_subregion: Add a subregion to a container. 2321 * 2322 * Adds a subregion at @offset. The subregion may not overlap with other 2323 * subregions (except for those explicitly marked as overlapping). A region 2324 * may only be added once as a subregion (unless removed with 2325 * memory_region_del_subregion()); use memory_region_init_alias() if you 2326 * want a region to be a subregion in multiple locations. 2327 * 2328 * @mr: the region to contain the new subregion; must be a container 2329 * initialized with memory_region_init(). 2330 * @offset: the offset relative to @mr where @subregion is added. 2331 * @subregion: the subregion to be added. 2332 */ 2333 void memory_region_add_subregion(MemoryRegion *mr, 2334 hwaddr offset, 2335 MemoryRegion *subregion); 2336 /** 2337 * memory_region_add_subregion_overlap: Add a subregion to a container 2338 * with overlap. 2339 * 2340 * Adds a subregion at @offset. The subregion may overlap with other 2341 * subregions. Conflicts are resolved by having a higher @priority hide a 2342 * lower @priority. Subregions without priority are taken as @priority 0. 2343 * A region may only be added once as a subregion (unless removed with 2344 * memory_region_del_subregion()); use memory_region_init_alias() if you 2345 * want a region to be a subregion in multiple locations. 2346 * 2347 * @mr: the region to contain the new subregion; must be a container 2348 * initialized with memory_region_init(). 2349 * @offset: the offset relative to @mr where @subregion is added. 2350 * @subregion: the subregion to be added. 2351 * @priority: used for resolving overlaps; highest priority wins. 2352 */ 2353 void memory_region_add_subregion_overlap(MemoryRegion *mr, 2354 hwaddr offset, 2355 MemoryRegion *subregion, 2356 int priority); 2357 2358 /** 2359 * memory_region_get_ram_addr: Get the ram address associated with a memory 2360 * region 2361 * 2362 * @mr: the region to be queried 2363 */ 2364 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 2365 2366 uint64_t memory_region_get_alignment(const MemoryRegion *mr); 2367 /** 2368 * memory_region_del_subregion: Remove a subregion. 2369 * 2370 * Removes a subregion from its container. 2371 * 2372 * @mr: the container to be updated. 2373 * @subregion: the region being removed; must be a current subregion of @mr. 2374 */ 2375 void memory_region_del_subregion(MemoryRegion *mr, 2376 MemoryRegion *subregion); 2377 2378 /* 2379 * memory_region_set_enabled: dynamically enable or disable a region 2380 * 2381 * Enables or disables a memory region. A disabled memory region 2382 * ignores all accesses to itself and its subregions. It does not 2383 * obscure sibling subregions with lower priority - it simply behaves as 2384 * if it was removed from the hierarchy. 2385 * 2386 * Regions default to being enabled. 2387 * 2388 * @mr: the region to be updated 2389 * @enabled: whether to enable or disable the region 2390 */ 2391 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 2392 2393 /* 2394 * memory_region_set_address: dynamically update the address of a region 2395 * 2396 * Dynamically updates the address of a region, relative to its container. 2397 * May be used on regions are currently part of a memory hierarchy. 2398 * 2399 * @mr: the region to be updated 2400 * @addr: new address, relative to container region 2401 */ 2402 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 2403 2404 /* 2405 * memory_region_set_size: dynamically update the size of a region. 2406 * 2407 * Dynamically updates the size of a region. 2408 * 2409 * @mr: the region to be updated 2410 * @size: used size of the region. 2411 */ 2412 void memory_region_set_size(MemoryRegion *mr, uint64_t size); 2413 2414 /* 2415 * memory_region_set_alias_offset: dynamically update a memory alias's offset 2416 * 2417 * Dynamically updates the offset into the target region that an alias points 2418 * to, as if the fourth argument to memory_region_init_alias() has changed. 2419 * 2420 * @mr: the #MemoryRegion to be updated; should be an alias. 