xref: /openbmc/qemu/include/exec/memory.h (revision 2e1cacfb)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/memop.h"
23 #include "exec/ramlist.h"
24 #include "qemu/bswap.h"
25 #include "qemu/queue.h"
26 #include "qemu/int128.h"
27 #include "qemu/range.h"
28 #include "qemu/notify.h"
29 #include "qom/object.h"
30 #include "qemu/rcu.h"
31 
32 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
33 
34 #define MAX_PHYS_ADDR_SPACE_BITS 62
35 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
36 
37 #define TYPE_MEMORY_REGION "memory-region"
38 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION,
39                          TYPE_MEMORY_REGION)
40 
41 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region"
42 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass;
43 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass,
44                      IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION)
45 
46 #define TYPE_RAM_DISCARD_MANAGER "ram-discard-manager"
47 typedef struct RamDiscardManagerClass RamDiscardManagerClass;
48 typedef struct RamDiscardManager RamDiscardManager;
49 DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass,
50                      RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER);
51 
52 #ifdef CONFIG_FUZZ
53 void fuzz_dma_read_cb(size_t addr,
54                       size_t len,
55                       MemoryRegion *mr);
56 #else
57 static inline void fuzz_dma_read_cb(size_t addr,
58                                     size_t len,
59                                     MemoryRegion *mr)
60 {
61     /* Do Nothing */
62 }
63 #endif
64 
65 /* Possible bits for global_dirty_log_{start|stop} */
66 
67 /* Dirty tracking enabled because migration is running */
68 #define GLOBAL_DIRTY_MIGRATION  (1U << 0)
69 
70 /* Dirty tracking enabled because measuring dirty rate */
71 #define GLOBAL_DIRTY_DIRTY_RATE (1U << 1)
72 
73 /* Dirty tracking enabled because dirty limit */
74 #define GLOBAL_DIRTY_LIMIT      (1U << 2)
75 
76 #define GLOBAL_DIRTY_MASK  (0x7)
77 
78 extern unsigned int global_dirty_tracking;
79 
80 typedef struct MemoryRegionOps MemoryRegionOps;
81 
82 struct ReservedRegion {
83     Range range;
84     unsigned type;
85 };
86 
87 /**
88  * struct MemoryRegionSection: describes a fragment of a #MemoryRegion
89  *
90  * @mr: the region, or %NULL if empty
91  * @fv: the flat view of the address space the region is mapped in
92  * @offset_within_region: the beginning of the section, relative to @mr's start
93  * @size: the size of the section; will not exceed @mr's boundaries
94  * @offset_within_address_space: the address of the first byte of the section
95  *     relative to the region's address space
96  * @readonly: writes to this section are ignored
97  * @nonvolatile: this section is non-volatile
98  * @unmergeable: this section should not get merged with adjacent sections
99  */
100 struct MemoryRegionSection {
101     Int128 size;
102     MemoryRegion *mr;
103     FlatView *fv;
104     hwaddr offset_within_region;
105     hwaddr offset_within_address_space;
106     bool readonly;
107     bool nonvolatile;
108     bool unmergeable;
109 };
110 
111 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
112 
113 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
114 typedef enum {
115     IOMMU_NONE = 0,
116     IOMMU_RO   = 1,
117     IOMMU_WO   = 2,
118     IOMMU_RW   = 3,
119 } IOMMUAccessFlags;
120 
121 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
122 
123 struct IOMMUTLBEntry {
124     AddressSpace    *target_as;
125     hwaddr           iova;
126     hwaddr           translated_addr;
127     hwaddr           addr_mask;  /* 0xfff = 4k translation */
128     IOMMUAccessFlags perm;
129 };
130 
131 /*
132  * Bitmap for different IOMMUNotifier capabilities. Each notifier can
133  * register with one or multiple IOMMU Notifier capability bit(s).
134  *
135  * Normally there're two use cases for the notifiers:
136  *
137  *   (1) When the device needs accurate synchronizations of the vIOMMU page
138  *       tables, it needs to register with both MAP|UNMAP notifies (which
139  *       is defined as IOMMU_NOTIFIER_IOTLB_EVENTS below).
140  *
141  *       Regarding to accurate synchronization, it's when the notified
142  *       device maintains a shadow page table and must be notified on each
143  *       guest MAP (page table entry creation) and UNMAP (invalidation)
144  *       events (e.g. VFIO). Both notifications must be accurate so that
145  *       the shadow page table is fully in sync with the guest view.
146  *
147  *   (2) When the device doesn't need accurate synchronizations of the
148  *       vIOMMU page tables, it needs to register only with UNMAP or
149  *       DEVIOTLB_UNMAP notifies.
150  *
151  *       It's when the device maintains a cache of IOMMU translations
152  *       (IOTLB) and is able to fill that cache by requesting translations
153  *       from the vIOMMU through a protocol similar to ATS (Address
154  *       Translation Service).
155  *
156  *       Note that in this mode the vIOMMU will not maintain a shadowed
157  *       page table for the address space, and the UNMAP messages can cover
158  *       more than the pages that used to get mapped.  The IOMMU notifiee
159  *       should be able to take care of over-sized invalidations.
160  */
161 typedef enum {
162     IOMMU_NOTIFIER_NONE = 0,
163     /* Notify cache invalidations */
164     IOMMU_NOTIFIER_UNMAP = 0x1,
165     /* Notify entry changes (newly created entries) */
166     IOMMU_NOTIFIER_MAP = 0x2,
167     /* Notify changes on device IOTLB entries */
168     IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04,
169 } IOMMUNotifierFlag;
170 
171 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
172 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP
173 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \
174                             IOMMU_NOTIFIER_DEVIOTLB_EVENTS)
175 
176 struct IOMMUNotifier;
177 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
178                             IOMMUTLBEntry *data);
179 
180 struct IOMMUNotifier {
181     IOMMUNotify notify;
182     IOMMUNotifierFlag notifier_flags;
183     /* Notify for address space range start <= addr <= end */
184     hwaddr start;
185     hwaddr end;
186     int iommu_idx;
187     QLIST_ENTRY(IOMMUNotifier) node;
188 };
189 typedef struct IOMMUNotifier IOMMUNotifier;
190 
191 typedef struct IOMMUTLBEvent {
192     IOMMUNotifierFlag type;
193     IOMMUTLBEntry entry;
194 } IOMMUTLBEvent;
195 
196 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
197 #define RAM_PREALLOC   (1 << 0)
198 
199 /* RAM is mmap-ed with MAP_SHARED */
200 #define RAM_SHARED     (1 << 1)
201 
202 /* Only a portion of RAM (used_length) is actually used, and migrated.
203  * Resizing RAM while migrating can result in the migration being canceled.
204  */
205 #define RAM_RESIZEABLE (1 << 2)
206 
207 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
208  * zero the page and wake waiting processes.
209  * (Set during postcopy)
210  */
211 #define RAM_UF_ZEROPAGE (1 << 3)
212 
213 /* RAM can be migrated */
214 #define RAM_MIGRATABLE (1 << 4)
215 
216 /* RAM is a persistent kind memory */
217 #define RAM_PMEM (1 << 5)
218 
219 
220 /*
221  * UFFDIO_WRITEPROTECT is used on this RAMBlock to
222  * support 'write-tracking' migration type.
223  * Implies ram_state->ram_wt_enabled.
224  */
225 #define RAM_UF_WRITEPROTECT (1 << 6)
226 
227 /*
228  * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge
229  * pages if applicable) is skipped: will bail out if not supported. When not
230  * set, the OS will do the reservation, if supported for the memory type.
231  */
232 #define RAM_NORESERVE (1 << 7)
233 
234 /* RAM that isn't accessible through normal means. */
235 #define RAM_PROTECTED (1 << 8)
236 
237 /* RAM is an mmap-ed named file */
238 #define RAM_NAMED_FILE (1 << 9)
239 
240 /* RAM is mmap-ed read-only */
241 #define RAM_READONLY (1 << 10)
242 
243 /* RAM FD is opened read-only */
244 #define RAM_READONLY_FD (1 << 11)
245 
246 /* RAM can be private that has kvm guest memfd backend */
247 #define RAM_GUEST_MEMFD   (1 << 12)
248 
249 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
250                                        IOMMUNotifierFlag flags,
251                                        hwaddr start, hwaddr end,
252                                        int iommu_idx)
253 {
254     n->notify = fn;
255     n->notifier_flags = flags;
256     n->start = start;
257     n->end = end;
258     n->iommu_idx = iommu_idx;
259 }
260 
261 /*
262  * Memory region callbacks
263  */
264 struct MemoryRegionOps {
265     /* Read from the memory region. @addr is relative to @mr; @size is
266      * in bytes. */
267     uint64_t (*read)(void *opaque,
268                      hwaddr addr,
269                      unsigned size);
270     /* Write to the memory region. @addr is relative to @mr; @size is
271      * in bytes. */
272     void (*write)(void *opaque,
273                   hwaddr addr,
274                   uint64_t data,
275                   unsigned size);
276 
277     MemTxResult (*read_with_attrs)(void *opaque,
278                                    hwaddr addr,
279                                    uint64_t *data,
280                                    unsigned size,
281                                    MemTxAttrs attrs);
282     MemTxResult (*write_with_attrs)(void *opaque,
283                                     hwaddr addr,
284                                     uint64_t data,
285                                     unsigned size,
286                                     MemTxAttrs attrs);
287 
288     enum device_endian endianness;
289     /* Guest-visible constraints: */
290     struct {
291         /* If nonzero, specify bounds on access sizes beyond which a machine
292          * check is thrown.
