xref: /openbmc/qemu/include/exec/memory.h (revision 31cf4b97)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/ramlist.h"
23 #include "qemu/queue.h"
24 #include "qemu/int128.h"
25 #include "qemu/notify.h"
26 #include "qom/object.h"
27 #include "qemu/rcu.h"
28 #include "hw/qdev-core.h"
29 
30 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
31 
32 #define MAX_PHYS_ADDR_SPACE_BITS 62
33 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
34 
35 #define TYPE_MEMORY_REGION "qemu:memory-region"
36 #define MEMORY_REGION(obj) \
37         OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
38 
39 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region"
40 #define IOMMU_MEMORY_REGION(obj) \
41         OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION)
42 #define IOMMU_MEMORY_REGION_CLASS(klass) \
43         OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \
44                          TYPE_IOMMU_MEMORY_REGION)
45 #define IOMMU_MEMORY_REGION_GET_CLASS(obj) \
46         OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \
47                          TYPE_IOMMU_MEMORY_REGION)
48 
49 typedef struct MemoryRegionOps MemoryRegionOps;
50 typedef struct MemoryRegionMmio MemoryRegionMmio;
51 
52 struct MemoryRegionMmio {
53     CPUReadMemoryFunc *read[3];
54     CPUWriteMemoryFunc *write[3];
55 };
56 
57 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
58 
59 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
60 typedef enum {
61     IOMMU_NONE = 0,
62     IOMMU_RO   = 1,
63     IOMMU_WO   = 2,
64     IOMMU_RW   = 3,
65 } IOMMUAccessFlags;
66 
67 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
68 
69 struct IOMMUTLBEntry {
70     AddressSpace    *target_as;
71     hwaddr           iova;
72     hwaddr           translated_addr;
73     hwaddr           addr_mask;  /* 0xfff = 4k translation */
74     IOMMUAccessFlags perm;
75 };
76 
77 /*
78  * Bitmap for different IOMMUNotifier capabilities. Each notifier can
79  * register with one or multiple IOMMU Notifier capability bit(s).
80  */
81 typedef enum {
82     IOMMU_NOTIFIER_NONE = 0,
83     /* Notify cache invalidations */
84     IOMMU_NOTIFIER_UNMAP = 0x1,
85     /* Notify entry changes (newly created entries) */
86     IOMMU_NOTIFIER_MAP = 0x2,
87 } IOMMUNotifierFlag;
88 
89 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
90 
91 struct IOMMUNotifier;
92 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
93                             IOMMUTLBEntry *data);
94 
95 struct IOMMUNotifier {
96     IOMMUNotify notify;
97     IOMMUNotifierFlag notifier_flags;
98     /* Notify for address space range start <= addr <= end */
99     hwaddr start;
100     hwaddr end;
101     int iommu_idx;
102     QLIST_ENTRY(IOMMUNotifier) node;
103 };
104 typedef struct IOMMUNotifier IOMMUNotifier;
105 
106 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
107 #define RAM_PREALLOC   (1 << 0)
108 
109 /* RAM is mmap-ed with MAP_SHARED */
110 #define RAM_SHARED     (1 << 1)
111 
112 /* Only a portion of RAM (used_length) is actually used, and migrated.
113  * This used_length size can change across reboots.
114  */
115 #define RAM_RESIZEABLE (1 << 2)
116 
117 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
118  * zero the page and wake waiting processes.
119  * (Set during postcopy)
120  */
121 #define RAM_UF_ZEROPAGE (1 << 3)
122 
123 /* RAM can be migrated */
124 #define RAM_MIGRATABLE (1 << 4)
125 
126 /* RAM is a persistent kind memory */
127 #define RAM_PMEM (1 << 5)
128 
129 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
130                                        IOMMUNotifierFlag flags,
131                                        hwaddr start, hwaddr end,
132                                        int iommu_idx)
133 {
134     n->notify = fn;
135     n->notifier_flags = flags;
136     n->start = start;
137     n->end = end;
138     n->iommu_idx = iommu_idx;
139 }
140 
141 /*
142  * Memory region callbacks
143  */
144 struct MemoryRegionOps {
145     /* Read from the memory region. @addr is relative to @mr; @size is
146      * in bytes. */
147     uint64_t (*read)(void *opaque,
148                      hwaddr addr,
149                      unsigned size);
150     /* Write to the memory region. @addr is relative to @mr; @size is
151      * in bytes. */
152     void (*write)(void *opaque,
153                   hwaddr addr,
154                   uint64_t data,
155                   unsigned size);
156 
157     MemTxResult (*read_with_attrs)(void *opaque,
158                                    hwaddr addr,
159                                    uint64_t *data,
160                                    unsigned size,
161                                    MemTxAttrs attrs);
162     MemTxResult (*write_with_attrs)(void *opaque,
163                                     hwaddr addr,
164                                     uint64_t data,
165                                     unsigned size,
166                                     MemTxAttrs attrs);
167 
168     enum device_endian endianness;
169     /* Guest-visible constraints: */
170     struct {
171         /* If nonzero, specify bounds on access sizes beyond which a machine
172          * check is thrown.
173          */
174         unsigned min_access_size;
175         unsigned max_access_size;
176         /* If true, unaligned accesses are supported.  Otherwise unaligned
177          * accesses throw machine checks.
178          */
179          bool unaligned;
180         /*
181          * If present, and returns #false, the transaction is not accepted
182          * by the device (and results in machine dependent behaviour such
183          * as a machine check exception).
184          */
185         bool (*accepts)(void *opaque, hwaddr addr,
186                         unsigned size, bool is_write,
187                         MemTxAttrs attrs);
188     } valid;
189     /* Internal implementation constraints: */
190     struct {
191         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
192          * will be rounded upwards and a partial result will be returned.
193          */
194         unsigned min_access_size;
195         /* If nonzero, specifies the maximum size implemented.  Larger sizes
196          * will be done as a series of accesses with smaller sizes.
197          */
198         unsigned max_access_size;
199         /* If true, unaligned accesses are supported.  Otherwise all accesses
200          * are converted to (possibly multiple) naturally aligned accesses.
201          */
202         bool unaligned;
203     } impl;
204 };
205 
206 enum IOMMUMemoryRegionAttr {
207     IOMMU_ATTR_SPAPR_TCE_FD
208 };
209 
210 /**
211  * IOMMUMemoryRegionClass:
212  *
213  * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
214  * and provide an implementation of at least the @translate method here
215  * to handle requests to the memory region. Other methods are optional.
216  *
217  * The IOMMU implementation must use the IOMMU notifier infrastructure
218  * to report whenever mappings are changed, by calling
219  * memory_region_notify_iommu() (or, if necessary, by calling
220  * memory_region_notify_one() for each registered notifier).
221  *
222  * Conceptually an IOMMU provides a mapping from input address
223  * to an output TLB entry. If the IOMMU is aware of memory transaction
224  * attributes and the output TLB entry depends on the transaction
225  * attributes, we represent this using IOMMU indexes. Each index
226  * selects a particular translation table that the IOMMU has:
227  *   @attrs_to_index returns the IOMMU index for a set of transaction attributes
228  *   @translate takes an input address and an IOMMU index
229  * and the mapping returned can only depend on the input address and the
230  * IOMMU index.
231  *
232  * Most IOMMUs don't care about the transaction attributes and support
233  * only a single IOMMU index. A more complex IOMMU might have one index
234  * for secure transactions and one for non-secure transactions.
235  */
236 typedef struct IOMMUMemoryRegionClass {
237     /* private */
238     struct DeviceClass parent_class;
239 
240     /*
241      * Return a TLB entry that contains a given address.
242      *
243      * The IOMMUAccessFlags indicated via @flag are optional and may
244      * be specified as IOMMU_NONE to indicate that the caller needs
245      * the full translation information for both reads and writes. If
246      * the access flags are specified then the IOMMU implementation
247      * may use this as an optimization, to stop doing a page table
248      * walk as soon as it knows that the requested permissions are not
249      * allowed. If IOMMU_NONE is passed then the IOMMU must do the
250      * full page table walk and report the permissions in the returned
251      * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
252      * return different mappings for reads and writes.)
253      *
254      * The returned information remains valid while the caller is
255      * holding the big QEMU lock or is inside an RCU critical section;
256      * if the caller wishes to cache the mapping beyond that it must
257      * register an IOMMU notifier so it can invalidate its cached
258      * information when the IOMMU mapping changes.
259      *
260      * @iommu: the IOMMUMemoryRegion
261      * @hwaddr: address to be translated within the memory region
262      * @flag: requested access permissions
263      * @iommu_idx: IOMMU index for the translation
264      */
265     IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
266                                IOMMUAccessFlags flag, int iommu_idx);
267     /* Returns minimum supported page size in bytes.
268      * If this method is not provided then the minimum is assumed to
269      * be TARGET_PAGE_SIZE.
270      *
271      * @iommu: the IOMMUMemoryRegion
272      */
273     uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
274     /* Called when IOMMU Notifier flag changes (ie when the set of
275      * events which IOMMU users are requesting notification for changes).
276      * Optional method -- need not be provided if the IOMMU does not
277      * need to know exactly which events must be notified.
278      *
279      * @iommu: the IOMMUMemoryRegion
280      * @old_flags: events which previously needed to be notified
281      * @new_flags: events which now need to be notified
282      */
283     void (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
284                                 IOMMUNotifierFlag old_flags,
285                                 IOMMUNotifierFlag new_flags);
286     /* Called to handle memory_region_iommu_replay().