2421 * @offset: the new offset into the target memory region 2422 */ 2423 void memory_region_set_alias_offset(MemoryRegion *mr, 2424 hwaddr offset); 2425 2426 /* 2427 * memory_region_set_unmergeable: Set a memory region unmergeable 2428 * 2429 * Mark a memory region unmergeable, resulting in the memory region (or 2430 * everything contained in a memory region container) not getting merged when 2431 * simplifying the address space and notifying memory listeners. Consequently, 2432 * memory listeners will never get notified about ranges that are larger than 2433 * the original memory regions. 2434 * 2435 * This is primarily useful when multiple aliases to a RAM memory region are 2436 * mapped into a memory region container, and updates (e.g., enable/disable or 2437 * map/unmap) of individual memory region aliases are not supposed to affect 2438 * other memory regions in the same container. 2439 * 2440 * @mr: the #MemoryRegion to be updated 2441 * @unmergeable: whether to mark the #MemoryRegion unmergeable 2442 */ 2443 void memory_region_set_unmergeable(MemoryRegion *mr, bool unmergeable); 2444 2445 /** 2446 * memory_region_present: checks if an address relative to a @container 2447 * translates into #MemoryRegion within @container 2448 * 2449 * Answer whether a #MemoryRegion within @container covers the address 2450 * @addr. 2451 * 2452 * @container: a #MemoryRegion within which @addr is a relative address 2453 * @addr: the area within @container to be searched 2454 */ 2455 bool memory_region_present(MemoryRegion *container, hwaddr addr); 2456 2457 /** 2458 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 2459 * into another memory region, which does not necessarily imply that it is 2460 * mapped into an address space. 2461 * 2462 * @mr: a #MemoryRegion which should be checked if it's mapped 2463 */ 2464 bool memory_region_is_mapped(MemoryRegion *mr); 2465 2466 /** 2467 * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a 2468 * #MemoryRegion 2469 * 2470 * The #RamDiscardManager cannot change while a memory region is mapped. 2471 * 2472 * @mr: the #MemoryRegion 2473 */ 2474 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr); 2475 2476 /** 2477 * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a 2478 * #RamDiscardManager assigned 2479 * 2480 * @mr: the #MemoryRegion 2481 */ 2482 static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr) 2483 { 2484 return !!memory_region_get_ram_discard_manager(mr); 2485 } 2486 2487 /** 2488 * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a 2489 * #MemoryRegion 2490 * 2491 * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion 2492 * that does not cover RAM, or a #MemoryRegion that already has a 2493 * #RamDiscardManager assigned. 2494 * 2495 * @mr: the #MemoryRegion 2496 * @rdm: #RamDiscardManager to set 2497 */ 2498 void memory_region_set_ram_discard_manager(MemoryRegion *mr, 2499 RamDiscardManager *rdm); 2500 2501 /** 2502 * memory_region_find: translate an address/size relative to a 2503 * MemoryRegion into a #MemoryRegionSection. 2504 * 2505 * Locates the first #MemoryRegion within @mr that overlaps the range 2506 * given by @addr and @size. 2507 * 2508 * Returns a #MemoryRegionSection that describes a contiguous overlap. 2509 * It will have the following characteristics: 2510 * - @size = 0 iff no overlap was found 2511 * - @mr is non-%NULL iff an overlap was found 2512 * 2513 * Remember that in the return value the @offset_within_region is 2514 * relative to the returned region (in the .@mr field), not to the 2515 * @mr argument. 2516 * 2517 * Similarly, the .@offset_within_address_space is relative to the 2518 * address space that contains both regions, the passed and the 2519 * returned one. However, in the special case where the @mr argument 2520 * has no container (and thus is the root of the address space), the 2521 * following will hold: 2522 * - @offset_within_address_space >= @addr 2523 * - @offset_within_address_space + .