293          */
294         unsigned min_access_size;
295         unsigned max_access_size;
296         /* If true, unaligned accesses are supported.  Otherwise unaligned
297          * accesses throw machine checks.
298          */
299          bool unaligned;
300         /*
301          * If present, and returns #false, the transaction is not accepted
302          * by the device (and results in machine dependent behaviour such
303          * as a machine check exception).
304          */
305         bool (*accepts)(void *opaque, hwaddr addr,
306                         unsigned size, bool is_write,
307                         MemTxAttrs attrs);
308     } valid;
309     /* Internal implementation constraints: */
310     struct {
311         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
312          * will be rounded upwards and a partial result will be returned.
313          */
314         unsigned min_access_size;
315         /* If nonzero, specifies the maximum size implemented.  Larger sizes
316          * will be done as a series of accesses with smaller sizes.
317          */
318         unsigned max_access_size;
319         /* If true, unaligned accesses are supported.  Otherwise all accesses
320          * are converted to (possibly multiple) naturally aligned accesses.
321          */
322         bool unaligned;
323     } impl;
324 };
325 
326 typedef struct MemoryRegionClass {
327     /* private */
328     ObjectClass parent_class;
329 } MemoryRegionClass;
330 
331 
332 enum IOMMUMemoryRegionAttr {
333     IOMMU_ATTR_SPAPR_TCE_FD
334 };
335 
336 /*
337  * IOMMUMemoryRegionClass:
338  *
339  * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
340  * and provide an implementation of at least the @translate method here
341  * to handle requests to the memory region. Other methods are optional.
342  *
343  * The IOMMU implementation must use the IOMMU notifier infrastructure
344  * to report whenever mappings are changed, by calling
345  * memory_region_notify_iommu() (or, if necessary, by calling
346  * memory_region_notify_iommu_one() for each registered notifier).
347  *
348  * Conceptually an IOMMU provides a mapping from input address
349  * to an output TLB entry. If the IOMMU is aware of memory transaction
350  * attributes and the output TLB entry depends on the transaction
351  * attributes, we represent this using IOMMU indexes. Each index
352  * selects a particular translation table that the IOMMU has:
353  *
354  *   @attrs_to_index returns the IOMMU index for a set of transaction attributes
355  *
356  *   @translate takes an input address and an IOMMU index
357  *
358  * and the mapping returned can only depend on the input address and the
359  * IOMMU index.
360  *
361  * Most IOMMUs don't care about the transaction attributes and support
362  * only a single IOMMU index. A more complex IOMMU might have one index
363  * for secure transactions and one for non-secure transactions.
364  */
365 struct IOMMUMemoryRegionClass {
366     /* private: */
367     MemoryRegionClass parent_class;
368 
369     /* public: */
370     /**
371      * @translate:
372      *
373      * Return a TLB entry that contains a given address.
374      *
375      * The IOMMUAccessFlags indicated via @flag are optional and may
376      * be specified as IOMMU_NONE to indicate that the caller needs
377      * the full translation information for both reads and writes. If
378      * the access flags are specified then the IOMMU implementation
379      * may use this as an optimization, to stop doing a page table
380      * walk as soon as it knows that the requested permissions are not
381      * allowed. If IOMMU_NONE is passed then the IOMMU must do the
382      * full page table walk and report the permissions in the returned
383      * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
384      * return different mappings for reads and writes.)
385      *
386      * The returned information remains valid while the caller is
387      * holding the big QEMU lock or is inside an RCU critical section;
388      * if the caller wishes to cache the mapping beyond that it must
389      * register an IOMMU notifier so it can invalidate its cached
390      * information when the IOMMU mapping changes.
391      *
392      * @iommu: the IOMMUMemoryRegion
393      *
394      * @hwaddr: address to be translated within the memory region
395      *
396      * @flag: requested access permission
397      *
398      * @iommu_idx: IOMMU index for the translation
399      */
400     IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
401                                IOMMUAccessFlags flag, int iommu_idx);
402     /**
403      * @get_min_page_size:
404      *
405      * Returns minimum supported page size in bytes.
406      *
407      * If this method is not provided then the minimum is assumed to
408      * be TARGET_PAGE_SIZE.
409      *
410      * @iommu: the IOMMUMemoryRegion
411      */
412     uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
413     /**
414      * @notify_flag_changed:
415      *
416      * Called when IOMMU Notifier flag changes (ie when the set of
417      * events which IOMMU users are requesting notification for changes).
418      * Optional method -- need not be provided if the IOMMU does not
419      * need to know exactly which events must be notified.
420      *
421      * @iommu: the IOMMUMemoryRegion
422      *
423      * @old_flags: events which previously needed to be notified
424      *
425      * @new_flags: events which now need to be notified
426      *
427      * Returns 0 on success, or a negative errno; in particular
428      * returns -EINVAL if the new flag bitmap is not supported by the
429      * IOMMU memory region. In case of failure, the error object
430      * must be created
431      */
432     int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
433                                IOMMUNotifierFlag old_flags,
434                                IOMMUNotifierFlag new_flags,
435                                Error **errp);
436     /**
437      * @replay:
438      *
439      * Called to handle memory_region_iommu_replay().
440      *
441      * The default implementation of memory_region_iommu_replay() is to
442      * call the IOMMU translate method for every page in the address space
443      * with flag == IOMMU_NONE and then call the notifier if translate
444      * returns a valid mapping. If this method is implemented then it
445      * overrides the default behaviour, and must provide the full semantics
446      * of memory_region_iommu_replay(), by calling @notifier for every
447      * translation present in the IOMMU.
448      *
449      * Optional method -- an IOMMU only needs to provide this method
450      * if the default is inefficient or produces undesirable side effects.
451      *
452      * Note: this is not related to record-and-replay functionality.
453      */
454     void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
455 
456     /**
457      * @get_attr:
458      *
459      * Get IOMMU misc attributes. This is an optional method that
460      * can be used to allow users of the IOMMU to get implementation-specific
461      * information. The IOMMU implements this method to handle calls
462      * by IOMMU users to memory_region_iommu_get_attr() by filling in
463      * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
464      * the IOMMU supports. If the method is unimplemented then
465      * memory_region_iommu_get_attr() will always return -EINVAL.
466      *
467      * @iommu: the IOMMUMemoryRegion
468      *
469      * @attr: attribute being queried
470      *
471      * @data: memory to fill in with the attribute data
472      *
473      * Returns 0 on success, or a negative errno; in particular
474      * returns -EINVAL for unrecognized or unimplemented attribute types.
475      */
476     int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
477                     void *data);
478 
479     /**
480      * @attrs_to_index:
481      *
482      * Return the IOMMU index to use for a given set of transaction attributes.
483      *
484      * Optional method: if an IOMMU only supports a single IOMMU index then
485      * the default implementation of memory_region_iommu_attrs_to_index()
486      * will return 0.
487      *
488      * The indexes supported by an IOMMU must be contiguous, starting at 0.
489      *
490      * @iommu: the IOMMUMemoryRegion
491      * @attrs: memory transaction attributes
492      */
493     int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
494 
495     /**
496      * @num_indexes:
497      *
498      * Return the number of IOMMU indexes this IOMMU supports.
499      *
500      * Optional method: if this method is not provided, then
501      * memory_region_iommu_num_indexes() will return 1, indicating that
502      * only a single IOMMU index is supported.
503      *
504      * @iommu: the IOMMUMemoryRegion
505      */
506     int (*num_indexes)(IOMMUMemoryRegion *iommu);
507 };
508 
509 typedef struct RamDiscardListener RamDiscardListener;
510 typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl,
511                                  MemoryRegionSection *section);
512 typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl,
513                                  MemoryRegionSection *section);
514 
515 struct RamDiscardListener {
516     /*
517      * @notify_populate:
518      *
519      * Notification that previously discarded memory is about to get populated.
520      * Listeners are able to object. If any listener objects, already
521      * successfully notified listeners are notified about a discard again.
522      *
523      * @rdl: the #RamDiscardListener getting notified
524      * @section: the #MemoryRegionSection to get populated. The section
525      *           is aligned within the memory region to the minimum granularity
526      *           unless it would exceed the registered section.
527      *
528      * Returns 0 on success. If the notification is rejected by the listener,
529      * an error is returned.
530      */
531     NotifyRamPopulate notify_populate;
532 
533     /*
534      * @notify_discard:
535      *
536      * Notification that previously populated memory was discarded successfully
537      * and listeners should drop all references to such memory and prevent
538      * new population (e.g., unmap).
539      *
540      * @rdl: the #RamDiscardListener getting notified
541      * @section: the #MemoryRegionSection to get populated. The section
542      *           is aligned within the memory region to the minimum granularity
543      *           unless it would exceed the registered section.
544      */
545     NotifyRamDiscard notify_discard;
546 
547     /*
548      * @double_discard_supported:
549      *
550      * The listener suppors getting @notify_discard notifications that span
551      * already discarded parts.
552      */
553     bool double_discard_supported;
554 
555     MemoryRegionSection *section;
556     QLIST_ENTRY(RamDiscardListener) next;
557 };
558 
559 static inline void ram_discard_listener_init(RamDiscardListener *rdl,
560                                              NotifyRamPopulate populate_fn,
561                                              NotifyRamDiscard discard_fn,
562                                              bool double_discard_supported)
563 {
564     rdl->notify_populate = populate_fn;
565     rdl->notify_discard = discard_fn;
566     rdl->double_discard_supported = double_discard_supported;
567 }
568 
569 typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque);
570 typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque);
571 
572 /*
573  * RamDiscardManagerClass:
574  *
575  * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion
576  * regions are currently populated to be used/accessed by the VM, notifying
577  * after parts were discarded (freeing up memory) and before parts will be
578  * populated (consuming memory), to be used/accessed by the VM.