287      *
288      * The default implementation of memory_region_iommu_replay() is to
289      * call the IOMMU translate method for every page in the address space
290      * with flag == IOMMU_NONE and then call the notifier if translate
291      * returns a valid mapping. If this method is implemented then it
292      * overrides the default behaviour, and must provide the full semantics
293      * of memory_region_iommu_replay(), by calling @notifier for every
294      * translation present in the IOMMU.
295      *
296      * Optional method -- an IOMMU only needs to provide this method
297      * if the default is inefficient or produces undesirable side effects.
298      *
299      * Note: this is not related to record-and-replay functionality.
300      */
301     void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
302 
303     /* Get IOMMU misc attributes. This is an optional method that
304      * can be used to allow users of the IOMMU to get implementation-specific
305      * information. The IOMMU implements this method to handle calls
306      * by IOMMU users to memory_region_iommu_get_attr() by filling in
307      * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
308      * the IOMMU supports. If the method is unimplemented then
309      * memory_region_iommu_get_attr() will always return -EINVAL.
310      *
311      * @iommu: the IOMMUMemoryRegion
312      * @attr: attribute being queried
313      * @data: memory to fill in with the attribute data
314      *
315      * Returns 0 on success, or a negative errno; in particular
316      * returns -EINVAL for unrecognized or unimplemented attribute types.
317      */
318     int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
319                     void *data);
320 
321     /* Return the IOMMU index to use for a given set of transaction attributes.
322      *
323      * Optional method: if an IOMMU only supports a single IOMMU index then
324      * the default implementation of memory_region_iommu_attrs_to_index()
325      * will return 0.
326      *
327      * The indexes supported by an IOMMU must be contiguous, starting at 0.
328      *
329      * @iommu: the IOMMUMemoryRegion
330      * @attrs: memory transaction attributes
331      */
332     int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
333 
334     /* Return the number of IOMMU indexes this IOMMU supports.
335      *
336      * Optional method: if this method is not provided, then
337      * memory_region_iommu_num_indexes() will return 1, indicating that
338      * only a single IOMMU index is supported.
339      *
340      * @iommu: the IOMMUMemoryRegion
341      */
342     int (*num_indexes)(IOMMUMemoryRegion *iommu);
343 } IOMMUMemoryRegionClass;
344 
345 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
346 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
347 
348 struct MemoryRegion {
349     Object parent_obj;
350 
351     /* All fields are private - violators will be prosecuted */
352 
353     /* The following fields should fit in a cache line */
354     bool romd_mode;
355     bool ram;
356     bool subpage;
357     bool readonly; /* For RAM regions */
358     bool nonvolatile;
359     bool rom_device;
360     bool flush_coalesced_mmio;
361     bool global_locking;
362     uint8_t dirty_log_mask;
363     bool is_iommu;
364     RAMBlock *ram_block;
365     Object *owner;
366 
367     const MemoryRegionOps *ops;
368     void *opaque;
369     MemoryRegion *container;
370     Int128 size;
371     hwaddr addr;
372     void (*destructor)(MemoryRegion *mr);
373     uint64_t align;
374     bool terminates;
375     bool ram_device;
376     bool enabled;
377     bool warning_printed; /* For reservations */
378     uint8_t vga_logging_count;
379     MemoryRegion *alias;
380     hwaddr alias_offset;
381     int32_t priority;
382     QTAILQ_HEAD(, MemoryRegion) subregions;
383     QTAILQ_ENTRY(MemoryRegion) subregions_link;
384     QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
385     const char *name;
386     unsigned ioeventfd_nb;
387     MemoryRegionIoeventfd *ioeventfds;
388 };
389 
390 struct IOMMUMemoryRegion {
391     MemoryRegion parent_obj;
392 
393     QLIST_HEAD(, IOMMUNotifier) iommu_notify;
394     IOMMUNotifierFlag iommu_notify_flags;
395 };
396 
397 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
398     QLIST_FOREACH((n), &(mr)->iommu_notify, node)
399 
400 /**
401  * MemoryListener: callbacks structure for updates to the physical memory map
402  *
403  * Allows a component to adjust to changes in the guest-visible memory map.
404  * Use with memory_listener_register() and memory_listener_unregister().
405  */
406 struct MemoryListener {
407     void (*begin)(MemoryListener *listener);
408     void (*commit)(MemoryListener *listener);
409     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
410     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
411     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
412     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
413                       int old, int new);
414     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
415                      int old, int new);
416     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
417     void (*log_global_start)(MemoryListener *listener);
418     void (*log_global_stop)(MemoryListener *listener);
419     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
420                         bool match_data, uint64_t data, EventNotifier *e);
421     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
422                         bool match_data, uint64_t data, EventNotifier *e);
423     void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
424                                hwaddr addr, hwaddr len);
425     void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
426                                hwaddr addr, hwaddr len);
427     /* Lower = earlier (during add), later (during del) */
428     unsigned priority;
429     AddressSpace *address_space;
430     QTAILQ_ENTRY(MemoryListener) link;
431     QTAILQ_ENTRY(MemoryListener) link_as;
432 };
433 
434 /**
435  * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
436  */
437 struct AddressSpace {
438     /* All fields are private. */
439     struct rcu_head rcu;
440     char *name;
441     MemoryRegion *root;
442 
443     /* Accessed via RCU.  */
444     struct FlatView *current_map;
445 
446     int ioeventfd_nb;
447     struct MemoryRegionIoeventfd *ioeventfds;
448     QTAILQ_HEAD(, MemoryListener) listeners;
449     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
450 };
451 
452 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
453 typedef struct FlatRange FlatRange;
454 
455 /* Flattened global view of current active memory hierarchy.  Kept in sorted
456  * order.
457  */
458 struct FlatView {
459     struct rcu_head rcu;
460     unsigned ref;
461     FlatRange *ranges;
462     unsigned nr;
463     unsigned nr_allocated;
464     struct AddressSpaceDispatch *dispatch;
465     MemoryRegion *root;
466 };
467 
468 static inline FlatView *address_space_to_flatview(AddressSpace *as)
469 {
470     return atomic_rcu_read(&as->current_map);
471 }
472 
473 
474 /**
475  * MemoryRegionSection: describes a fragment of a #MemoryRegion
476  *
477  * @mr: the region, or %NULL if empty
478  * @fv: the flat view of the address space the region is mapped in
479  * @offset_within_region: the beginning of the section, relative to @mr's start
480  * @size: the size of the section; will not exceed @mr's boundaries
481  * @offset_within_address_space: the address of the first byte of the section
482  *     relative to the region's address space
483  * @readonly: writes to this section are ignored
484  * @nonvolatile: this section is non-volatile
485  */
486 struct MemoryRegionSection {
487     MemoryRegion *mr;
488     FlatView *fv;
489     hwaddr offset_within_region;
490     Int128 size;
491     hwaddr offset_within_address_space;
492     bool readonly;
493     bool nonvolatile;
494 };
495 
496 /**
497  * memory_region_init: Initialize a memory region
498  *
499  * The region typically acts as a container for other memory regions.  Use
500  * memory_region_add_subregion() to add subregions.
501  *
502  * @mr: the #MemoryRegion to be initialized
503  * @owner: the object that tracks the region's reference count
504  * @name: used for debugging; not visible to the user or ABI
505  * @size: size of the region; any subregions beyond this size will be clipped
506  */
507 void memory_region_init(MemoryRegion *mr,
508                         struct Object *owner,
509                         const char *name,
510                         uint64_t size);
511 
512 /**
513  * memory_region_ref: Add 1 to a memory region's reference count
514  *
515  * Whenever memory regions are accessed outside the BQL, they need to be
516  * preserved against hot-unplug.  MemoryRegions actually do not have their
517  * own reference count; they piggyback on a QOM object, their "owner".
518  * This function adds a reference to the owner.
519  *
520  * All MemoryRegions must have an owner if they can disappear, even if the
521  * device they belong to operates exclusively under the BQL.  This is because
522  * the region could be returned at any time by memory_region_find, and this
523  * is usually under guest control.
524  *
525  * @mr: the #MemoryRegion
526  */
527 void memory_region_ref(MemoryRegion *mr);
528 
529 /**
530  * memory_region_unref: Remove 1 to a memory region's reference count
531  *
532  * Whenever memory regions are accessed outside the BQL, they need to be
533  * preserved against hot-unplug.  MemoryRegions actually do not have their
534  * own reference count; they piggyback on a QOM object, their "owner".
535  * This function removes a reference to the owner and possibly destroys it.
536  *
537  * @mr: the #MemoryRegion
538  */
539 void memory_region_unref(MemoryRegion *mr);
540 
541 /**
542  * memory_region_init_io: Initialize an I/O memory region.
543  *
544  * Accesses into the region will cause the callbacks in @ops to be called.
545  * if @size is nonzero, subregions will be clipped to @size.
546  *
547  * @mr: the #MemoryRegion to be initialized.
548  * @owner: the object that tracks the region's reference count
549  * @ops: a structure containing read and write callbacks to be used when
550  *       I/O is performed on the region.
551  * @opaque: passed to the read and write callbacks of the @ops structure.
552  * @name: used for debugging; not visible to the user or ABI
553  * @size: size of the region.