@size <= @addr + @size 2524 * 2525 * @mr: a MemoryRegion within which @addr is a relative address 2526 * @addr: start of the area within @as to be searched 2527 * @size: size of the area to be searched 2528 */ 2529 MemoryRegionSection memory_region_find(MemoryRegion *mr, 2530 hwaddr addr, uint64_t size); 2531 2532 /** 2533 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 2534 * 2535 * Synchronizes the dirty page log for all address spaces. 2536 * 2537 * @last_stage: whether this is the last stage of live migration 2538 */ 2539 void memory_global_dirty_log_sync(bool last_stage); 2540 2541 /** 2542 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 2543 * 2544 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap. 2545 * This function must be called after the dirty log bitmap is cleared, and 2546 * before dirty guest memory pages are read. If you are using 2547 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes 2548 * care of doing this. 2549 */ 2550 void memory_global_after_dirty_log_sync(void); 2551 2552 /** 2553 * memory_region_transaction_begin: Start a transaction. 2554 * 2555 * During a transaction, changes will be accumulated and made visible 2556 * only when the transaction ends (is committed). 2557 */ 2558 void memory_region_transaction_begin(void); 2559 2560 /** 2561 * memory_region_transaction_commit: Commit a transaction and make changes 2562 * visible to the guest. 2563 */ 2564 void memory_region_transaction_commit(void); 2565 2566 /** 2567 * memory_listener_register: register callbacks to be called when memory 2568 * sections are mapped or unmapped into an address 2569 * space 2570 * 2571 * @listener: an object containing the callbacks to be called 2572 * @filter: if non-%NULL, only regions in this address space will be observed 2573 */ 2574 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 2575 2576 /** 2577 * memory_listener_unregister: undo the effect of memory_listener_register() 2578 * 2579 * @listener: an object containing the callbacks to be removed 2580 */ 2581 void memory_listener_unregister(MemoryListener *listener); 2582 2583 /** 2584 * memory_global_dirty_log_start: begin dirty logging for all regions 2585 * 2586 * @flags: purpose of starting dirty log, migration or dirty rate 2587 * @errp: pointer to Error*, to store an error if it happens. 2588 * 2589 * Return: true on success, else false setting @errp with error. 2590 */ 2591 bool memory_global_dirty_log_start(unsigned int flags, Error **errp); 2592 2593 /** 2594 * memory_global_dirty_log_stop: end dirty logging for all regions 2595 * 2596 * @flags: purpose of stopping dirty log, migration or dirty rate 2597 */ 2598 void memory_global_dirty_log_stop(unsigned int flags); 2599 2600 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled); 2601 2602 bool memory_region_access_valid(MemoryRegion *mr, hwaddr addr, 2603 unsigned size, bool is_write, 2604 MemTxAttrs attrs); 2605 2606 /** 2607 * memory_region_dispatch_read: perform a read directly to the specified 2608 * MemoryRegion. 2609 * 2610 * @mr: #MemoryRegion to access 2611 * @addr: address within that region 2612 * @pval: pointer to uint64_t which the data is written to 2613 * @op: size, sign, and endianness of the memory operation 2614 * @attrs: memory transaction attributes to use for the access 2615 */ 2616 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 2617 hwaddr addr, 2618 uint64_t *pval, 2619 MemOp op, 2620 MemTxAttrs attrs); 2621 /** 2622 * memory_region_dispatch_write: perform a write directly to the specified 2623 * MemoryRegion. 2624 * 2625 * @mr: #MemoryRegion to access 2626 * @addr: address within that region 2627 * @data: data to write 2628 * @op: size, sign, and endianness of the memory operation 2629 * @attrs: memory transaction attributes to use for the access 2630 */ 2631 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 2632 hwaddr addr, 2633 uint64_t data, 2634 MemOp op, 2635 MemTxAttrs attrs); 2636 2637 /** 2638 * address_space_init: initializes an address space 2639 * 2640 * @as: an uninitialized #AddressSpace 2641 * @root: a #MemoryRegion that routes addresses for the address space 2642 * @name: an address space name. The name is only used for debugging 2643 * output. 