579  *
580  * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the
581  * #MemoryRegion isn't mapped into an address space yet (either directly
582  * or via an alias); it cannot change while the #MemoryRegion is
583  * mapped into an address space.
584  *
585  * The #RamDiscardManager is intended to be used by technologies that are
586  * incompatible with discarding of RAM (e.g., VFIO, which may pin all
587  * memory inside a #MemoryRegion), and require proper coordination to only
588  * map the currently populated parts, to hinder parts that are expected to
589  * remain discarded from silently getting populated and consuming memory.
590  * Technologies that support discarding of RAM don't have to bother and can
591  * simply map the whole #MemoryRegion.
592  *
593  * An example #RamDiscardManager is virtio-mem, which logically (un)plugs
594  * memory within an assigned RAM #MemoryRegion, coordinated with the VM.
595  * Logically unplugging memory consists of discarding RAM. The VM agreed to not
596  * access unplugged (discarded) memory - especially via DMA. virtio-mem will
597  * properly coordinate with listeners before memory is plugged (populated),
598  * and after memory is unplugged (discarded).
599  *
600  * Listeners are called in multiples of the minimum granularity (unless it
601  * would exceed the registered range) and changes are aligned to the minimum
602  * granularity within the #MemoryRegion. Listeners have to prepare for memory
603  * becoming discarded in a different granularity than it was populated and the
604  * other way around.
605  */
606 struct RamDiscardManagerClass {
607     /* private */
608     InterfaceClass parent_class;
609 
610     /* public */
611 
612     /**
613      * @get_min_granularity:
614      *
615      * Get the minimum granularity in which listeners will get notified
616      * about changes within the #MemoryRegion via the #RamDiscardManager.
617      *
618      * @rdm: the #RamDiscardManager
619      * @mr: the #MemoryRegion
620      *
621      * Returns the minimum granularity.
622      */
623     uint64_t (*get_min_granularity)(const RamDiscardManager *rdm,
624                                     const MemoryRegion *mr);
625 
626     /**
627      * @is_populated:
628      *
629      * Check whether the given #MemoryRegionSection is completely populated
630      * (i.e., no parts are currently discarded) via the #RamDiscardManager.
631      * There are no alignment requirements.
632      *
633      * @rdm: the #RamDiscardManager
634      * @section: the #MemoryRegionSection
635      *
636      * Returns whether the given range is completely populated.
637      */
638     bool (*is_populated)(const RamDiscardManager *rdm,
639                          const MemoryRegionSection *section);
640 
641     /**
642      * @replay_populated:
643      *
644      * Call the #ReplayRamPopulate callback for all populated parts within the
645      * #MemoryRegionSection via the #RamDiscardManager.
646      *
647      * In case any call fails, no further calls are made.
648      *
649      * @rdm: the #RamDiscardManager
650      * @section: the #MemoryRegionSection
651      * @replay_fn: the #ReplayRamPopulate callback
652      * @opaque: pointer to forward to the callback
653      *
654      * Returns 0 on success, or a negative error if any notification failed.
655      */
656     int (*replay_populated)(const RamDiscardManager *rdm,
657                             MemoryRegionSection *section,
658                             ReplayRamPopulate replay_fn, void *opaque);
659 
660     /**
661      * @replay_discarded:
662      *
663      * Call the #ReplayRamDiscard callback for all discarded parts within the
664      * #MemoryRegionSection via the #RamDiscardManager.
665      *
666      * @rdm: the #RamDiscardManager
667      * @section: the #MemoryRegionSection
668      * @replay_fn: the #ReplayRamDiscard callback
669      * @opaque: pointer to forward to the callback
670      */
671     void (*replay_discarded)(const RamDiscardManager *rdm,
672                              MemoryRegionSection *section,
673                              ReplayRamDiscard replay_fn, void *opaque);
674 
675     /**
676      * @register_listener:
677      *
678      * Register a #RamDiscardListener for the given #MemoryRegionSection and
679      * immediately notify the #RamDiscardListener about all populated parts
680      * within the #MemoryRegionSection via the #RamDiscardManager.
681      *
682      * In case any notification fails, no further notifications are triggered
683      * and an error is logged.
684      *
685      * @rdm: the #RamDiscardManager
686      * @rdl: the #RamDiscardListener
687      * @section: the #MemoryRegionSection
688      */
689     void (*register_listener)(RamDiscardManager *rdm,
690                               RamDiscardListener *rdl,
691                               MemoryRegionSection *section);
692 
693     /**
694      * @unregister_listener:
695      *
696      * Unregister a previously registered #RamDiscardListener via the
697      * #RamDiscardManager after notifying the #RamDiscardListener about all
698      * populated parts becoming unpopulated within the registered
699      * #MemoryRegionSection.
700      *
701      * @rdm: the #RamDiscardManager
702      * @rdl: the #RamDiscardListener
703      */
704     void (*unregister_listener)(RamDiscardManager *rdm,
705                                 RamDiscardListener *rdl);
706 };
707 
708 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
709                                                  const MemoryRegion *mr);
710 
711 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
712                                       const MemoryRegionSection *section);
713 
714 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
715                                          MemoryRegionSection *section,
716                                          ReplayRamPopulate replay_fn,
717                                          void *opaque);
718 
719 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
720                                           MemoryRegionSection *section,
721                                           ReplayRamDiscard replay_fn,
722                                           void *opaque);
723 
724 void ram_discard_manager_register_listener(RamDiscardManager *rdm,
725                                            RamDiscardListener *rdl,
726                                            MemoryRegionSection *section);
727 
728 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
729                                              RamDiscardListener *rdl);
730 
731 /**
732  * memory_get_xlat_addr: Extract addresses from a TLB entry
733  *
734  * @iotlb: pointer to an #IOMMUTLBEntry
735  * @vaddr: virtual address
736  * @ram_addr: RAM address
737  * @read_only: indicates if writes are allowed
738  * @mr_has_discard_manager: indicates memory is controlled by a
739  *                          RamDiscardManager
740  * @errp: pointer to Error*, to store an error if it happens.
741  *
742  * Return: true on success, else false setting @errp with error.
743  */
744 bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr,
745                           ram_addr_t *ram_addr, bool *read_only,
746                           bool *mr_has_discard_manager, Error **errp);
747 
748 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
749 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
750 
751 /** MemoryRegion:
752  *
753  * A struct representing a memory region.
754  */
755 struct MemoryRegion {
756     Object parent_obj;
757 
758     /* private: */
759 
760     /* The following fields should fit in a cache line */
761     bool romd_mode;
762     bool ram;
763     bool subpage;
764     bool readonly; /* For RAM regions */
765     bool nonvolatile;
766     bool rom_device;
767     bool flush_coalesced_mmio;
768     bool unmergeable;
769     uint8_t dirty_log_mask;
770     bool is_iommu;
771     RAMBlock *ram_block;
772     Object *owner;
773     /* owner as TYPE_DEVICE. Used for re-entrancy checks in MR access hotpath */
774     DeviceState *dev;
775 
776     const MemoryRegionOps *ops;
777     void *opaque;
778     MemoryRegion *container;
779     int mapped_via_alias; /* Mapped via an alias, container might be NULL */
780     Int128 size;
781     hwaddr addr;
782     void (*destructor)(MemoryRegion *mr);
783     uint64_t align;
784     bool terminates;
785     bool ram_device;
786     bool enabled;
787     bool warning_printed; /* For reservations */
788     uint8_t vga_logging_count;
789     MemoryRegion *alias;
790     hwaddr alias_offset;
791     int32_t priority;
792     QTAILQ_HEAD(, MemoryRegion) subregions;
793     QTAILQ_ENTRY(MemoryRegion) subregions_link;
794     QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
795     const char *name;
796     unsigned ioeventfd_nb;
797     MemoryRegionIoeventfd *ioeventfds;
798     RamDiscardManager *rdm; /* Only for RAM */
799 
800     /* For devices designed to perform re-entrant IO into their own IO MRs */
801     bool disable_reentrancy_guard;
802 };
803 
804 struct IOMMUMemoryRegion {
805     MemoryRegion parent_obj;
806 
807     QLIST_HEAD(, IOMMUNotifier) iommu_notify;
808     IOMMUNotifierFlag iommu_notify_flags;
809 };
810 
811 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
812     QLIST_FOREACH((n), &(mr)->iommu_notify, node)
813 
814 #define MEMORY_LISTENER_PRIORITY_MIN            0
815 #define MEMORY_LISTENER_PRIORITY_ACCEL          10
816 #define MEMORY_LISTENER_PRIORITY_DEV_BACKEND    10
817 
818 /**
819  * struct MemoryListener: callbacks structure for updates to the physical memory map
820  *
821  * Allows a component to adjust to changes in the guest-visible memory map.
822  * Use with memory_listener_register() and memory_listener_unregister().
823  */
824 struct MemoryListener {
825     /**
826      * @begin:
827      *
828      * Called at the beginning of an address space update transaction.
829      * Followed by calls to #MemoryListener.region_add(),
830      * #MemoryListener.region_del(), #MemoryListener.region_nop(),
831      * #MemoryListener.log_start() and #MemoryListener.log_stop() in
832      * increasing address order.
833      *
834      * @listener: The #MemoryListener.
835      */
836     void (*begin)(MemoryListener *listener);
837 
838     /**
839      * @commit:
840      *
841      * Called at the end of an address space update transaction,
842      * after the last call to #MemoryListener.region_add(),
843      * #MemoryListener.region_del() or #MemoryListener.region_nop(),
844      * #MemoryListener.log_start() and #MemoryListener.log_stop().