554  */
555 void memory_region_init_io(MemoryRegion *mr,
556                            struct Object *owner,
557                            const MemoryRegionOps *ops,
558                            void *opaque,
559                            const char *name,
560                            uint64_t size);
561 
562 /**
563  * memory_region_init_ram_nomigrate:  Initialize RAM memory region.  Accesses
564  *                                    into the region will modify memory
565  *                                    directly.
566  *
567  * @mr: the #MemoryRegion to be initialized.
568  * @owner: the object that tracks the region's reference count
569  * @name: Region name, becomes part of RAMBlock name used in migration stream
570  *        must be unique within any device
571  * @size: size of the region.
572  * @errp: pointer to Error*, to store an error if it happens.
573  *
574  * Note that this function does not do anything to cause the data in the
575  * RAM memory region to be migrated; that is the responsibility of the caller.
576  */
577 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
578                                       struct Object *owner,
579                                       const char *name,
580                                       uint64_t size,
581                                       Error **errp);
582 
583 /**
584  * memory_region_init_ram_shared_nomigrate:  Initialize RAM memory region.
585  *                                           Accesses into the region will
586  *                                           modify memory directly.
587  *
588  * @mr: the #MemoryRegion to be initialized.
589  * @owner: the object that tracks the region's reference count
590  * @name: Region name, becomes part of RAMBlock name used in migration stream
591  *        must be unique within any device
592  * @size: size of the region.
593  * @share: allow remapping RAM to different addresses
594  * @errp: pointer to Error*, to store an error if it happens.
595  *
596  * Note that this function is similar to memory_region_init_ram_nomigrate.
597  * The only difference is part of the RAM region can be remapped.
598  */
599 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
600                                              struct Object *owner,
601                                              const char *name,
602                                              uint64_t size,
603                                              bool share,
604                                              Error **errp);
605 
606 /**
607  * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
608  *                                     RAM.  Accesses into the region will
609  *                                     modify memory directly.  Only an initial
610  *                                     portion of this RAM is actually used.
611  *                                     The used size can change across reboots.
612  *
613  * @mr: the #MemoryRegion to be initialized.
614  * @owner: the object that tracks the region's reference count
615  * @name: Region name, becomes part of RAMBlock name used in migration stream
616  *        must be unique within any device
617  * @size: used size of the region.
618  * @max_size: max size of the region.
619  * @resized: callback to notify owner about used size change.
620  * @errp: pointer to Error*, to store an error if it happens.
621  *
622  * Note that this function does not do anything to cause the data in the
623  * RAM memory region to be migrated; that is the responsibility of the caller.
624  */
625 void memory_region_init_resizeable_ram(MemoryRegion *mr,
626                                        struct Object *owner,
627                                        const char *name,
628                                        uint64_t size,
629                                        uint64_t max_size,
630                                        void (*resized)(const char*,
631                                                        uint64_t length,
632                                                        void *host),
633                                        Error **errp);
634 #ifdef CONFIG_POSIX
635 
636 /**
637  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
638  *                                    mmap-ed backend.
639  *
640  * @mr: the #MemoryRegion to be initialized.
641  * @owner: the object that tracks the region's reference count
642  * @name: Region name, becomes part of RAMBlock name used in migration stream
643  *        must be unique within any device
644  * @size: size of the region.
645  * @align: alignment of the region base address; if 0, the default alignment
646  *         (getpagesize()) will be used.
647  * @ram_flags: Memory region features:
648  *             - RAM_SHARED: memory must be mmaped with the MAP_SHARED flag
649  *             - RAM_PMEM: the memory is persistent memory
650  *             Other bits are ignored now.
651  * @path: the path in which to allocate the RAM.
652  * @errp: pointer to Error*, to store an error if it happens.
653  *
654  * Note that this function does not do anything to cause the data in the
655  * RAM memory region to be migrated; that is the responsibility of the caller.
656  */
657 void memory_region_init_ram_from_file(MemoryRegion *mr,
658                                       struct Object *owner,
659                                       const char *name,
660                                       uint64_t size,
661                                       uint64_t align,
662                                       uint32_t ram_flags,
663                                       const char *path,
664                                       Error **errp);
665 
666 /**
667  * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
668  *                                  mmap-ed backend.
669  *
670  * @mr: the #MemoryRegion to be initialized.
671  * @owner: the object that tracks the region's reference count
672  * @name: the name of the region.
673  * @size: size of the region.
674  * @share: %true if memory must be mmaped with the MAP_SHARED flag
675  * @fd: the fd to mmap.
676  * @errp: pointer to Error*, to store an error if it happens.
677  *
678  * Note that this function does not do anything to cause the data in the
679  * RAM memory region to be migrated; that is the responsibility of the caller.
680  */
681 void memory_region_init_ram_from_fd(MemoryRegion *mr,
682                                     struct Object *owner,
683                                     const char *name,
684                                     uint64_t size,
685                                     bool share,
686                                     int fd,
687                                     Error **errp);
688 #endif
689 
690 /**
691  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
692  *                              user-provided pointer.  Accesses into the
693  *                              region will modify memory directly.
694  *
695  * @mr: the #MemoryRegion to be initialized.
696  * @owner: the object that tracks the region's reference count
697  * @name: Region name, becomes part of RAMBlock name used in migration stream
698  *        must be unique within any device
699  * @size: size of the region.
700  * @ptr: memory to be mapped; must contain at least @size bytes.
701  *
702  * Note that this function does not do anything to cause the data in the
703  * RAM memory region to be migrated; that is the responsibility of the caller.
704  */
705 void memory_region_init_ram_ptr(MemoryRegion *mr,
706                                 struct Object *owner,
707                                 const char *name,
708                                 uint64_t size,
709                                 void *ptr);
710 
711 /**
712  * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
713  *                                     a user-provided pointer.
714  *
715  * A RAM device represents a mapping to a physical device, such as to a PCI
716  * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
717  * into the VM address space and access to the region will modify memory
718  * directly.  However, the memory region should not be included in a memory
719  * dump (device may not be enabled/mapped at the time of the dump), and
720  * operations incompatible with manipulating MMIO should be avoided.  Replaces
721  * skip_dump flag.
722  *
723  * @mr: the #MemoryRegion to be initialized.
724  * @owner: the object that tracks the region's reference count
725  * @name: the name of the region.
726  * @size: size of the region.
727  * @ptr: memory to be mapped; must contain at least @size bytes.
728  *
729  * Note that this function does not do anything to cause the data in the
730  * RAM memory region to be migrated; that is the responsibility of the caller.
731  * (For RAM device memory regions, migrating the contents rarely makes sense.)
732  */
733 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
734                                        struct Object *owner,
735                                        const char *name,
736                                        uint64_t size,
737                                        void *ptr);
738 
739 /**
740  * memory_region_init_alias: Initialize a memory region that aliases all or a
741  *                           part of another memory region.
742  *
743  * @mr: the #MemoryRegion to be initialized.
744  * @owner: the object that tracks the region's reference count
745  * @name: used for debugging; not visible to the user or ABI
746  * @orig: the region to be referenced; @mr will be equivalent to
747  *        @orig between @offset and @offset + @size - 1.
748  * @offset: start of the section in @orig to be referenced.
749  * @size: size of the region.
750  */
751 void memory_region_init_alias(MemoryRegion *mr,
752                               struct Object *owner,
753                               const char *name,
754                               MemoryRegion *orig,
755                               hwaddr offset,
756                               uint64_t size);
757 
758 /**
759  * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
760  *
761  * This has the same effect as calling memory_region_init_ram_nomigrate()
762  * and then marking the resulting region read-only with
763  * memory_region_set_readonly().
764  *
765  * Note that this function does not do anything to cause the data in the
766  * RAM side of the memory region to be migrated; that is the responsibility
767  * of the caller.
768  *
769  * @mr: the #MemoryRegion to be initialized.
770  * @owner: the object that tracks the region's reference count
771  * @name: Region name, becomes part of RAMBlock name used in migration stream
772  *        must be unique within any device
773  * @size: size of the region.
774  * @errp: pointer to Error*, to store an error if it happens.
775  */
776 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
777                                       struct Object *owner,
778                                       const char *name,
779                                       uint64_t size,
780                                       Error **errp);
781 
782 /**
783  * memory_region_init_rom_device_nomigrate:  Initialize a ROM memory region.
784  *                                 Writes are handled via callbacks.
785  *
786  * Note that this function does not do anything to cause the data in the
787  * RAM side of the memory region to be migrated; that is the responsibility
788  * of the caller.
789  *
790  * @mr: the #MemoryRegion to be initialized.
791  * @owner: the object that tracks the region's reference count
792  * @ops: callbacks for write access handling (must not be NULL).
793  * @opaque: passed to the read and write callbacks of the @ops structure.
794  * @name: Region name, becomes part of RAMBlock name used in migration stream
795  *        must be unique within any device
796  * @size: size of the region.
797  * @errp: pointer to Error*, to store an error if it happens.
798  */
799 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
800                                              struct Object *owner,
801                                              const MemoryRegionOps *ops,
802                                              void *opaque,
803                                              const char *name,
804                                              uint64_t size,
805                                              Error **errp);
806 
807 /**
808  * memory_region_init_iommu: Initialize a memory region of a custom type
809  * that translates addresses
810  *
811  * An IOMMU region translates addresses and forwards accesses to a target
812  * memory region.