2644 */ 2645 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 2646 2647 /** 2648 * address_space_destroy: destroy an address space 2649 * 2650 * Releases all resources associated with an address space. After an address space 2651 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 2652 * as well. 2653 * 2654 * @as: address space to be destroyed 2655 */ 2656 void address_space_destroy(AddressSpace *as); 2657 2658 /** 2659 * address_space_remove_listeners: unregister all listeners of an address space 2660 * 2661 * Removes all callbacks previously registered with memory_listener_register() 2662 * for @as. 2663 * 2664 * @as: an initialized #AddressSpace 2665 */ 2666 void address_space_remove_listeners(AddressSpace *as); 2667 2668 /** 2669 * address_space_rw: read from or write to an address space. 2670 * 2671 * Return a MemTxResult indicating whether the operation succeeded 2672 * or failed (eg unassigned memory, device rejected the transaction, 2673 * IOMMU fault). 2674 * 2675 * @as: #AddressSpace to be accessed 2676 * @addr: address within that address space 2677 * @attrs: memory transaction attributes 2678 * @buf: buffer with the data transferred 2679 * @len: the number of bytes to read or write 2680 * @is_write: indicates the transfer direction 2681 */ 2682 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 2683 MemTxAttrs attrs, void *buf, 2684 hwaddr len, bool is_write); 2685 2686 /** 2687 * address_space_write: write to address space. 2688 * 2689 * Return a MemTxResult indicating whether the operation succeeded 2690 * or failed (eg unassigned memory, device rejected the transaction, 2691 * IOMMU fault). 2692 * 2693 * @as: #AddressSpace to be accessed 2694 * @addr: address within that address space 2695 * @attrs: memory transaction attributes 2696 * @buf: buffer with the data transferred 2697 * @len: the number of bytes to write 2698 */ 2699 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 2700 MemTxAttrs attrs, 2701 const void *buf, hwaddr len); 2702 2703 /** 2704 * address_space_write_rom: write to address space, including ROM. 2705 * 2706 * This function writes to the specified address space, but will 2707 * write data to both ROM and RAM. This is used for non-guest 2708 * writes like writes from the gdb debug stub or initial loading 2709 * of ROM contents. 2710 * 2711 * Note that portions of the write which attempt to write data to 2712 * a device will be silently ignored -- only real RAM and ROM will 2713 * be written to. 2714 * 2715 * Return a MemTxResult indicating whether the operation succeeded 2716 * or failed (eg unassigned memory, device rejected the transaction, 2717 * IOMMU fault). 2718 * 2719 * @as: #AddressSpace to be accessed 2720 * @addr: address within that address space 2721 * @attrs: memory transaction attributes 2722 * @buf: buffer with the data transferred 2723 * @len: the number of bytes to write 2724 */ 2725 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 2726 MemTxAttrs attrs, 2727 const void *buf, hwaddr len); 2728 2729 /* address_space_ld*: load from an address space 2730 * address_space_st*: store to an address space 2731 * 2732 * These functions perform a load or store of the byte, word, 2733 * longword or quad to the specified address within the AddressSpace. 2734 * The _le suffixed functions treat the data as little endian; 2735 * _be indicates big endian; no suffix indicates "same endianness 2736 * as guest CPU". 2737 * 2738 * The "guest CPU endianness" accessors are deprecated for use outside 2739 * target-* code; devices should be CPU-agnostic and use either the LE 2740 * or the BE accessors. 