845      *
846      * @listener: The #MemoryListener.
847      */
848     void (*commit)(MemoryListener *listener);
849 
850     /**
851      * @region_add:
852      *
853      * Called during an address space update transaction,
854      * for a section of the address space that is new in this address space
855      * space since the last transaction.
856      *
857      * @listener: The #MemoryListener.
858      * @section: The new #MemoryRegionSection.
859      */
860     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
861 
862     /**
863      * @region_del:
864      *
865      * Called during an address space update transaction,
866      * for a section of the address space that has disappeared in the address
867      * space since the last transaction.
868      *
869      * @listener: The #MemoryListener.
870      * @section: The old #MemoryRegionSection.
871      */
872     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
873 
874     /**
875      * @region_nop:
876      *
877      * Called during an address space update transaction,
878      * for a section of the address space that is in the same place in the address
879      * space as in the last transaction.
880      *
881      * @listener: The #MemoryListener.
882      * @section: The #MemoryRegionSection.
883      */
884     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
885 
886     /**
887      * @log_start:
888      *
889      * Called during an address space update transaction, after
890      * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
891      * #MemoryListener.region_nop(), if dirty memory logging clients have
892      * become active since the last transaction.
893      *
894      * @listener: The #MemoryListener.
895      * @section: The #MemoryRegionSection.
896      * @old: A bitmap of dirty memory logging clients that were active in
897      * the previous transaction.
898      * @new: A bitmap of dirty memory logging clients that are active in
899      * the current transaction.
900      */
901     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
902                       int old_val, int new_val);
903 
904     /**
905      * @log_stop:
906      *
907      * Called during an address space update transaction, after
908      * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
909      * #MemoryListener.region_nop() and possibly after
910      * #MemoryListener.log_start(), if dirty memory logging clients have
911      * become inactive since the last transaction.
912      *
913      * @listener: The #MemoryListener.
914      * @section: The #MemoryRegionSection.
915      * @old: A bitmap of dirty memory logging clients that were active in
916      * the previous transaction.
917      * @new: A bitmap of dirty memory logging clients that are active in
918      * the current transaction.
919      */
920     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
921                      int old_val, int new_val);
922 
923     /**
924      * @log_sync:
925      *
926      * Called by memory_region_snapshot_and_clear_dirty() and
927      * memory_global_dirty_log_sync(), before accessing QEMU's "official"
928      * copy of the dirty memory bitmap for a #MemoryRegionSection.
929      *
930      * @listener: The #MemoryListener.
931      * @section: The #MemoryRegionSection.
932      */
933     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
934 
935     /**
936      * @log_sync_global:
937      *
938      * This is the global version of @log_sync when the listener does
939      * not have a way to synchronize the log with finer granularity.
940      * When the listener registers with @log_sync_global defined, then
941      * its @log_sync must be NULL.  Vice versa.
942      *
943      * @listener: The #MemoryListener.
944      * @last_stage: The last stage to synchronize the log during migration.
945      * The caller should guarantee that the synchronization with true for
946      * @last_stage is triggered for once after all VCPUs have been stopped.
947      */
948     void (*log_sync_global)(MemoryListener *listener, bool last_stage);
949 
950     /**
951      * @log_clear:
952      *
953      * Called before reading the dirty memory bitmap for a
954      * #MemoryRegionSection.
955      *
956      * @listener: The #MemoryListener.
957      * @section: The #MemoryRegionSection.
958      */
959     void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
960 
961     /**
962      * @log_global_start:
963      *
964      * Called by memory_global_dirty_log_start(), which
965      * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
966      * the address space.  #MemoryListener.log_global_start() is also
967      * called when a #MemoryListener is added, if global dirty logging is
968      * active at that time.
969      *
970      * @listener: The #MemoryListener.
971      * @errp: pointer to Error*, to store an error if it happens.
972      *
973      * Return: true on success, else false setting @errp with error.
974      */
975     bool (*log_global_start)(MemoryListener *listener, Error **errp);
976 
977     /**
978      * @log_global_stop:
979      *
980      * Called by memory_global_dirty_log_stop(), which
981      * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
982      * the address space.
983      *
984      * @listener: The #MemoryListener.
985      */
986     void (*log_global_stop)(MemoryListener *listener);
987 
988     /**
989      * @log_global_after_sync:
990      *
991      * Called after reading the dirty memory bitmap
992      * for any #MemoryRegionSection.
993      *
994      * @listener: The #MemoryListener.
995      */
996     void (*log_global_after_sync)(MemoryListener *listener);
997 
998     /**
999      * @eventfd_add:
1000      *
1001      * Called during an address space update transaction,
1002      * for a section of the address space that has had a new ioeventfd
1003      * registration since the last transaction.
1004      *
1005      * @listener: The #MemoryListener.
1006      * @section: The new #MemoryRegionSection.
1007      * @match_data: The @match_data parameter for the new ioeventfd.
1008      * @data: The @data parameter for the new ioeventfd.
1009      * @e: The #EventNotifier parameter for the new ioeventfd.
1010      */
1011     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
1012                         bool match_data, uint64_t data, EventNotifier *e);
1013 
1014     /**
1015      * @eventfd_del:
1016      *
1017      * Called during an address space update transaction,
1018      * for a section of the address space that has dropped an ioeventfd
1019      * registration since the last transaction.
1020      *
1021      * @listener: The #MemoryListener.
1022      * @section: The new #MemoryRegionSection.
1023      * @match_data: The @match_data parameter for the dropped ioeventfd.
1024      * @data: The @data parameter for the dropped ioeventfd.
1025      * @e: The #EventNotifier parameter for the dropped ioeventfd.
1026      */
1027     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
1028                         bool match_data, uint64_t data, EventNotifier *e);
1029 
1030     /**
1031      * @coalesced_io_add:
1032      *
1033      * Called during an address space update transaction,
1034      * for a section of the address space that has had a new coalesced
1035      * MMIO range registration since the last transaction.
1036      *
1037      * @listener: The #MemoryListener.
1038      * @section: The new #MemoryRegionSection.
1039      * @addr: The starting address for the coalesced MMIO range.
1040      * @len: The length of the coalesced MMIO range.
1041      */
1042     void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
1043                                hwaddr addr, hwaddr len);
1044 
1045     /**
1046      * @coalesced_io_del:
1047      *
1048      * Called during an address space update transaction,
1049      * for a section of the address space that has dropped a coalesced
1050      * MMIO range since the last transaction.
1051      *
1052      * @listener: The #MemoryListener.
1053      * @section: The new #MemoryRegionSection.
1054      * @addr: The starting address for the coalesced MMIO range.
1055      * @len: The length of the coalesced MMIO range.
1056      */
1057     void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
1058                                hwaddr addr, hwaddr len);
1059     /**
1060      * @priority:
1061      *
1062      * Govern the order in which memory listeners are invoked. Lower priorities
1063      * are invoked earlier for "add" or "start" callbacks, and later for "delete"
1064      * or "stop" callbacks.
1065      */
1066     unsigned priority;
1067 
1068     /**
1069      * @name:
1070      *
1071      * Name of the listener.  It can be used in contexts where we'd like to
1072      * identify one memory listener with the rest.
1073      */
1074     const char *name;
1075 
1076     /* private: */
1077     AddressSpace *address_space;
1078     QTAILQ_ENTRY(MemoryListener) link;
1079     QTAILQ_ENTRY(MemoryListener) link_as;
1080 };
1081 
1082 typedef struct AddressSpaceMapClient {
1083     QEMUBH *bh;
1084     QLIST_ENTRY(AddressSpaceMapClient) link;
1085 } AddressSpaceMapClient;
1086 
1087 #define DEFAULT_MAX_BOUNCE_BUFFER_SIZE (4096)
1088 
1089 /**
1090  * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects
1091  */
1092 struct AddressSpace {
1093     /* private: */
1094     struct rcu_head rcu;
1095     char *name;
1096     MemoryRegion *root;
1097 
1098     /* Accessed via RCU.  */
1099     struct FlatView *current_map;
1100 
1101     int ioeventfd_nb;
1102     int ioeventfd_notifiers;
1103     struct MemoryRegionIoeventfd *ioeventfds;
1104     QTAILQ_HEAD(, MemoryListener) listeners;
1105     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
1106 
1107     /* Maximum DMA bounce buffer size used for indirect memory map requests */
1108     size_t max_bounce_buffer_size;
1109     /* Total size of bounce buffers currently allocated, atomically accessed */
1110     size_t bounce_buffer_size;
1111     /* List of callbacks to invoke when buffers free up */
1112     QemuMutex map_client_list_lock;
1113     QLIST_HEAD(, AddressSpaceMapClient) map_client_list;
1114 };
1115 
1116 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
1117 typedef struct FlatRange FlatRange;
1118 
1119 /* Flattened global view of current active memory hierarchy.  Kept in sorted
1120  * order.
1121  */
1122 struct FlatView {
1123     struct rcu_head rcu;
1124     unsigned ref;
1125     FlatRange *ranges;
1126     unsigned nr;
1127     unsigned nr_allocated;
1128     struct AddressSpaceDispatch *dispatch;
1129     MemoryRegion *root;
1130 };
1131 
1132 static inline FlatView *address_space_to_flatview(AddressSpace *as)
1133 {
1134     return qatomic_rcu_read(&as->current_map);
1135 }
1136 
1137 /**
1138  * typedef flatview_cb: callback for flatview_for_each_range()
1139  *
1140  * @start: start address of the range within the FlatView
1141  * @len: length of the range in bytes
1142  * @mr: MemoryRegion covering this range
1143  * @offset_in_region: offset of the first byte of the range within @mr
1144  * @opaque: data pointer passed to flatview_for_each_range()
1145  *
1146  * Returns: true to stop the iteration, false to keep going.