813  *
814  * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
815  * @_iommu_mr should be a pointer to enough memory for an instance of
816  * that subclass, @instance_size is the size of that subclass, and
817  * @mrtypename is its name. This function will initialize @_iommu_mr as an
818  * instance of the subclass, and its methods will then be called to handle
819  * accesses to the memory region. See the documentation of
820  * #IOMMUMemoryRegionClass for further details.
821  *
822  * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
823  * @instance_size: the IOMMUMemoryRegion subclass instance size
824  * @mrtypename: the type name of the #IOMMUMemoryRegion
825  * @owner: the object that tracks the region's reference count
826  * @name: used for debugging; not visible to the user or ABI
827  * @size: size of the region.
828  */
829 void memory_region_init_iommu(void *_iommu_mr,
830                               size_t instance_size,
831                               const char *mrtypename,
832                               Object *owner,
833                               const char *name,
834                               uint64_t size);
835 
836 /**
837  * memory_region_init_ram - Initialize RAM memory region.  Accesses into the
838  *                          region will modify memory directly.
839  *
840  * @mr: the #MemoryRegion to be initialized
841  * @owner: the object that tracks the region's reference count (must be
842  *         TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
843  * @name: name of the memory region
844  * @size: size of the region in bytes
845  * @errp: pointer to Error*, to store an error if it happens.
846  *
847  * This function allocates RAM for a board model or device, and
848  * arranges for it to be migrated (by calling vmstate_register_ram()
849  * if @owner is a DeviceState, or vmstate_register_ram_global() if
850  * @owner is NULL).
851  *
852  * TODO: Currently we restrict @owner to being either NULL (for
853  * global RAM regions with no owner) or devices, so that we can
854  * give the RAM block a unique name for migration purposes.
855  * We should lift this restriction and allow arbitrary Objects.
856  * If you pass a non-NULL non-device @owner then we will assert.
857  */
858 void memory_region_init_ram(MemoryRegion *mr,
859                             struct Object *owner,
860                             const char *name,
861                             uint64_t size,
862                             Error **errp);
863 
864 /**
865  * memory_region_init_rom: Initialize a ROM memory region.
866  *
867  * This has the same effect as calling memory_region_init_ram()
868  * and then marking the resulting region read-only with
869  * memory_region_set_readonly(). This includes arranging for the
870  * contents to be migrated.
871  *
872  * TODO: Currently we restrict @owner to being either NULL (for
873  * global RAM regions with no owner) or devices, so that we can
874  * give the RAM block a unique name for migration purposes.
875  * We should lift this restriction and allow arbitrary Objects.
876  * If you pass a non-NULL non-device @owner then we will assert.
877  *
878  * @mr: the #MemoryRegion to be initialized.
879  * @owner: the object that tracks the region's reference count
880  * @name: Region name, becomes part of RAMBlock name used in migration stream
881  *        must be unique within any device
882  * @size: size of the region.
883  * @errp: pointer to Error*, to store an error if it happens.
884  */
885 void memory_region_init_rom(MemoryRegion *mr,
886                             struct Object *owner,
887                             const char *name,
888                             uint64_t size,
889                             Error **errp);
890 
891 /**
892  * memory_region_init_rom_device:  Initialize a ROM memory region.
893  *                                 Writes are handled via callbacks.
894  *
895  * This function initializes a memory region backed by RAM for reads
896  * and callbacks for writes, and arranges for the RAM backing to
897  * be migrated (by calling vmstate_register_ram()
898  * if @owner is a DeviceState, or vmstate_register_ram_global() if
899  * @owner is NULL).
900  *
901  * TODO: Currently we restrict @owner to being either NULL (for
902  * global RAM regions with no owner) or devices, so that we can
903  * give the RAM block a unique name for migration purposes.
904  * We should lift this restriction and allow arbitrary Objects.
905  * If you pass a non-NULL non-device @owner then we will assert.
906  *
907  * @mr: the #MemoryRegion to be initialized.
908  * @owner: the object that tracks the region's reference count
909  * @ops: callbacks for write access handling (must not be NULL).
910  * @name: Region name, becomes part of RAMBlock name used in migration stream
911  *        must be unique within any device
912  * @size: size of the region.
913  * @errp: pointer to Error*, to store an error if it happens.
914  */
915 void memory_region_init_rom_device(MemoryRegion *mr,
916                                    struct Object *owner,
917                                    const MemoryRegionOps *ops,
918                                    void *opaque,
919                                    const char *name,
920                                    uint64_t size,
921                                    Error **errp);
922 
923 
924 /**
925  * memory_region_owner: get a memory region's owner.
926  *
927  * @mr: the memory region being queried.
928  */
929 struct Object *memory_region_owner(MemoryRegion *mr);
930 
931 /**
932  * memory_region_size: get a memory region's size.
933  *
934  * @mr: the memory region being queried.
935  */
936 uint64_t memory_region_size(MemoryRegion *mr);
937 
938 /**
939  * memory_region_is_ram: check whether a memory region is random access
940  *
941  * Returns %true if a memory region is random access.
942  *
943  * @mr: the memory region being queried
944  */
945 static inline bool memory_region_is_ram(MemoryRegion *mr)
946 {
947     return mr->ram;
948 }
949 
950 /**
951  * memory_region_is_ram_device: check whether a memory region is a ram device
952  *
953  * Returns %true if a memory region is a device backed ram region
954  *
955  * @mr: the memory region being queried
956  */
957 bool memory_region_is_ram_device(MemoryRegion *mr);
958 
959 /**
960  * memory_region_is_romd: check whether a memory region is in ROMD mode
961  *
962  * Returns %true if a memory region is a ROM device and currently set to allow
963  * direct reads.
964  *
965  * @mr: the memory region being queried
966  */
967 static inline bool memory_region_is_romd(MemoryRegion *mr)
968 {
969     return mr->rom_device && mr->romd_mode;
970 }
971 
972 /**
973  * memory_region_get_iommu: check whether a memory region is an iommu
974  *
975  * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
976  * otherwise NULL.
977  *
978  * @mr: the memory region being queried
979  */
980 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
981 {
982     if (mr->alias) {
983         return memory_region_get_iommu(mr->alias);
984     }
985     if (mr->is_iommu) {
986         return (IOMMUMemoryRegion *) mr;
987     }
988     return NULL;
989 }
990 
991 /**
992  * memory_region_get_iommu_class_nocheck: returns iommu memory region class
993  *   if an iommu or NULL if not
994  *
995  * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
996  * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
997  *
998  * @mr: the memory region being queried
999  */
1000 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1001         IOMMUMemoryRegion *iommu_mr)
1002 {
1003     return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1004 }
1005 
1006 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1007 
1008 /**
1009  * memory_region_iommu_get_min_page_size: get minimum supported page size
1010  * for an iommu
1011  *
1012  * Returns minimum supported page size for an iommu.
1013  *
1014  * @iommu_mr: the memory region being queried
1015  */
1016 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1017 
1018 /**
1019  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1020  *
1021  * The notification type will be decided by entry.perm bits:
1022  *
1023  * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
1024  * - For MAP (newly added entry) notifies: set entry.perm to the
1025  *   permission of the page (which is definitely !IOMMU_NONE).
1026  *
1027  * Note: for any IOMMU implementation, an in-place mapping change
1028  * should be notified with an UNMAP followed by a MAP.
1029  *
1030  * @iommu_mr: the memory region that was changed
1031  * @iommu_idx: the IOMMU index for the translation table which has changed
1032  * @entry: the new entry in the IOMMU translation table.  The entry
1033  *         replaces all old entries for the same virtual I/O address range.
1034  *         Deleted entries have .@perm == 0.
1035  */
1036 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1037                                 int iommu_idx,
1038                                 IOMMUTLBEntry entry);
1039 
1040 /**
1041  * memory_region_notify_one: notify a change in an IOMMU translation
1042  *                           entry to a single notifier
1043  *
1044  * This works just like memory_region_notify_iommu(), but it only
1045  * notifies a specific notifier, not all of them.
1046  *
1047  * @notifier: the notifier to be notified
1048  * @entry: the new entry in the IOMMU translation table.  The entry
1049  *         replaces all old entries for the same virtual I/O address range.
1050  *         Deleted entries have .@perm == 0.
1051  */
1052 void memory_region_notify_one(IOMMUNotifier *notifier,
1053                               IOMMUTLBEntry *entry);
1054 
1055 /**
1056  * memory_region_register_iommu_notifier: register a notifier for changes to
1057  * IOMMU translation entries.
1058  *
1059  * @mr: the memory region to observe
1060  * @n: the IOMMUNotifier to be added; the notify callback receives a
1061  *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1062  *     ceases to be valid on exit from the notifier.
1063  */
1064 void memory_region_register_iommu_notifier(MemoryRegion *mr,
1065                                            IOMMUNotifier *n);
1066 
1067 /**
1068  * memory_region_iommu_replay: replay existing IOMMU translations to
1069  * a notifier with the minimum page granularity returned by
1070  * mr->iommu_ops->get_page_size().
1071  *
1072  * Note: this is not related to record-and-replay functionality.
1073  *
1074  * @iommu_mr: the memory region to observe
1075  * @n: the notifier to which to replay iommu mappings
1076  */
1077 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1078 
1079 /**
1080  * memory_region_iommu_replay_all: replay existing IOMMU translations
1081  * to all the notifiers registered.
1082  *
1083  * Note: this is not related to record-and-replay functionality.