2741 * 2742 * @as #AddressSpace to be accessed 2743 * @addr: address within that address space 2744 * @val: data value, for stores 2745 * @attrs: memory transaction attributes 2746 * @result: location to write the success/failure of the transaction; 2747 * if NULL, this information is discarded 2748 */ 2749 2750 #define SUFFIX 2751 #define ARG1 as 2752 #define ARG1_DECL AddressSpace *as 2753 #include "exec/memory_ldst.h.inc" 2754 2755 #define SUFFIX 2756 #define ARG1 as 2757 #define ARG1_DECL AddressSpace *as 2758 #include "exec/memory_ldst_phys.h.inc" 2759 2760 struct MemoryRegionCache { 2761 void *ptr; 2762 hwaddr xlat; 2763 hwaddr len; 2764 FlatView *fv; 2765 MemoryRegionSection mrs; 2766 bool is_write; 2767 }; 2768 2769 /* address_space_ld*_cached: load from a cached #MemoryRegion 2770 * address_space_st*_cached: store into a cached #MemoryRegion 2771 * 2772 * These functions perform a load or store of the byte, word, 2773 * longword or quad to the specified address. The address is 2774 * a physical address in the AddressSpace, but it must lie within 2775 * a #MemoryRegion that was mapped with address_space_cache_init. 2776 * 2777 * The _le suffixed functions treat the data as little endian; 2778 * _be indicates big endian; no suffix indicates "same endianness 2779 * as guest CPU". 2780 * 2781 * The "guest CPU endianness" accessors are deprecated for use outside 2782 * target-* code; devices should be CPU-agnostic and use either the LE 2783 * or the BE accessors. 2784 * 2785 * @cache: previously initialized #MemoryRegionCache to be accessed 2786 * @addr: address within the address space 2787 * @val: data value, for stores 2788 * @attrs: memory transaction attributes 2789 * @result: location to write the success/failure of the transaction; 2790 * if NULL, this information is discarded 2791 */ 2792 2793 #define SUFFIX _cached_slow 2794 #define ARG1 cache 2795 #define ARG1_DECL MemoryRegionCache *cache 2796 #include "exec/memory_ldst.h.inc" 2797 2798 /* Inline fast path for direct RAM access. */ 2799 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache, 2800 hwaddr addr, MemTxAttrs attrs, MemTxResult *result) 2801 { 2802 assert(addr < cache->len); 2803 if (likely(cache->ptr)) { 2804 return ldub_p(cache->ptr + addr); 2805 } else { 2806 return address_space_ldub_cached_slow(cache, addr, attrs, result); 2807 } 2808 } 2809 2810 static inline void address_space_stb_cached(MemoryRegionCache *cache, 2811 hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result) 2812 { 2813 assert(addr < cache->len); 2814 if (likely(cache->ptr)) { 2815 stb_p(cache->ptr + addr, val); 2816 } else { 2817 address_space_stb_cached_slow(cache, addr, val, attrs, result); 2818 } 2819 } 2820 2821 #define ENDIANNESS _le 2822 #include "exec/memory_ldst_cached.h.inc" 2823 2824 #define ENDIANNESS _be 2825 #include "exec/memory_ldst_cached.h.inc" 2826 2827 #define SUFFIX _cached 2828 #define ARG1 cache 2829 #define ARG1_DECL MemoryRegionCache *cache 2830 #include "exec/memory_ldst_phys.h.inc" 2831 2832 /* address_space_cache_init: prepare for repeated access to a physical 2833 * memory region 2834 * 2835 * @cache: #MemoryRegionCache to be filled 2836 * @as: #AddressSpace to be accessed 2837 * @addr: address within that address space 2838 * @len: length of buffer 2839 * @is_write: indicates the transfer direction 2840 * 2841 * Will only work with RAM, and may map a subset of the requested range by 2842 * returning a value that is less than @len. On failure, return a negative 2843 * errno value. 2844 * 2845 * Because it only works with RAM, this function can be used for 2846 * read-modify-write operations. In this case, is_write should be %true. 2847 * 2848 * Note that addresses passed to the address_space_*_cached functions 2849 * are relative to @addr. 2850 */ 2851 int64_t address_space_cache_init(MemoryRegionCache *cache, 2852 AddressSpace *as, 2853 hwaddr addr, 2854 hwaddr len, 2855 bool is_write); 2856 2857 /** 2858 * address_space_cache_init_empty: Initialize empty #MemoryRegionCache 2859 * 2860 * @cache: The #MemoryRegionCache to operate on. 2861 * 2862 * Initializes #MemoryRegionCache structure without memory region attached. 