1147  */
1148 typedef bool (*flatview_cb)(Int128 start,
1149                             Int128 len,
1150                             const MemoryRegion *mr,
1151                             hwaddr offset_in_region,
1152                             void *opaque);
1153 
1154 /**
1155  * flatview_for_each_range: Iterate through a FlatView
1156  * @fv: the FlatView to iterate through
1157  * @cb: function to call for each range
1158  * @opaque: opaque data pointer to pass to @cb
1159  *
1160  * A FlatView is made up of a list of non-overlapping ranges, each of
1161  * which is a slice of a MemoryRegion. This function iterates through
1162  * each range in @fv, calling @cb. The callback function can terminate
1163  * iteration early by returning 'true'.
1164  */
1165 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque);
1166 
1167 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
1168                                           MemoryRegionSection *b)
1169 {
1170     return a->mr == b->mr &&
1171            a->fv == b->fv &&
1172            a->offset_within_region == b->offset_within_region &&
1173            a->offset_within_address_space == b->offset_within_address_space &&
1174            int128_eq(a->size, b->size) &&
1175            a->readonly == b->readonly &&
1176            a->nonvolatile == b->nonvolatile;
1177 }
1178 
1179 /**
1180  * memory_region_section_new_copy: Copy a memory region section
1181  *
1182  * Allocate memory for a new copy, copy the memory region section, and
1183  * properly take a reference on all relevant members.
1184  *
1185  * @s: the #MemoryRegionSection to copy
1186  */
1187 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s);
1188 
1189 /**
1190  * memory_region_section_new_copy: Free a copied memory region section
1191  *
1192  * Free a copy of a memory section created via memory_region_section_new_copy().
1193  * properly dropping references on all relevant members.
1194  *
1195  * @s: the #MemoryRegionSection to copy
1196  */
1197 void memory_region_section_free_copy(MemoryRegionSection *s);
1198 
1199 /**
1200  * memory_region_init: Initialize a memory region
1201  *
1202  * The region typically acts as a container for other memory regions.  Use
1203  * memory_region_add_subregion() to add subregions.
1204  *
1205  * @mr: the #MemoryRegion to be initialized
1206  * @owner: the object that tracks the region's reference count
1207  * @name: used for debugging; not visible to the user or ABI
1208  * @size: size of the region; any subregions beyond this size will be clipped
1209  */
1210 void memory_region_init(MemoryRegion *mr,
1211                         Object *owner,
1212                         const char *name,
1213                         uint64_t size);
1214 
1215 /**
1216  * memory_region_ref: Add 1 to a memory region's reference count
1217  *
1218  * Whenever memory regions are accessed outside the BQL, they need to be
1219  * preserved against hot-unplug.  MemoryRegions actually do not have their
1220  * own reference count; they piggyback on a QOM object, their "owner".
1221  * This function adds a reference to the owner.
1222  *
1223  * All MemoryRegions must have an owner if they can disappear, even if the
1224  * device they belong to operates exclusively under the BQL.  This is because
1225  * the region could be returned at any time by memory_region_find, and this
1226  * is usually under guest control.
1227  *
1228  * @mr: the #MemoryRegion
1229  */
1230 void memory_region_ref(MemoryRegion *mr);
1231 
1232 /**
1233  * memory_region_unref: Remove 1 to a memory region's reference count
1234  *
1235  * Whenever memory regions are accessed outside the BQL, they need to be
1236  * preserved against hot-unplug.  MemoryRegions actually do not have their
1237  * own reference count; they piggyback on a QOM object, their "owner".
1238  * This function removes a reference to the owner and possibly destroys it.
1239  *
1240  * @mr: the #MemoryRegion
1241  */
1242 void memory_region_unref(MemoryRegion *mr);
1243 
1244 /**
1245  * memory_region_init_io: Initialize an I/O memory region.
1246  *
1247  * Accesses into the region will cause the callbacks in @ops to be called.
1248  * if @size is nonzero, subregions will be clipped to @size.
1249  *
1250  * @mr: the #MemoryRegion to be initialized.
1251  * @owner: the object that tracks the region's reference count
1252  * @ops: a structure containing read and write callbacks to be used when
1253  *       I/O is performed on the region.
1254  * @opaque: passed to the read and write callbacks of the @ops structure.
1255  * @name: used for debugging; not visible to the user or ABI
1256  * @size: size of the region.
1257  */
1258 void memory_region_init_io(MemoryRegion *mr,
1259                            Object *owner,
1260                            const MemoryRegionOps *ops,
1261                            void *opaque,
1262                            const char *name,
1263                            uint64_t size);
1264 
1265 /**
1266  * memory_region_init_ram_nomigrate:  Initialize RAM memory region.  Accesses
1267  *                                    into the region will modify memory
1268  *                                    directly.
1269  *
1270  * @mr: the #MemoryRegion to be initialized.
1271  * @owner: the object that tracks the region's reference count
1272  * @name: Region name, becomes part of RAMBlock name used in migration stream
1273  *        must be unique within any device
1274  * @size: size of the region.
1275  * @errp: pointer to Error*, to store an error if it happens.
1276  *
1277  * Note that this function does not do anything to cause the data in the
1278  * RAM memory region to be migrated; that is the responsibility of the caller.
1279  *
1280  * Return: true on success, else false setting @errp with error.
1281  */
1282 bool memory_region_init_ram_nomigrate(MemoryRegion *mr,
1283                                       Object *owner,
1284                                       const char *name,
1285                                       uint64_t size,
1286                                       Error **errp);
1287 
1288 /**
1289  * memory_region_init_ram_flags_nomigrate:  Initialize RAM memory region.
1290  *                                          Accesses into the region will
1291  *                                          modify memory directly.
1292  *
1293  * @mr: the #MemoryRegion to be initialized.
1294  * @owner: the object that tracks the region's reference count
1295  * @name: Region name, becomes part of RAMBlock name used in migration stream
1296  *        must be unique within any device
1297  * @size: size of the region.
1298  * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE,
1299  *             RAM_GUEST_MEMFD.
1300  * @errp: pointer to Error*, to store an error if it happens.
1301  *
1302  * Note that this function does not do anything to cause the data in the
1303  * RAM memory region to be migrated; that is the responsibility of the caller.
1304  *
1305  * Return: true on success, else false setting @errp with error.
1306  */
1307 bool memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1308                                             Object *owner,
1309                                             const char *name,
1310                                             uint64_t size,
1311                                             uint32_t ram_flags,
1312                                             Error **errp);
1313 
1314 /**
1315  * memory_region_init_resizeable_ram:  Initialize memory region with resizable
1316  *                                     RAM.  Accesses into the region will
1317  *                                     modify memory directly.  Only an initial
1318  *                                     portion of this RAM is actually used.
1319  *                                     Changing the size while migrating
1320  *                                     can result in the migration being
1321  *                                     canceled.
1322  *
1323  * @mr: the #MemoryRegion to be initialized.
1324  * @owner: the object that tracks the region's reference count
1325  * @name: Region name, becomes part of RAMBlock name used in migration stream
1326  *        must be unique within any device
1327  * @size: used size of the region.
1328  * @max_size: max size of the region.
1329  * @resized: callback to notify owner about used size change.
1330  * @errp: pointer to Error*, to store an error if it happens.
1331  *
1332  * Note that this function does not do anything to cause the data in the
1333  * RAM memory region to be migrated; that is the responsibility of the caller.
1334  *
1335  * Return: true on success, else false setting @errp with error.
1336  */
1337 bool memory_region_init_resizeable_ram(MemoryRegion *mr,
1338                                        Object *owner,
1339                                        const char *name,
1340                                        uint64_t size,
1341                                        uint64_t max_size,
1342                                        void (*resized)(const char*,
1343                                                        uint64_t length,
1344                                                        void *host),
1345                                        Error **errp);
1346 #ifdef CONFIG_POSIX
1347 
1348 /**
1349  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
1350  *                                    mmap-ed backend.
1351  *
1352  * @mr: the #MemoryRegion to be initialized.
1353  * @owner: the object that tracks the region's reference count
1354  * @name: Region name, becomes part of RAMBlock name used in migration stream
1355  *        must be unique within any device
1356  * @size: size of the region.
1357  * @align: alignment of the region base address; if 0, the default alignment
1358  *         (getpagesize()) will be used.
1359  * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1360  *             RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY,
1361  *             RAM_READONLY_FD, RAM_GUEST_MEMFD
1362  * @path: the path in which to allocate the RAM.
1363  * @offset: offset within the file referenced by path
1364  * @errp: pointer to Error*, to store an error if it happens.
1365  *
1366  * Note that this function does not do anything to cause the data in the
1367  * RAM memory region to be migrated; that is the responsibility of the caller.
1368  *
1369  * Return: true on success, else false setting @errp with error.
1370  */
1371 bool memory_region_init_ram_from_file(MemoryRegion *mr,
1372                                       Object *owner,
1373                                       const char *name,
1374                                       uint64_t size,
1375                                       uint64_t align,
1376                                       uint32_t ram_flags,
1377                                       const char *path,
1378                                       ram_addr_t offset,
1379                                       Error **errp);
1380 
1381 /**
1382  * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
1383  *                                  mmap-ed backend.
1384  *
1385  * @mr: the #MemoryRegion to be initialized.
1386  * @owner: the object that tracks the region's reference count
1387  * @name: the name of the region.
1388  * @size: size of the region.
1389  * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1390  *             RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY,
1391  *             RAM_READONLY_FD, RAM_GUEST_MEMFD
1392  * @fd: the fd to mmap.