1084  *
1085  * @iommu_mr: the memory region to observe
1086  */
1087 void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr);
1088 
1089 /**
1090  * memory_region_unregister_iommu_notifier: unregister a notifier for
1091  * changes to IOMMU translation entries.
1092  *
1093  * @mr: the memory region which was observed and for which notity_stopped()
1094  *      needs to be called
1095  * @n: the notifier to be removed.
1096  */
1097 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1098                                              IOMMUNotifier *n);
1099 
1100 /**
1101  * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1102  * defined on the IOMMU.
1103  *
1104  * Returns 0 on success, or a negative errno otherwise. In particular,
1105  * -EINVAL indicates that the IOMMU does not support the requested
1106  * attribute.
1107  *
1108  * @iommu_mr: the memory region
1109  * @attr: the requested attribute
1110  * @data: a pointer to the requested attribute data
1111  */
1112 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1113                                  enum IOMMUMemoryRegionAttr attr,
1114                                  void *data);
1115 
1116 /**
1117  * memory_region_iommu_attrs_to_index: return the IOMMU index to
1118  * use for translations with the given memory transaction attributes.
1119  *
1120  * @iommu_mr: the memory region
1121  * @attrs: the memory transaction attributes
1122  */
1123 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1124                                        MemTxAttrs attrs);
1125 
1126 /**
1127  * memory_region_iommu_num_indexes: return the total number of IOMMU
1128  * indexes that this IOMMU supports.
1129  *
1130  * @iommu_mr: the memory region
1131  */
1132 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1133 
1134 /**
1135  * memory_region_name: get a memory region's name
1136  *
1137  * Returns the string that was used to initialize the memory region.
1138  *
1139  * @mr: the memory region being queried
1140  */
1141 const char *memory_region_name(const MemoryRegion *mr);
1142 
1143 /**
1144  * memory_region_is_logging: return whether a memory region is logging writes
1145  *
1146  * Returns %true if the memory region is logging writes for the given client
1147  *
1148  * @mr: the memory region being queried
1149  * @client: the client being queried
1150  */
1151 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1152 
1153 /**
1154  * memory_region_get_dirty_log_mask: return the clients for which a
1155  * memory region is logging writes.
1156  *
1157  * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1158  * are the bit indices.
1159  *
1160  * @mr: the memory region being queried
1161  */
1162 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1163 
1164 /**
1165  * memory_region_is_rom: check whether a memory region is ROM
1166  *
1167  * Returns %true if a memory region is read-only memory.
1168  *
1169  * @mr: the memory region being queried
1170  */
1171 static inline bool memory_region_is_rom(MemoryRegion *mr)
1172 {
1173     return mr->ram && mr->readonly;
1174 }
1175 
1176 /**
1177  * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1178  *
1179  * Returns %true is a memory region is non-volatile memory.
1180  *
1181  * @mr: the memory region being queried
1182  */
1183 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1184 {
1185     return mr->nonvolatile;
1186 }
1187 
1188 /**
1189  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1190  *
1191  * Returns a file descriptor backing a file-based RAM memory region,
1192  * or -1 if the region is not a file-based RAM memory region.
1193  *
1194  * @mr: the RAM or alias memory region being queried.
1195  */
1196 int memory_region_get_fd(MemoryRegion *mr);
1197 
1198 /**
1199  * memory_region_from_host: Convert a pointer into a RAM memory region
1200  * and an offset within it.
1201  *
1202  * Given a host pointer inside a RAM memory region (created with
1203  * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1204  * the MemoryRegion and the offset within it.
1205  *
1206  * Use with care; by the time this function returns, the returned pointer is
1207  * not protected by RCU anymore.  If the caller is not within an RCU critical
1208  * section and does not hold the iothread lock, it must have other means of
1209  * protecting the pointer, such as a reference to the region that includes
1210  * the incoming ram_addr_t.
1211  *
1212  * @ptr: the host pointer to be converted
1213  * @offset: the offset within memory region
1214  */
1215 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1216 
1217 /**
1218  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1219  *
1220  * Returns a host pointer to a RAM memory region (created with
1221  * memory_region_init_ram() or memory_region_init_ram_ptr()).
1222  *
1223  * Use with care; by the time this function returns, the returned pointer is
1224  * not protected by RCU anymore.  If the caller is not within an RCU critical
1225  * section and does not hold the iothread lock, it must have other means of
1226  * protecting the pointer, such as a reference to the region that includes
1227  * the incoming ram_addr_t.
1228  *
1229  * @mr: the memory region being queried.
1230  */
1231 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1232 
1233 /* memory_region_ram_resize: Resize a RAM region.
1234  *
1235  * Only legal before guest might have detected the memory size: e.g. on
1236  * incoming migration, or right after reset.
1237  *
1238  * @mr: a memory region created with @memory_region_init_resizeable_ram.
1239  * @newsize: the new size the region
1240  * @errp: pointer to Error*, to store an error if it happens.
1241  */
1242 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1243                               Error **errp);
1244 
1245 /**
1246  * memory_region_set_log: Turn dirty logging on or off for a region.
1247  *
1248  * Turns dirty logging on or off for a specified client (display, migration).
1249  * Only meaningful for RAM regions.
1250  *
1251  * @mr: the memory region being updated.
1252  * @log: whether dirty logging is to be enabled or disabled.
1253  * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1254  */
1255 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1256 
1257 /**
1258  * memory_region_get_dirty: Check whether a range of bytes is dirty
1259  *                          for a specified client.
1260  *
1261  * Checks whether a range of bytes has been written to since the last
1262  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
1263  * must be enabled.
1264  *
1265  * @mr: the memory region being queried.
1266  * @addr: the address (relative to the start of the region) being queried.
1267  * @size: the size of the range being queried.
1268  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1269  *          %DIRTY_MEMORY_VGA.
1270  */
1271 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1272                              hwaddr size, unsigned client);
1273 
1274 /**
1275  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1276  *
1277  * Marks a range of bytes as dirty, after it has been dirtied outside
1278  * guest code.
1279  *
1280  * @mr: the memory region being dirtied.
1281  * @addr: the address (relative to the start of the region) being dirtied.
1282  * @size: size of the range being dirtied.
1283  */
1284 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1285                              hwaddr size);
1286 
1287 /**
1288  * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1289  *                                         bitmap and clear it.
1290  *
1291  * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1292  * returns the snapshot.  The snapshot can then be used to query dirty
1293  * status, using memory_region_snapshot_get_dirty.  Snapshotting allows
1294  * querying the same page multiple times, which is especially useful for
1295  * display updates where the scanlines often are not page aligned.
1296  *
1297  * The dirty bitmap region which gets copyed into the snapshot (and
1298  * cleared afterwards) can be larger than requested.  The boundaries
1299  * are rounded up/down so complete bitmap longs (covering 64 pages on
1300  * 64bit hosts) can be copied over into the bitmap snapshot.  Which
1301  * isn't a problem for display updates as the extra pages are outside
1302  * the visible area, and in case the visible area changes a full
1303  * display redraw is due anyway.  Should other use cases for this
1304  * function emerge we might have to revisit this implementation
1305  * detail.
1306  *
1307  * Use g_free to release DirtyBitmapSnapshot.
1308  *
1309  * @mr: the memory region being queried.
1310  * @addr: the address (relative to the start of the region) being queried.
1311  * @size: the size of the range being queried.
1312  * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1313  */
1314 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1315                                                             hwaddr addr,
1316                                                             hwaddr size,
1317                                                             unsigned client);
1318 
1319 /**
1320  * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1321  *                                   in the specified dirty bitmap snapshot.
1322  *
1323  * @mr: the memory region being queried.
1324  * @snap: the dirty bitmap snapshot
1325  * @addr: the address (relative to the start of the region) being queried.
1326  * @size: the size of the range being queried.
1327  */
1328 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1329                                       DirtyBitmapSnapshot *snap,
1330                                       hwaddr addr, hwaddr size);
1331 
1332 /**
1333  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1334  *                            client.
1335  *
1336  * Marks a range of pages as no longer dirty.
1337  *
1338  * @mr: the region being updated.
1339  * @addr: the start of the subrange being cleaned.
1340  * @size: the size of the subrange being cleaned.
1341  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1342  *          %DIRTY_MEMORY_VGA.
1343  */
1344 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1345                                hwaddr size, unsigned client);
1346 
1347 /**
1348  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1349  *
1350  * Allows a memory region to be marked as read-only (turning it into a ROM).
1351  * only useful on RAM regions.
1352  *
1353  * @mr: the region being updated.
1354  * @readonly: whether rhe region is to be ROM or RAM.
1355  */
1356 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1357 
1358 /**
1359  * memory_region_set_nonvolatile: Turn a memory region non-volatile
1360  *
1361  * Allows a memory region to be marked as non-volatile.
1362  * only useful on RAM regions.
1363  *
1364  * @mr: the region being updated.
1365  * @nonvolatile: whether rhe region is to be non-volatile.
1366  */
1367 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
1368 
1369 /**
1370  * memory_region_rom_device_set_romd: enable/disable ROMD mode
1371  *
1372  * Allows a ROM device (initialized with memory_region_init_rom_device() to
1373  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
1374  * device is mapped to guest memory and satisfies read access directly.
1375  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1376  * Writes are always handled by the #MemoryRegion.write function.