2863 * Cache initialized this way can only be safely destroyed, but not used. 2864 */ 2865 static inline void address_space_cache_init_empty(MemoryRegionCache *cache) 2866 { 2867 cache->mrs.mr = NULL; 2868 /* There is no real need to initialize fv, but it makes Coverity happy. */ 2869 cache->fv = NULL; 2870 } 2871 2872 /** 2873 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache 2874 * 2875 * @cache: The #MemoryRegionCache to operate on. 2876 * @addr: The first physical address that was written, relative to the 2877 * address that was passed to @address_space_cache_init. 2878 * @access_len: The number of bytes that were written starting at @addr. 2879 */ 2880 void address_space_cache_invalidate(MemoryRegionCache *cache, 2881 hwaddr addr, 2882 hwaddr access_len); 2883 2884 /** 2885 * address_space_cache_destroy: free a #MemoryRegionCache 2886 * 2887 * @cache: The #MemoryRegionCache whose memory should be released. 2888 */ 2889 void address_space_cache_destroy(MemoryRegionCache *cache); 2890 2891 /* address_space_get_iotlb_entry: translate an address into an IOTLB 2892 * entry. Should be called from an RCU critical section. 2893 */ 2894 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 2895 bool is_write, MemTxAttrs attrs); 2896 2897 /* address_space_translate: translate an address range into an address space 2898 * into a MemoryRegion and an address range into that section. Should be 2899 * called from an RCU critical section, to avoid that the last reference 2900 * to the returned region disappears after address_space_translate returns. 2901 * 2902 * @fv: #FlatView to be accessed 2903 * @addr: address within that address space 2904 * @xlat: pointer to address within the returned memory region section's 2905 * #MemoryRegion. 2906 * @len: pointer to length 2907 * @is_write: indicates the transfer direction 2908 * @attrs: memory attributes 2909 */ 2910 MemoryRegion *flatview_translate(FlatView *fv, 2911 hwaddr addr, hwaddr *xlat, 2912 hwaddr *len, bool is_write, 2913 MemTxAttrs attrs); 2914 2915 static inline MemoryRegion *address_space_translate(AddressSpace *as, 2916 hwaddr addr, hwaddr *xlat, 2917 hwaddr *len, bool is_write, 2918 MemTxAttrs attrs) 2919 { 2920 return flatview_translate(address_space_to_flatview(as), 2921 addr, xlat, len, is_write, attrs); 2922 } 2923 2924 /* address_space_access_valid: check for validity of accessing an address 2925 * space range 2926 * 2927 * Check whether memory is assigned to the given address space range, and 2928 * access is permitted by any IOMMU regions that are active for the address 2929 * space. 2930 * 2931 * For now, addr and len should be aligned to a page size. This limitation 2932 * will be lifted in the future. 2933 * 2934 * @as: #AddressSpace to be accessed 2935 * @addr: address within that address space 2936 * @len: length of the area to be checked 2937 * @is_write: indicates the transfer direction 2938 * @attrs: memory attributes 2939 */ 2940 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len, 2941 bool is_write, MemTxAttrs attrs); 2942 2943 /* address_space_map: map a physical memory region into a host virtual address 2944 * 2945 * May map a subset of the requested range, given by and returned in @plen. 2946 * May return %NULL and set *@plen to zero(0), if resources needed to perform 2947 * the mapping are exhausted. 2948 * Use only for reads OR writes - not for read-modify-write operations. 2949 * Use cpu_register_map_client() to know when retrying the map operation is 2950 * likely to succeed. 2951 * 2952 * @as: #AddressSpace to be accessed 2953 * @addr: address within that address space 2954 * @plen: pointer to length of buffer; updated on return 2955 * @is_write: indicates the transfer direction 2956 * @attrs: memory attributes 2957 */ 2958 void *address_space_map(AddressSpace *as, hwaddr addr, 2959 hwaddr *plen, bool is_write, MemTxAttrs attrs); 2960 2961 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 2962 * 2963 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 2964 * the amount of memory that was actually read or written by the caller. 