1393  * @offset: offset within the file referenced by fd
1394  * @errp: pointer to Error*, to store an error if it happens.
1395  *
1396  * Note that this function does not do anything to cause the data in the
1397  * RAM memory region to be migrated; that is the responsibility of the caller.
1398  *
1399  * Return: true on success, else false setting @errp with error.
1400  */
1401 bool memory_region_init_ram_from_fd(MemoryRegion *mr,
1402                                     Object *owner,
1403                                     const char *name,
1404                                     uint64_t size,
1405                                     uint32_t ram_flags,
1406                                     int fd,
1407                                     ram_addr_t offset,
1408                                     Error **errp);
1409 #endif
1410 
1411 /**
1412  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
1413  *                              user-provided pointer.  Accesses into the
1414  *                              region will modify memory directly.
1415  *
1416  * @mr: the #MemoryRegion to be initialized.
1417  * @owner: the object that tracks the region's reference count
1418  * @name: Region name, becomes part of RAMBlock name used in migration stream
1419  *        must be unique within any device
1420  * @size: size of the region.
1421  * @ptr: memory to be mapped; must contain at least @size bytes.
1422  *
1423  * Note that this function does not do anything to cause the data in the
1424  * RAM memory region to be migrated; that is the responsibility of the caller.
1425  */
1426 void memory_region_init_ram_ptr(MemoryRegion *mr,
1427                                 Object *owner,
1428                                 const char *name,
1429                                 uint64_t size,
1430                                 void *ptr);
1431 
1432 /**
1433  * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
1434  *                                     a user-provided pointer.
1435  *
1436  * A RAM device represents a mapping to a physical device, such as to a PCI
1437  * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
1438  * into the VM address space and access to the region will modify memory
1439  * directly.  However, the memory region should not be included in a memory
1440  * dump (device may not be enabled/mapped at the time of the dump), and
1441  * operations incompatible with manipulating MMIO should be avoided.  Replaces
1442  * skip_dump flag.
1443  *
1444  * @mr: the #MemoryRegion to be initialized.
1445  * @owner: the object that tracks the region's reference count
1446  * @name: the name of the region.
1447  * @size: size of the region.
1448  * @ptr: memory to be mapped; must contain at least @size bytes.
1449  *
1450  * Note that this function does not do anything to cause the data in the
1451  * RAM memory region to be migrated; that is the responsibility of the caller.
1452  * (For RAM device memory regions, migrating the contents rarely makes sense.)
1453  */
1454 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1455                                        Object *owner,
1456                                        const char *name,
1457                                        uint64_t size,
1458                                        void *ptr);
1459 
1460 /**
1461  * memory_region_init_alias: Initialize a memory region that aliases all or a
1462  *                           part of another memory region.
1463  *
1464  * @mr: the #MemoryRegion to be initialized.
1465  * @owner: the object that tracks the region's reference count
1466  * @name: used for debugging; not visible to the user or ABI
1467  * @orig: the region to be referenced; @mr will be equivalent to
1468  *        @orig between @offset and @offset + @size - 1.
1469  * @offset: start of the section in @orig to be referenced.
1470  * @size: size of the region.
1471  */
1472 void memory_region_init_alias(MemoryRegion *mr,
1473                               Object *owner,
1474                               const char *name,
1475                               MemoryRegion *orig,
1476                               hwaddr offset,
1477                               uint64_t size);
1478 
1479 /**
1480  * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
1481  *
1482  * This has the same effect as calling memory_region_init_ram_nomigrate()
1483  * and then marking the resulting region read-only with
1484  * memory_region_set_readonly().
1485  *
1486  * Note that this function does not do anything to cause the data in the
1487  * RAM side of the memory region to be migrated; that is the responsibility
1488  * of the caller.
1489  *
1490  * @mr: the #MemoryRegion to be initialized.
1491  * @owner: the object that tracks the region's reference count
1492  * @name: Region name, becomes part of RAMBlock name used in migration stream
1493  *        must be unique within any device
1494  * @size: size of the region.
1495  * @errp: pointer to Error*, to store an error if it happens.
1496  *
1497  * Return: true on success, else false setting @errp with error.
1498  */
1499 bool memory_region_init_rom_nomigrate(MemoryRegion *mr,
1500                                       Object *owner,
1501                                       const char *name,
1502                                       uint64_t size,
1503                                       Error **errp);
1504 
1505 /**
1506  * memory_region_init_rom_device_nomigrate:  Initialize a ROM memory region.
1507  *                                 Writes are handled via callbacks.
1508  *
1509  * Note that this function does not do anything to cause the data in the
1510  * RAM side of the memory region to be migrated; that is the responsibility
1511  * of the caller.
1512  *
1513  * @mr: the #MemoryRegion to be initialized.
1514  * @owner: the object that tracks the region's reference count
1515  * @ops: callbacks for write access handling (must not be NULL).
1516  * @opaque: passed to the read and write callbacks of the @ops structure.
1517  * @name: Region name, becomes part of RAMBlock name used in migration stream
1518  *        must be unique within any device
1519  * @size: size of the region.
1520  * @errp: pointer to Error*, to store an error if it happens.
1521  *
1522  * Return: true on success, else false setting @errp with error.
1523  */
1524 bool memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1525                                              Object *owner,
1526                                              const MemoryRegionOps *ops,
1527                                              void *opaque,
1528                                              const char *name,
1529                                              uint64_t size,
1530                                              Error **errp);
1531 
1532 /**
1533  * memory_region_init_iommu: Initialize a memory region of a custom type
1534  * that translates addresses
1535  *
1536  * An IOMMU region translates addresses and forwards accesses to a target
1537  * memory region.
1538  *
1539  * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
1540  * @_iommu_mr should be a pointer to enough memory for an instance of
1541  * that subclass, @instance_size is the size of that subclass, and
1542  * @mrtypename is its name. This function will initialize @_iommu_mr as an
1543  * instance of the subclass, and its methods will then be called to handle
1544  * accesses to the memory region. See the documentation of
1545  * #IOMMUMemoryRegionClass for further details.
1546  *
1547  * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
1548  * @instance_size: the IOMMUMemoryRegion subclass instance size
1549  * @mrtypename: the type name of the #IOMMUMemoryRegion
1550  * @owner: the object that tracks the region's reference count
1551  * @name: used for debugging; not visible to the user or ABI
1552  * @size: size of the region.
1553  */
1554 void memory_region_init_iommu(void *_iommu_mr,
1555                               size_t instance_size,
1556                               const char *mrtypename,
1557                               Object *owner,
1558                               const char *name,
1559                               uint64_t size);
1560 
1561 /**
1562  * memory_region_init_ram - Initialize RAM memory region.  Accesses into the
1563  *                          region will modify memory directly.
1564  *
1565  * @mr: the #MemoryRegion to be initialized
1566  * @owner: the object that tracks the region's reference count (must be
1567  *         TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
1568  * @name: name of the memory region
1569  * @size: size of the region in bytes
1570  * @errp: pointer to Error*, to store an error if it happens.
1571  *
1572  * This function allocates RAM for a board model or device, and
1573  * arranges for it to be migrated (by calling vmstate_register_ram()
1574  * if @owner is a DeviceState, or vmstate_register_ram_global() if
1575  * @owner is NULL).
1576  *
1577  * TODO: Currently we restrict @owner to being either NULL (for
1578  * global RAM regions with no owner) or devices, so that we can
1579  * give the RAM block a unique name for migration purposes.
1580  * We should lift this restriction and allow arbitrary Objects.
1581  * If you pass a non-NULL non-device @owner then we will assert.
1582  *
1583  * Return: true on success, else false setting @errp with error.
1584  */
1585 bool memory_region_init_ram(MemoryRegion *mr,
1586                             Object *owner,
1587                             const char *name,
1588                             uint64_t size,
1589                             Error **errp);
1590 
1591 bool memory_region_init_ram_guest_memfd(MemoryRegion *mr,
1592                                         Object *owner,
1593                                         const char *name,
1594                                         uint64_t size,
1595                                         Error **errp);
1596 
1597 /**
1598  * memory_region_init_rom: Initialize a ROM memory region.
1599  *
1600  * This has the same effect as calling memory_region_init_ram()
1601  * and then marking the resulting region read-only with
1602  * memory_region_set_readonly(). This includes arranging for the
1603  * contents to be migrated.
1604  *
1605  * TODO: Currently we restrict @owner to being either NULL (for
1606  * global RAM regions with no owner) or devices, so that we can
1607  * give the RAM block a unique name for migration purposes.
1608  * We should lift this restriction and allow arbitrary Objects.
1609  * If you pass a non-NULL non-device @owner then we will assert.
1610  *
1611  * @mr: the #MemoryRegion to be initialized.
1612  * @owner: the object that tracks the region's reference count
1613  * @name: Region name, becomes part of RAMBlock name used in migration stream
1614  *        must be unique within any device
1615  * @size: size of the region.
1616  * @errp: pointer to Error*, to store an error if it happens.
1617  *
1618  * Return: true on success, else false setting @errp with error.
1619  */
1620 bool memory_region_init_rom(MemoryRegion *mr,
1621                             Object *owner,
1622                             const char *name,
1623                             uint64_t size,
1624                             Error **errp);
1625 
1626 /**
1627  * memory_region_init_rom_device:  Initialize a ROM memory region.
1628  *                                 Writes are handled via callbacks.
1629  *
1630  * This function initializes a memory region backed by RAM for reads
1631  * and callbacks for writes, and arranges for the RAM backing to
1632  * be migrated (by calling vmstate_register_ram()
1633  * if @owner is a DeviceState, or vmstate_register_ram_global() if
1634  * @owner is NULL).