1377  *
1378  * @mr: the memory region to be updated
1379  * @romd_mode: %true to put the region into ROMD mode
1380  */
1381 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1382 
1383 /**
1384  * memory_region_set_coalescing: Enable memory coalescing for the region.
1385  *
1386  * Enabled writes to a region to be queued for later processing. MMIO ->write
1387  * callbacks may be delayed until a non-coalesced MMIO is issued.
1388  * Only useful for IO regions.  Roughly similar to write-combining hardware.
1389  *
1390  * @mr: the memory region to be write coalesced
1391  */
1392 void memory_region_set_coalescing(MemoryRegion *mr);
1393 
1394 /**
1395  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1396  *                               a region.
1397  *
1398  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1399  * Multiple calls can be issued coalesced disjoint ranges.
1400  *
1401  * @mr: the memory region to be updated.
1402  * @offset: the start of the range within the region to be coalesced.
1403  * @size: the size of the subrange to be coalesced.
1404  */
1405 void memory_region_add_coalescing(MemoryRegion *mr,
1406                                   hwaddr offset,
1407                                   uint64_t size);
1408 
1409 /**
1410  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1411  *
1412  * Disables any coalescing caused by memory_region_set_coalescing() or
1413  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
1414  * hardware.
1415  *
1416  * @mr: the memory region to be updated.
1417  */
1418 void memory_region_clear_coalescing(MemoryRegion *mr);
1419 
1420 /**
1421  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1422  *                                    accesses.
1423  *
1424  * Ensure that pending coalesced MMIO request are flushed before the memory
1425  * region is accessed. This property is automatically enabled for all regions
1426  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1427  *
1428  * @mr: the memory region to be updated.
1429  */
1430 void memory_region_set_flush_coalesced(MemoryRegion *mr);
1431 
1432 /**
1433  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1434  *                                      accesses.
1435  *
1436  * Clear the automatic coalesced MMIO flushing enabled via
1437  * memory_region_set_flush_coalesced. Note that this service has no effect on
1438  * memory regions that have MMIO coalescing enabled for themselves. For them,
1439  * automatic flushing will stop once coalescing is disabled.
1440  *
1441  * @mr: the memory region to be updated.
1442  */
1443 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1444 
1445 /**
1446  * memory_region_clear_global_locking: Declares that access processing does
1447  *                                     not depend on the QEMU global lock.
1448  *
1449  * By clearing this property, accesses to the memory region will be processed
1450  * outside of QEMU's global lock (unless the lock is held on when issuing the
1451  * access request). In this case, the device model implementing the access
1452  * handlers is responsible for synchronization of concurrency.
1453  *
1454  * @mr: the memory region to be updated.
1455  */
1456 void memory_region_clear_global_locking(MemoryRegion *mr);
1457 
1458 /**
1459  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1460  *                            is written to a location.
1461  *
1462  * Marks a word in an IO region (initialized with memory_region_init_io())
1463  * as a trigger for an eventfd event.  The I/O callback will not be called.
1464  * The caller must be prepared to handle failure (that is, take the required
1465  * action if the callback _is_ called).
1466  *
1467  * @mr: the memory region being updated.
1468  * @addr: the address within @mr that is to be monitored
1469  * @size: the size of the access to trigger the eventfd
1470  * @match_data: whether to match against @data, instead of just @addr
1471  * @data: the data to match against the guest write
1472  * @e: event notifier to be triggered when @addr, @size, and @data all match.
1473  **/
1474 void memory_region_add_eventfd(MemoryRegion *mr,
1475                                hwaddr addr,
1476                                unsigned size,
1477                                bool match_data,
1478                                uint64_t data,
1479                                EventNotifier *e);
1480 
1481 /**
1482  * memory_region_del_eventfd: Cancel an eventfd.
1483  *
1484  * Cancels an eventfd trigger requested by a previous
1485  * memory_region_add_eventfd() call.
1486  *
1487  * @mr: the memory region being updated.
1488  * @addr: the address within @mr that is to be monitored
1489  * @size: the size of the access to trigger the eventfd
1490  * @match_data: whether to match against @data, instead of just @addr
1491  * @data: the data to match against the guest write
1492  * @e: event notifier to be triggered when @addr, @size, and @data all match.
1493  */
1494 void memory_region_del_eventfd(MemoryRegion *mr,
1495                                hwaddr addr,
1496                                unsigned size,
1497                                bool match_data,
1498                                uint64_t data,
1499                                EventNotifier *e);
1500 
1501 /**
1502  * memory_region_add_subregion: Add a subregion to a container.
1503  *
1504  * Adds a subregion at @offset.  The subregion may not overlap with other
1505  * subregions (except for those explicitly marked as overlapping).  A region
1506  * may only be added once as a subregion (unless removed with
1507  * memory_region_del_subregion()); use memory_region_init_alias() if you
1508  * want a region to be a subregion in multiple locations.
1509  *
1510  * @mr: the region to contain the new subregion; must be a container
1511  *      initialized with memory_region_init().
1512  * @offset: the offset relative to @mr where @subregion is added.
1513  * @subregion: the subregion to be added.
1514  */
1515 void memory_region_add_subregion(MemoryRegion *mr,
1516                                  hwaddr offset,
1517                                  MemoryRegion *subregion);
1518 /**
1519  * memory_region_add_subregion_overlap: Add a subregion to a container
1520  *                                      with overlap.
1521  *
1522  * Adds a subregion at @offset.  The subregion may overlap with other
1523  * subregions.  Conflicts are resolved by having a higher @priority hide a
1524  * lower @priority. Subregions without priority are taken as @priority 0.
1525  * A region may only be added once as a subregion (unless removed with
1526  * memory_region_del_subregion()); use memory_region_init_alias() if you
1527  * want a region to be a subregion in multiple locations.
1528  *
1529  * @mr: the region to contain the new subregion; must be a container
1530  *      initialized with memory_region_init().
1531  * @offset: the offset relative to @mr where @subregion is added.
1532  * @subregion: the subregion to be added.
1533  * @priority: used for resolving overlaps; highest priority wins.
1534  */
1535 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1536                                          hwaddr offset,
1537                                          MemoryRegion *subregion,
1538                                          int priority);
1539 
1540 /**
1541  * memory_region_get_ram_addr: Get the ram address associated with a memory
1542  *                             region
1543  */
1544 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1545 
1546 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1547 /**
1548  * memory_region_del_subregion: Remove a subregion.
1549  *
1550  * Removes a subregion from its container.
1551  *
1552  * @mr: the container to be updated.
1553  * @subregion: the region being removed; must be a current subregion of @mr.
1554  */
1555 void memory_region_del_subregion(MemoryRegion *mr,
1556                                  MemoryRegion *subregion);
1557 
1558 /*
1559  * memory_region_set_enabled: dynamically enable or disable a region
1560  *
1561  * Enables or disables a memory region.  A disabled memory region
1562  * ignores all accesses to itself and its subregions.  It does not
1563  * obscure sibling subregions with lower priority - it simply behaves as
1564  * if it was removed from the hierarchy.
1565  *
1566  * Regions default to being enabled.
1567  *
1568  * @mr: the region to be updated
1569  * @enabled: whether to enable or disable the region
1570  */
1571 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1572 
1573 /*
1574  * memory_region_set_address: dynamically update the address of a region
1575  *
1576  * Dynamically updates the address of a region, relative to its container.
1577  * May be used on regions are currently part of a memory hierarchy.
1578  *
1579  * @mr: the region to be updated
1580  * @addr: new address, relative to container region
1581  */
1582 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1583 
1584 /*
1585  * memory_region_set_size: dynamically update the size of a region.
1586  *
1587  * Dynamically updates the size of a region.
1588  *
1589  * @mr: the region to be updated
1590  * @size: used size of the region.
1591  */
1592 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1593 
1594 /*
1595  * memory_region_set_alias_offset: dynamically update a memory alias's offset
1596  *
1597  * Dynamically updates the offset into the target region that an alias points
1598  * to, as if the fourth argument to memory_region_init_alias() has changed.
1599  *
1600  * @mr: the #MemoryRegion to be updated; should be an alias.
1601  * @offset: the new offset into the target memory region
1602  */
1603 void memory_region_set_alias_offset(MemoryRegion *mr,
1604                                     hwaddr offset);
1605 
1606 /**
1607  * memory_region_present: checks if an address relative to a @container
1608  * translates into #MemoryRegion within @container
1609  *
1610  * Answer whether a #MemoryRegion within @container covers the address
1611  * @addr.
1612  *
1613  * @container: a #MemoryRegion within which @addr is a relative address
1614  * @addr: the area within @container to be searched
1615  */
1616 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1617 
1618 /**
1619  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1620  * into any address space.
1621  *
1622  * @mr: a #MemoryRegion which should be checked if it's mapped
1623  */
1624 bool memory_region_is_mapped(MemoryRegion *mr);
1625 
1626 /**
1627  * memory_region_find: translate an address/size relative to a
1628  * MemoryRegion into a #MemoryRegionSection.
1629  *
1630  * Locates the first #MemoryRegion within @mr that overlaps the range
1631  * given by @addr and @size.
1632  *
1633  * Returns a #MemoryRegionSection that describes a contiguous overlap.
1634  * It will have the following characteristics:
1635  *    .@size = 0 iff no overlap was found
1636  *    .@mr is non-%NULL iff an overlap was found
1637  *
1638  * Remember that in the return value the @offset_within_region is
1639  * relative to the returned region (in the .@mr field), not to the
1640  * @mr argument.