2965 * 2966 * @as: #AddressSpace used 2967 * @buffer: host pointer as returned by address_space_map() 2968 * @len: buffer length as returned by address_space_map() 2969 * @access_len: amount of data actually transferred 2970 * @is_write: indicates the transfer direction 2971 */ 2972 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 2973 bool is_write, hwaddr access_len); 2974 2975 2976 /* Internal functions, part of the implementation of address_space_read. */ 2977 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2978 MemTxAttrs attrs, void *buf, hwaddr len); 2979 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2980 MemTxAttrs attrs, void *buf, 2981 hwaddr len, hwaddr addr1, hwaddr l, 2982 MemoryRegion *mr); 2983 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr); 2984 2985 /* Internal functions, part of the implementation of address_space_read_cached 2986 * and address_space_write_cached. */ 2987 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache, 2988 hwaddr addr, void *buf, hwaddr len); 2989 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache, 2990 hwaddr addr, const void *buf, 2991 hwaddr len); 2992 2993 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr); 2994 bool prepare_mmio_access(MemoryRegion *mr); 2995 2996 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) 2997 { 2998 if (is_write) { 2999 return memory_region_is_ram(mr) && !mr->readonly && 3000 !mr->rom_device && !memory_region_is_ram_device(mr); 3001 } else { 3002 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) || 3003 memory_region_is_romd(mr); 3004 } 3005 } 3006 3007 /** 3008 * address_space_read: read from an address space. 3009 * 3010 * Return a MemTxResult indicating whether the operation succeeded 3011 * or failed (eg unassigned memory, device rejected the transaction, 3012 * IOMMU fault). Called within RCU critical section. 3013 * 3014 * @as: #AddressSpace to be accessed 3015 * @addr: address within that address space 3016 * @attrs: memory transaction attributes 3017 * @buf: buffer with the data transferred 3018 * @len: length of the data transferred 3019 */ 3020 static inline __attribute__((__always_inline__)) 3021 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, 3022 MemTxAttrs attrs, void *buf, 3023 hwaddr len) 3024 { 3025 MemTxResult result = MEMTX_OK; 3026 hwaddr l, addr1; 3027 void *ptr; 3028 MemoryRegion *mr; 3029 FlatView *fv; 3030 3031 if (__builtin_constant_p(len)) { 3032 if (len) { 3033 RCU_READ_LOCK_GUARD(); 3034 fv = address_space_to_flatview(as); 3035 l = len; 3036 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 3037 if (len == l && memory_access_is_direct(mr, false)) { 3038 ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 3039 memcpy(buf, ptr, len); 3040 } else { 3041 result = flatview_read_continue(fv, addr, attrs, buf, len, 3042 addr1, l, mr); 3043 } 3044 } 3045 } else { 3046 result = address_space_read_full(as, addr, attrs, buf, len); 3047 } 3048 return result; 3049 } 3050 3051 /** 3052 * address_space_read_cached: read from a cached RAM region 3053 * 3054 * @cache: Cached region to be addressed 3055 * @addr: address relative to the base of the RAM region 3056 * @buf: buffer with the data transferred 3057 * @len: length of the data transferred 3058 */ 3059 static inline MemTxResult 3060 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr, 3061 void *buf, hwaddr len) 3062 { 3063 assert(addr < cache->len && len <= cache->len - addr); 3064 fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr); 3065 if (likely(cache->ptr)) { 3066 memcpy(buf, cache->ptr + addr, len); 3067 return MEMTX_OK; 3068 } else { 3069 return address_space_read_cached_slow(cache, addr, buf, len); 3070 } 3071 } 3072 3073 /** 3074 * address_space_write_cached: write to a cached RAM region 3075 * 3076 * @cache: Cached region to be addressed 3077 * @addr: address relative to the base of the RAM region 3078 * @buf: buffer with the data transferred 3079 * @len: length of the