1635  *
1636  * TODO: Currently we restrict @owner to being either NULL (for
1637  * global RAM regions with no owner) or devices, so that we can
1638  * give the RAM block a unique name for migration purposes.
1639  * We should lift this restriction and allow arbitrary Objects.
1640  * If you pass a non-NULL non-device @owner then we will assert.
1641  *
1642  * @mr: the #MemoryRegion to be initialized.
1643  * @owner: the object that tracks the region's reference count
1644  * @ops: callbacks for write access handling (must not be NULL).
1645  * @opaque: passed to the read and write callbacks of the @ops structure.
1646  * @name: Region name, becomes part of RAMBlock name used in migration stream
1647  *        must be unique within any device
1648  * @size: size of the region.
1649  * @errp: pointer to Error*, to store an error if it happens.
1650  *
1651  * Return: true on success, else false setting @errp with error.
1652  */
1653 bool memory_region_init_rom_device(MemoryRegion *mr,
1654                                    Object *owner,
1655                                    const MemoryRegionOps *ops,
1656                                    void *opaque,
1657                                    const char *name,
1658                                    uint64_t size,
1659                                    Error **errp);
1660 
1661 
1662 /**
1663  * memory_region_owner: get a memory region's owner.
1664  *
1665  * @mr: the memory region being queried.
1666  */
1667 Object *memory_region_owner(MemoryRegion *mr);
1668 
1669 /**
1670  * memory_region_size: get a memory region's size.
1671  *
1672  * @mr: the memory region being queried.
1673  */
1674 uint64_t memory_region_size(MemoryRegion *mr);
1675 
1676 /**
1677  * memory_region_is_ram: check whether a memory region is random access
1678  *
1679  * Returns %true if a memory region is random access.
1680  *
1681  * @mr: the memory region being queried
1682  */
1683 static inline bool memory_region_is_ram(MemoryRegion *mr)
1684 {
1685     return mr->ram;
1686 }
1687 
1688 /**
1689  * memory_region_is_ram_device: check whether a memory region is a ram device
1690  *
1691  * Returns %true if a memory region is a device backed ram region
1692  *
1693  * @mr: the memory region being queried
1694  */
1695 bool memory_region_is_ram_device(MemoryRegion *mr);
1696 
1697 /**
1698  * memory_region_is_romd: check whether a memory region is in ROMD mode
1699  *
1700  * Returns %true if a memory region is a ROM device and currently set to allow
1701  * direct reads.
1702  *
1703  * @mr: the memory region being queried
1704  */
1705 static inline bool memory_region_is_romd(MemoryRegion *mr)
1706 {
1707     return mr->rom_device && mr->romd_mode;
1708 }
1709 
1710 /**
1711  * memory_region_is_protected: check whether a memory region is protected
1712  *
1713  * Returns %true if a memory region is protected RAM and cannot be accessed
1714  * via standard mechanisms, e.g. DMA.
1715  *
1716  * @mr: the memory region being queried
1717  */
1718 bool memory_region_is_protected(MemoryRegion *mr);
1719 
1720 /**
1721  * memory_region_has_guest_memfd: check whether a memory region has guest_memfd
1722  *     associated
1723  *
1724  * Returns %true if a memory region's ram_block has valid guest_memfd assigned.
1725  *
1726  * @mr: the memory region being queried
1727  */
1728 bool memory_region_has_guest_memfd(MemoryRegion *mr);
1729 
1730 /**
1731  * memory_region_get_iommu: check whether a memory region is an iommu
1732  *
1733  * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1734  * otherwise NULL.
1735  *
1736  * @mr: the memory region being queried
1737  */
1738 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1739 {
1740     if (mr->alias) {
1741         return memory_region_get_iommu(mr->alias);
1742     }
1743     if (mr->is_iommu) {
1744         return (IOMMUMemoryRegion *) mr;
1745     }
1746     return NULL;
1747 }
1748 
1749 /**
1750  * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1751  *   if an iommu or NULL if not
1752  *
1753  * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1754  * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1755  *
1756  * @iommu_mr: the memory region being queried
1757  */
1758 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1759         IOMMUMemoryRegion *iommu_mr)
1760 {
1761     return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1762 }
1763 
1764 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1765 
1766 /**
1767  * memory_region_iommu_get_min_page_size: get minimum supported page size
1768  * for an iommu
1769  *
1770  * Returns minimum supported page size for an iommu.
1771  *
1772  * @iommu_mr: the memory region being queried
1773  */
1774 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1775 
1776 /**
1777  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1778  *
1779  * Note: for any IOMMU implementation, an in-place mapping change
1780  * should be notified with an UNMAP followed by a MAP.
1781  *
1782  * @iommu_mr: the memory region that was changed
1783  * @iommu_idx: the IOMMU index for the translation table which has changed
1784  * @event: TLB event with the new entry in the IOMMU translation table.
1785  *         The entry replaces all old entries for the same virtual I/O address
1786  *         range.
1787  */
1788 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1789                                 int iommu_idx,
1790                                 const IOMMUTLBEvent event);
1791 
1792 /**
1793  * memory_region_notify_iommu_one: notify a change in an IOMMU translation
1794  *                           entry to a single notifier
1795  *
1796  * This works just like memory_region_notify_iommu(), but it only
1797  * notifies a specific notifier, not all of them.
1798  *
1799  * @notifier: the notifier to be notified
1800  * @event: TLB event with the new entry in the IOMMU translation table.
1801  *         The entry replaces all old entries for the same virtual I/O address
1802  *         range.
1803  */
1804 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1805                                     const IOMMUTLBEvent *event);
1806 
1807 /**
1808  * memory_region_unmap_iommu_notifier_range: notify a unmap for an IOMMU
1809  *                                           translation that covers the
1810  *                                           range of a notifier
1811  *
1812  * @notifier: the notifier to be notified
1813  */
1814 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier);
1815 
1816 
1817 /**
1818  * memory_region_register_iommu_notifier: register a notifier for changes to
1819  * IOMMU translation entries.
1820  *
1821  * Returns 0 on success, or a negative errno otherwise. In particular,
1822  * -EINVAL indicates that at least one of the attributes of the notifier
1823  * is not supported (flag/range) by the IOMMU memory region. In case of error
1824  * the error object must be created.
1825  *
1826  * @mr: the memory region to observe
1827  * @n: the IOMMUNotifier to be added; the notify callback receives a
1828  *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1829  *     ceases to be valid on exit from the notifier.
1830  * @errp: pointer to Error*, to store an error if it happens.
1831  */
1832 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1833                                           IOMMUNotifier *n, Error **errp);
1834 
1835 /**
1836  * memory_region_iommu_replay: replay existing IOMMU translations to
1837  * a notifier with the minimum page granularity returned by
1838  * mr->iommu_ops->get_page_size().
1839  *
1840  * Note: this is not related to record-and-replay functionality.
1841  *
1842  * @iommu_mr: the memory region to observe
1843  * @n: the notifier to which to replay iommu mappings
1844  */
1845 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1846 
1847 /**
1848  * memory_region_unregister_iommu_notifier: unregister a notifier for
1849  * changes to IOMMU translation entries.
1850  *
1851  * @mr: the memory region which was observed and for which notify_stopped()
1852  *      needs to be called
1853  * @n: the notifier to be removed.
1854  */
1855 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1856                                              IOMMUNotifier *n);
1857 
1858 /**
1859  * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1860  * defined on the IOMMU.
1861  *
1862  * Returns 0 on success, or a negative errno otherwise. In particular,
1863  * -EINVAL indicates that the IOMMU does not support the requested
1864  * attribute.
1865  *
1866  * @iommu_mr: the memory region
1867  * @attr: the requested attribute
1868  * @data: a pointer to the requested attribute data
1869  */
1870 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1871                                  enum IOMMUMemoryRegionAttr attr,
1872                                  void *data);
1873 
1874 /**
1875  * memory_region_iommu_attrs_to_index: return the IOMMU index to
1876  * use for translations with the given memory transaction attributes.
1877  *
1878  * @iommu_mr: the memory region
1879  * @attrs: the memory transaction attributes
1880  */
1881 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1882                                        MemTxAttrs attrs);
1883 
1884 /**
1885  * memory_region_iommu_num_indexes: return the total number of IOMMU
1886  * indexes that this IOMMU supports.
1887  *
1888  * @iommu_mr: the memory region
1889  */
1890 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1891 
1892 /**
1893  * memory_region_name: get a memory region's name
1894  *
1895  * Returns the string that was used to initialize the memory region.
1896  *
1897  * @mr: the memory region being queried
1898  */
1899 const char *memory_region_name(const MemoryRegion *mr);
1900 
1901 /**
1902  * memory_region_is_logging: return whether a memory region is logging writes
1903  *
1904  * Returns %true if the memory region is logging writes for the given client
1905  *
1906  * @mr: the memory region being queried
1907  * @client: the client being queried
1908  */
1909 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1910 
1911 /**
1912  * memory_region_get_dirty_log_mask: return the clients for which a
1913  * memory region is logging writes.
1914  *
1915  * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1916  * are the bit indices.
1917  *
1918  * @mr: the memory region being queried
1919  */
1920 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1921 
1922 /**
1923  * memory_region_is_rom: check whether a memory region is ROM
1924  *
1925  * Returns %true if a memory region is read-only memory.
1926  *
1927  * @mr: the memory region being queried
1928  */
1929 static inline bool memory_region_is_rom(MemoryRegion *mr)
1930 {
1931     return mr->ram && mr->readonly;
1932 }
1933 
1934 /**
1935  * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1936  *
1937  * Returns %true is a memory region is non-volatile memory.