1641  *
1642  * Similarly, the .@offset_within_address_space is relative to the
1643  * address space that contains both regions, the passed and the
1644  * returned one.  However, in the special case where the @mr argument
1645  * has no container (and thus is the root of the address space), the
1646  * following will hold:
1647  *    .@offset_within_address_space >= @addr
1648  *    .@offset_within_address_space + .@size <= @addr + @size
1649  *
1650  * @mr: a MemoryRegion within which @addr is a relative address
1651  * @addr: start of the area within @as to be searched
1652  * @size: size of the area to be searched
1653  */
1654 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1655                                        hwaddr addr, uint64_t size);
1656 
1657 /**
1658  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1659  *
1660  * Synchronizes the dirty page log for all address spaces.
1661  */
1662 void memory_global_dirty_log_sync(void);
1663 
1664 /**
1665  * memory_region_transaction_begin: Start a transaction.
1666  *
1667  * During a transaction, changes will be accumulated and made visible
1668  * only when the transaction ends (is committed).
1669  */
1670 void memory_region_transaction_begin(void);
1671 
1672 /**
1673  * memory_region_transaction_commit: Commit a transaction and make changes
1674  *                                   visible to the guest.
1675  */
1676 void memory_region_transaction_commit(void);
1677 
1678 /**
1679  * memory_listener_register: register callbacks to be called when memory
1680  *                           sections are mapped or unmapped into an address
1681  *                           space
1682  *
1683  * @listener: an object containing the callbacks to be called
1684  * @filter: if non-%NULL, only regions in this address space will be observed
1685  */
1686 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1687 
1688 /**
1689  * memory_listener_unregister: undo the effect of memory_listener_register()
1690  *
1691  * @listener: an object containing the callbacks to be removed
1692  */
1693 void memory_listener_unregister(MemoryListener *listener);
1694 
1695 /**
1696  * memory_global_dirty_log_start: begin dirty logging for all regions
1697  */
1698 void memory_global_dirty_log_start(void);
1699 
1700 /**
1701  * memory_global_dirty_log_stop: end dirty logging for all regions
1702  */
1703 void memory_global_dirty_log_stop(void);
1704 
1705 void mtree_info(fprintf_function mon_printf, void *f, bool flatview,
1706                 bool dispatch_tree, bool owner);
1707 
1708 /**
1709  * memory_region_dispatch_read: perform a read directly to the specified
1710  * MemoryRegion.
1711  *
1712  * @mr: #MemoryRegion to access
1713  * @addr: address within that region
1714  * @pval: pointer to uint64_t which the data is written to
1715  * @size: size of the access in bytes
1716  * @attrs: memory transaction attributes to use for the access
1717  */
1718 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1719                                         hwaddr addr,
1720                                         uint64_t *pval,
1721                                         unsigned size,
1722                                         MemTxAttrs attrs);
1723 /**
1724  * memory_region_dispatch_write: perform a write directly to the specified
1725  * MemoryRegion.
1726  *
1727  * @mr: #MemoryRegion to access
1728  * @addr: address within that region
1729  * @data: data to write
1730  * @size: size of the access in bytes
1731  * @attrs: memory transaction attributes to use for the access
1732  */
1733 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1734                                          hwaddr addr,
1735                                          uint64_t data,
1736                                          unsigned size,
1737                                          MemTxAttrs attrs);
1738 
1739 /**
1740  * address_space_init: initializes an address space
1741  *
1742  * @as: an uninitialized #AddressSpace
1743  * @root: a #MemoryRegion that routes addresses for the address space
1744  * @name: an address space name.  The name is only used for debugging
1745  *        output.
1746  */
1747 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1748 
1749 /**
1750  * address_space_destroy: destroy an address space
1751  *
1752  * Releases all resources associated with an address space.  After an address space
1753  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1754  * as well.
1755  *
1756  * @as: address space to be destroyed
1757  */
1758 void address_space_destroy(AddressSpace *as);
1759 
1760 /**
1761  * address_space_rw: read from or write to an address space.
1762  *
1763  * Return a MemTxResult indicating whether the operation succeeded
1764  * or failed (eg unassigned memory, device rejected the transaction,
1765  * IOMMU fault).
1766  *
1767  * @as: #AddressSpace to be accessed
1768  * @addr: address within that address space
1769  * @attrs: memory transaction attributes
1770  * @buf: buffer with the data transferred
1771  * @len: the number of bytes to read or write
1772  * @is_write: indicates the transfer direction
1773  */
1774 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1775                              MemTxAttrs attrs, uint8_t *buf,
1776                              int len, bool is_write);
1777 
1778 /**
1779  * address_space_write: write to address space.
1780  *
1781  * Return a MemTxResult indicating whether the operation succeeded
1782  * or failed (eg unassigned memory, device rejected the transaction,
1783  * IOMMU fault).
1784  *
1785  * @as: #AddressSpace to be accessed
1786  * @addr: address within that address space
1787  * @attrs: memory transaction attributes
1788  * @buf: buffer with the data transferred
1789  * @len: the number of bytes to write
1790  */
1791 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1792                                 MemTxAttrs attrs,
1793                                 const uint8_t *buf, int len);
1794 
1795 /**
1796  * address_space_write_rom: write to address space, including ROM.
1797  *
1798  * This function writes to the specified address space, but will
1799  * write data to both ROM and RAM. This is used for non-guest
1800  * writes like writes from the gdb debug stub or initial loading
1801  * of ROM contents.
1802  *
1803  * Note that portions of the write which attempt to write data to
1804  * a device will be silently ignored -- only real RAM and ROM will
1805  * be written to.
1806  *
1807  * Return a MemTxResult indicating whether the operation succeeded
1808  * or failed (eg unassigned memory, device rejected the transaction,
1809  * IOMMU fault).
1810  *
1811  * @as: #AddressSpace to be accessed
1812  * @addr: address within that address space
1813  * @attrs: memory transaction attributes
1814  * @buf: buffer with the data transferred
1815  * @len: the number of bytes to write
1816  */
1817 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
1818                                     MemTxAttrs attrs,
1819                                     const uint8_t *buf, int len);
1820 
1821 /* address_space_ld*: load from an address space
1822  * address_space_st*: store to an address space
1823  *
1824  * These functions perform a load or store of the byte, word,
1825  * longword or quad to the specified address within the AddressSpace.
1826  * The _le suffixed functions treat the data as little endian;
1827  * _be indicates big endian; no suffix indicates "same endianness
1828  * as guest CPU".
1829  *
1830  * The "guest CPU endianness" accessors are deprecated for use outside
1831  * target-* code; devices should be CPU-agnostic and use either the LE
1832  * or the BE accessors.
1833  *
1834  * @as #AddressSpace to be accessed
1835  * @addr: address within that address space
1836  * @val: data value, for stores
1837  * @attrs: memory transaction attributes
1838  * @result: location to write the success/failure of the transaction;
1839  *   if NULL, this information is discarded
1840  */
1841 
1842 #define SUFFIX
1843 #define ARG1         as
1844 #define ARG1_DECL    AddressSpace *as
1845 #include "exec/memory_ldst.inc.h"
1846 
1847 #define SUFFIX
1848 #define ARG1         as
1849 #define ARG1_DECL    AddressSpace *as
1850 #include "exec/memory_ldst_phys.inc.h"
1851 
1852 struct MemoryRegionCache {
1853     void *ptr;
1854     hwaddr xlat;
1855     hwaddr len;
1856     FlatView *fv;
1857     MemoryRegionSection mrs;
1858     bool is_write;
1859 };
1860 
1861 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
1862 
1863 
1864 /* address_space_ld*_cached: load from a cached #MemoryRegion
1865  * address_space_st*_cached: store into a cached #MemoryRegion
1866  *
1867  * These functions perform a load or store of the byte, word,
1868  * longword or quad to the specified address.  The address is
1869  * a physical address in the AddressSpace, but it must lie within
1870  * a #MemoryRegion that was mapped with address_space_cache_init.
1871  *
1872  * The _le suffixed functions treat the data as little endian;
1873  * _be indicates big endian; no suffix indicates "same endianness
1874  * as guest CPU".
1875  *
1876  * The "guest CPU endianness" accessors are deprecated for use outside
1877  * target-* code; devices should be CPU-agnostic and use either the LE
1878  * or the BE accessors.