data transferred 3080 */ 3081 static inline MemTxResult 3082 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr, 3083 const void *buf, hwaddr len) 3084 { 3085 assert(addr < cache->len && len <= cache->len - addr); 3086 if (likely(cache->ptr)) { 3087 memcpy(cache->ptr + addr, buf, len); 3088 return MEMTX_OK; 3089 } else { 3090 return address_space_write_cached_slow(cache, addr, buf, len); 3091 } 3092 } 3093 3094 /** 3095 * address_space_set: Fill address space with a constant byte. 3096 * 3097 * Return a MemTxResult indicating whether the operation succeeded 3098 * or failed (eg unassigned memory, device rejected the transaction, 3099 * IOMMU fault). 3100 * 3101 * @as: #AddressSpace to be accessed 3102 * @addr: address within that address space 3103 * @c: constant byte to fill the memory 3104 * @len: the number of bytes to fill with the constant byte 3105 * @attrs: memory transaction attributes 3106 */ 3107 MemTxResult address_space_set(AddressSpace *as, hwaddr addr, 3108 uint8_t c, hwaddr len, MemTxAttrs attrs); 3109 3110 #ifdef NEED_CPU_H 3111 /* enum device_endian to MemOp. */ 3112 static inline MemOp devend_memop(enum device_endian end) 3113 { 3114 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN && 3115 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN); 3116 3117 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 3118 /* Swap if non-host endianness or native (target) endianness */ 3119 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP; 3120 #else 3121 const int non_host_endianness = 3122 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN; 3123 3124 /* In this case, native (target) endianness needs no swap. */ 3125 return (end == non_host_endianness) ? MO_BSWAP : 0; 3126 #endif 3127 } 3128 #endif 3129 3130 /* 3131 * Inhibit technologies that require discarding of pages in RAM blocks, e.g., 3132 * to manage the actual amount of memory consumed by the VM (then, the memory 3133 * provided by RAM blocks might be bigger than the desired memory consumption). 3134 * This *must* be set if: 3135 * - Discarding parts of a RAM blocks does not result in the change being 3136 * reflected in the VM and the pages getting freed. 3137 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous 3138 * discards blindly. 3139 * - Discarding parts of a RAM blocks will result in integrity issues (e.g., 3140 * encrypted VMs). 3141 * Technologies that only temporarily pin the current working set of a 3142 * driver are fine, because we don't expect such pages to be discarded 3143 * (esp. based on guest action like balloon inflation). 3144 * 3145 * This is *not* to be used to protect from concurrent discards (esp., 3146 * postcopy). 3147 * 3148 * Returns 0 if successful. Returns -EBUSY if a technology that relies on 3149 * discards to work reliably is active. 3150 */ 3151 int ram_block_discard_disable(bool state); 3152 3153 /* 3154 * See ram_block_discard_disable(): only disable uncoordinated discards, 3155 * keeping coordinated discards (via the RamDiscardManager) enabled. 3156 */ 3157 int ram_block_uncoordinated_discard_disable(bool state); 3158 3159 /* 3160 * Inhibit technologies that disable discarding of pages in RAM blocks. 3161 * 3162 * Returns 0 if successful. Returns -EBUSY if discards are already set to 3163 * broken. 3164 */ 3165 int ram_block_discard_require(bool state); 3166 3167 /* 3168 * See ram_block_discard_require(): only inhibit technologies that disable 3169 * uncoordinated discarding of pages in RAM blocks, allowing co-existence with 3170 * technologies that only inhibit uncoordinated discards (via the 3171 * RamDiscardManager). 3172 */ 3173 int ram_block_coordinated_discard_require(bool state); 3174 3175 /* 3176 * Test if any discarding of memory in ram blocks is disabled. 3177 */ 3178 bool ram_block_discard_is_disabled(void); 3179 3180 /* 3181 * Test if any discarding of memory in ram blocks is required to work reliably. 3182 */ 3183 bool ram_block_discard_is_required(void); 3184 3185 #endif 3186 3187 #endif 3188