1879  *
1880  * @cache: previously initialized #MemoryRegionCache to be accessed
1881  * @addr: address within the address space
1882  * @val: data value, for stores
1883  * @attrs: memory transaction attributes
1884  * @result: location to write the success/failure of the transaction;
1885  *   if NULL, this information is discarded
1886  */
1887 
1888 #define SUFFIX       _cached_slow
1889 #define ARG1         cache
1890 #define ARG1_DECL    MemoryRegionCache *cache
1891 #include "exec/memory_ldst.inc.h"
1892 
1893 /* Inline fast path for direct RAM access.  */
1894 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
1895     hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
1896 {
1897     assert(addr < cache->len);
1898     if (likely(cache->ptr)) {
1899         return ldub_p(cache->ptr + addr);
1900     } else {
1901         return address_space_ldub_cached_slow(cache, addr, attrs, result);
1902     }
1903 }
1904 
1905 static inline void address_space_stb_cached(MemoryRegionCache *cache,
1906     hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result)
1907 {
1908     assert(addr < cache->len);
1909     if (likely(cache->ptr)) {
1910         stb_p(cache->ptr + addr, val);
1911     } else {
1912         address_space_stb_cached_slow(cache, addr, val, attrs, result);
1913     }
1914 }
1915 
1916 #define ENDIANNESS   _le
1917 #include "exec/memory_ldst_cached.inc.h"
1918 
1919 #define ENDIANNESS   _be
1920 #include "exec/memory_ldst_cached.inc.h"
1921 
1922 #define SUFFIX       _cached
1923 #define ARG1         cache
1924 #define ARG1_DECL    MemoryRegionCache *cache
1925 #include "exec/memory_ldst_phys.inc.h"
1926 
1927 /* address_space_cache_init: prepare for repeated access to a physical
1928  * memory region
1929  *
1930  * @cache: #MemoryRegionCache to be filled
1931  * @as: #AddressSpace to be accessed
1932  * @addr: address within that address space
1933  * @len: length of buffer
1934  * @is_write: indicates the transfer direction
1935  *
1936  * Will only work with RAM, and may map a subset of the requested range by
1937  * returning a value that is less than @len.  On failure, return a negative
1938  * errno value.
1939  *
1940  * Because it only works with RAM, this function can be used for
1941  * read-modify-write operations.  In this case, is_write should be %true.
1942  *
1943  * Note that addresses passed to the address_space_*_cached functions
1944  * are relative to @addr.
1945  */
1946 int64_t address_space_cache_init(MemoryRegionCache *cache,
1947                                  AddressSpace *as,
1948                                  hwaddr addr,
1949                                  hwaddr len,
1950                                  bool is_write);
1951 
1952 /**
1953  * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
1954  *
1955  * @cache: The #MemoryRegionCache to operate on.
1956  * @addr: The first physical address that was written, relative to the
1957  * address that was passed to @address_space_cache_init.
1958  * @access_len: The number of bytes that were written starting at @addr.
1959  */
1960 void address_space_cache_invalidate(MemoryRegionCache *cache,
1961                                     hwaddr addr,
1962                                     hwaddr access_len);
1963 
1964 /**
1965  * address_space_cache_destroy: free a #MemoryRegionCache
1966  *
1967  * @cache: The #MemoryRegionCache whose memory should be released.
1968  */
1969 void address_space_cache_destroy(MemoryRegionCache *cache);
1970 
1971 /* address_space_get_iotlb_entry: translate an address into an IOTLB
1972  * entry. Should be called from an RCU critical section.
1973  */
1974 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
1975                                             bool is_write, MemTxAttrs attrs);
1976 
1977 /* address_space_translate: translate an address range into an address space
1978  * into a MemoryRegion and an address range into that section.  Should be
1979  * called from an RCU critical section, to avoid that the last reference
1980  * to the returned region disappears after address_space_translate returns.
1981  *
1982  * @fv: #FlatView to be accessed
1983  * @addr: address within that address space
1984  * @xlat: pointer to address within the returned memory region section's
1985  * #MemoryRegion.
1986  * @len: pointer to length
1987  * @is_write: indicates the transfer direction
1988  * @attrs: memory attributes
1989  */
1990 MemoryRegion *flatview_translate(FlatView *fv,
1991                                  hwaddr addr, hwaddr *xlat,
1992                                  hwaddr *len, bool is_write,
1993                                  MemTxAttrs attrs);
1994 
1995 static inline MemoryRegion *address_space_translate(AddressSpace *as,
1996                                                     hwaddr addr, hwaddr *xlat,
1997                                                     hwaddr *len, bool is_write,
1998                                                     MemTxAttrs attrs)
1999 {
2000     return flatview_translate(address_space_to_flatview(as),
2001                               addr, xlat, len, is_write, attrs);
2002 }
2003 
2004 /* address_space_access_valid: check for validity of accessing an address
2005  * space range
2006  *
2007  * Check whether memory is assigned to the given address space range, and
2008  * access is permitted by any IOMMU regions that are active for the address
2009  * space.
2010  *
2011  * For now, addr and len should be aligned to a page size.  This limitation
2012  * will be lifted in the future.
2013  *
2014  * @as: #AddressSpace to be accessed
2015  * @addr: address within that address space
2016  * @len: length of the area to be checked
2017  * @is_write: indicates the transfer direction
2018  * @attrs: memory attributes
2019  */
2020 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len,
2021                                 bool is_write, MemTxAttrs attrs);
2022 
2023 /* address_space_map: map a physical memory region into a host virtual address
2024  *
2025  * May map a subset of the requested range, given by and returned in @plen.
2026  * May return %NULL if resources needed to perform the mapping are exhausted.
2027  * Use only for reads OR writes - not for read-modify-write operations.
2028  * Use cpu_register_map_client() to know when retrying the map operation is
2029  * likely to succeed.
2030  *
2031  * @as: #AddressSpace to be accessed
2032  * @addr: address within that address space
2033  * @plen: pointer to length of buffer; updated on return
2034  * @is_write: indicates the transfer direction
2035  * @attrs: memory attributes
2036  */
2037 void *address_space_map(AddressSpace *as, hwaddr addr,
2038                         hwaddr *plen, bool is_write, MemTxAttrs attrs);
2039 
2040 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2041  *
2042  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
2043  * the amount of memory that was actually read or written by the caller.
2044  *
2045  * @as: #AddressSpace used
2046  * @buffer: host pointer as returned by address_space_map()
2047  * @len: buffer length as returned by address_space_map()
2048  * @access_len: amount of data actually transferred
2049  * @is_write: indicates the transfer direction
2050  */
2051 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2052                          int is_write, hwaddr access_len);
2053 
2054 
2055 /* Internal functions, part of the implementation of address_space_read.  */
2056 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2057                                     MemTxAttrs attrs, uint8_t *buf, int len);
2058 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2059                                    MemTxAttrs attrs, uint8_t *buf,
2060                                    int len, hwaddr addr1, hwaddr l,
2061                                    MemoryRegion *mr);
2062 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2063 
2064 /* Internal functions, part of the implementation of address_space_read_cached
2065  * and address_space_write_cached.  */
2066 void address_space_read_cached_slow(MemoryRegionCache *cache,
2067                                     hwaddr addr, void *buf, int len);
2068 void address_space_write_cached_slow(MemoryRegionCache *cache,
2069                                      hwaddr addr, const void *buf, int len);
2070 
2071 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2072 {
2073     if (is_write) {
2074         return memory_region_is_ram(mr) &&
2075                !mr->readonly && !memory_region_is_ram_device(mr);
2076     } else {
2077         return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2078                memory_region_is_romd(mr);
2079     }
2080 }
2081 
2082 /**
2083  * address_space_read: read from an address space.
2084  *
2085  * Return a MemTxResult indicating whether the operation succeeded
2086  * or failed (eg unassigned memory, device rejected the transaction,
2087  * IOMMU fault).  Called within RCU critical section.
2088  *
2089  * @as: #AddressSpace to be accessed
2090  * @addr: address within that address space
2091  * @attrs: memory transaction attributes
2092  * @buf: buffer with the data transferred
2093  */
2094 static inline __attribute__((__always_inline__))
2095 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
2096                                MemTxAttrs attrs, uint8_t *buf,
2097                                int len)
2098 {
2099     MemTxResult result = MEMTX_OK;
2100     hwaddr l, addr1;
2101     void *ptr;
2102     MemoryRegion *mr;
2103     FlatView *fv;
2104 
2105     if (__builtin_constant_p(len)) {
2106         if (len) {
2107             rcu_read_lock();
2108             fv = address_space_to_flatview(as);
2109             l = len;
2110             mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2111             if (len == l && memory_access_is_direct(mr, false)) {
2112                 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2113                 memcpy(buf, ptr, len);
2114             } else {
2115                 result = flatview_read_continue(fv, addr, attrs, buf, len,
2116                                                 addr1, l, mr);
2117             }
2118             rcu_read_unlock();
2119         }
2120     } else {
2121         result = address_space_read_full(as, addr, attrs, buf, len);
2122     }
2123     return result;
2124 }
2125 
2126 /**
2127  * address_space_read_cached: read from a cached RAM region
2128  *
2129  * @cache: Cached region to be addressed
2130  * @addr: address relative to the base of the RAM region
2131  * @buf: buffer with the data transferred
2132  * @len: length of the data transferred
2133  */
2134 static inline void
2135 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
2136                           void *buf, int len)
2137 {
2138     assert(addr < cache->len && len <= cache->len - addr);
2139     if (likely(cache->ptr)) {
2140         memcpy(buf, cache->ptr + addr, len);
2141     } else {
2142         address_space_read_cached_slow(cache, addr, buf, len);
2143     }
2144 }
2145 
2146 /**
2147  * address_space_write_cached: write to a cached RAM region
2148  *
2149  * @cache: Cached region to be addressed
2150  * @addr: address relative to the base of the RAM region
2151  * @buf: buffer with the data transferred
2152  * @len: length of the data transferred
2153  */
2154 static inline void
2155 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2156                            void *buf, int len)
2157 {
2158     assert(addr < cache->len && len <= cache->len - addr);
2159     if (likely(cache->ptr)) {
2160         memcpy(cache->ptr + addr, buf, len);
2161     } else {
2162         address_space_write_cached_slow(cache, addr, buf, len);
2163     }
2164 }
2165 
2166 #endif
2167 
2168 #endif
2169