1938  *
1939  * @mr: the memory region being queried
1940  */
1941 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1942 {
1943     return mr->nonvolatile;
1944 }
1945 
1946 /**
1947  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1948  *
1949  * Returns a file descriptor backing a file-based RAM memory region,
1950  * or -1 if the region is not a file-based RAM memory region.
1951  *
1952  * @mr: the RAM or alias memory region being queried.
1953  */
1954 int memory_region_get_fd(MemoryRegion *mr);
1955 
1956 /**
1957  * memory_region_from_host: Convert a pointer into a RAM memory region
1958  * and an offset within it.
1959  *
1960  * Given a host pointer inside a RAM memory region (created with
1961  * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1962  * the MemoryRegion and the offset within it.
1963  *
1964  * Use with care; by the time this function returns, the returned pointer is
1965  * not protected by RCU anymore.  If the caller is not within an RCU critical
1966  * section and does not hold the BQL, it must have other means of
1967  * protecting the pointer, such as a reference to the region that includes
1968  * the incoming ram_addr_t.
1969  *
1970  * @ptr: the host pointer to be converted
1971  * @offset: the offset within memory region
1972  */
1973 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1974 
1975 /**
1976  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1977  *
1978  * Returns a host pointer to a RAM memory region (created with
1979  * memory_region_init_ram() or memory_region_init_ram_ptr()).
1980  *
1981  * Use with care; by the time this function returns, the returned pointer is
1982  * not protected by RCU anymore.  If the caller is not within an RCU critical
1983  * section and does not hold the BQL, it must have other means of
1984  * protecting the pointer, such as a reference to the region that includes
1985  * the incoming ram_addr_t.
1986  *
1987  * @mr: the memory region being queried.
1988  */
1989 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1990 
1991 /* memory_region_ram_resize: Resize a RAM region.
1992  *
1993  * Resizing RAM while migrating can result in the migration being canceled.
1994  * Care has to be taken if the guest might have already detected the memory.
1995  *
1996  * @mr: a memory region created with @memory_region_init_resizeable_ram.
1997  * @newsize: the new size the region
1998  * @errp: pointer to Error*, to store an error if it happens.
1999  */
2000 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
2001                               Error **errp);
2002 
2003 /**
2004  * memory_region_msync: Synchronize selected address range of
2005  * a memory mapped region
2006  *
2007  * @mr: the memory region to be msync
2008  * @addr: the initial address of the range to be sync
2009  * @size: the size of the range to be sync
2010  */
2011 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
2012 
2013 /**
2014  * memory_region_writeback: Trigger cache writeback for
2015  * selected address range
2016  *
2017  * @mr: the memory region to be updated
2018  * @addr: the initial address of the range to be written back
2019  * @size: the size of the range to be written back
2020  */
2021 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
2022 
2023 /**
2024  * memory_region_set_log: Turn dirty logging on or off for a region.
2025  *
2026  * Turns dirty logging on or off for a specified client (display, migration).
2027  * Only meaningful for RAM regions.
2028  *
2029  * @mr: the memory region being updated.
2030  * @log: whether dirty logging is to be enabled or disabled.
2031  * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
2032  */
2033 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
2034 
2035 /**
2036  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
2037  *
2038  * Marks a range of bytes as dirty, after it has been dirtied outside
2039  * guest code.
2040  *
2041  * @mr: the memory region being dirtied.
2042  * @addr: the address (relative to the start of the region) being dirtied.
2043  * @size: size of the range being dirtied.
2044  */
2045 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2046                              hwaddr size);
2047 
2048 /**
2049  * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
2050  *
2051  * This function is called when the caller wants to clear the remote
2052  * dirty bitmap of a memory range within the memory region.  This can
2053  * be used by e.g. KVM to manually clear dirty log when
2054  * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
2055  * kernel.
2056  *
2057  * @mr:     the memory region to clear the dirty log upon
2058  * @start:  start address offset within the memory region
2059  * @len:    length of the memory region to clear dirty bitmap
2060  */
2061 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2062                                       hwaddr len);
2063 
2064 /**
2065  * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
2066  *                                         bitmap and clear it.
2067  *
2068  * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
2069  * returns the snapshot.  The snapshot can then be used to query dirty
2070  * status, using memory_region_snapshot_get_dirty.  Snapshotting allows
2071  * querying the same page multiple times, which is especially useful for
2072  * display updates where the scanlines often are not page aligned.
2073  *
2074  * The dirty bitmap region which gets copied into the snapshot (and
2075  * cleared afterwards) can be larger than requested.  The boundaries
2076  * are rounded up/down so complete bitmap longs (covering 64 pages on
2077  * 64bit hosts) can be copied over into the bitmap snapshot.  Which
2078  * isn't a problem for display updates as the extra pages are outside
2079  * the visible area, and in case the visible area changes a full
2080  * display redraw is due anyway.  Should other use cases for this
2081  * function emerge we might have to revisit this implementation
2082  * detail.
2083  *
2084  * Use g_free to release DirtyBitmapSnapshot.
2085  *
2086  * @mr: the memory region being queried.
2087  * @addr: the address (relative to the start of the region) being queried.
2088  * @size: the size of the range being queried.
2089  * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
2090  */
2091 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2092                                                             hwaddr addr,
2093                                                             hwaddr size,
2094                                                             unsigned client);
2095 
2096 /**
2097  * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
2098  *                                   in the specified dirty bitmap snapshot.
2099  *
2100  * @mr: the memory region being queried.
2101  * @snap: the dirty bitmap snapshot
2102  * @addr: the address (relative to the start of the region) being queried.
2103  * @size: the size of the range being queried.
2104  */
2105 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
2106                                       DirtyBitmapSnapshot *snap,
2107                                       hwaddr addr, hwaddr size);
2108 
2109 /**
2110  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
2111  *                            client.
2112  *
2113  * Marks a range of pages as no longer dirty.
2114  *
2115  * @mr: the region being updated.
2116  * @addr: the start of the subrange being cleaned.
2117  * @size: the size of the subrange being cleaned.
2118  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
2119  *          %DIRTY_MEMORY_VGA.
2120  */
2121 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2122                                hwaddr size, unsigned client);
2123 
2124 /**
2125  * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
2126  *                                 TBs (for self-modifying code).
2127  *
2128  * The MemoryRegionOps->write() callback of a ROM device must use this function
2129  * to mark byte ranges that have been modified internally, such as by directly
2130  * accessing the memory returned by memory_region_get_ram_ptr().
2131  *
2132  * This function marks the range dirty and invalidates TBs so that TCG can
2133  * detect self-modifying code.
2134  *
2135  * @mr: the region being flushed.
2136  * @addr: the start, relative to the start of the region, of the range being
2137  *        flushed.
2138  * @size: the size, in bytes, of the range being flushed.
2139  */
2140 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
2141 
2142 /**
2143  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
2144  *
2145  * Allows a memory region to be marked as read-only (turning it into a ROM).
2146  * only useful on RAM regions.
2147  *
2148  * @mr: the region being updated.
2149  * @readonly: whether rhe region is to be ROM or RAM.
2150  */
2151 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
2152 
2153 /**
2154  * memory_region_set_nonvolatile: Turn a memory region non-volatile
2155  *
2156  * Allows a memory region to be marked as non-volatile.
2157  * only useful on RAM regions.
2158  *
2159  * @mr: the region being updated.
2160  * @nonvolatile: whether rhe region is to be non-volatile.
2161  */
2162 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
2163 
2164 /**
2165  * memory_region_rom_device_set_romd: enable/disable ROMD mode
2166  *
2167  * Allows a ROM device (initialized with memory_region_init_rom_device() to
2168  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
2169  * device is mapped to guest memory and satisfies read access directly.
2170  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
2171  * Writes are always handled by the #MemoryRegion.write function.
2172  *
2173  * @mr: the memory region to be updated
2174  * @romd_mode: %true to put the region into ROMD mode
2175  */
2176 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
2177 
2178 /**
2179  * memory_region_set_coalescing: Enable memory coalescing for the region.
2180  *
2181  * Enabled writes to a region to be queued for later processing. MMIO ->write
2182  * callbacks may be delayed until a non-coalesced MMIO is issued.
2183  * Only useful for IO regions.  Roughly similar to write-combining hardware.
2184  *
2185  * @mr: the memory region to be write coalesced
2186  */
2187 void memory_region_set_coalescing(MemoryRegion *mr);
2188 
2189 /**
2190  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
2191  *                               a region.
2192  *
2193  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
2194  * Multiple calls can be issued coalesced disjoint ranges.
2195  *
2196  * @mr: the memory region to be updated.
2197  * @offset: the start of the range within the region to be coalesced.
2198  * @size: the size of the subrange to be coalesced.
2199  */
2200 void memory_region_add_coalescing(MemoryRegion *mr,
2201                                   hwaddr offset,
2202                                   uint64_t size);
2203 
2204 /**
2205  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
2206  *
2207  * Disables any coalescing caused by memory_region_set_coalescing() or
2208  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
2209  * hardware.
2210  *
2211  * @mr: the memory region to be updated.
2212  */
2213 void memory_region_clear_coalescing(MemoryRegion *mr);
2214 
2215 /**
2216  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
2217  *                                    accesses.
2218  *
2219  * Ensure that pending coalesced MMIO request are flushed before the memory
2220  * region is accessed. This property is automatically enabled for all regions
2221  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
2222  *
2223  * @mr: the memory region to be updated.
2224  */
2225 void memory_region_set_flush_coalesced(MemoryRegion *mr);
2226 
2227 /**
2228  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
2229  *                                      accesses.
2230  *
2231  * Clear the automatic coalesced MMIO flushing enabled via
2232  * memory_region_set_flush_coalesced. Note that this service has no effect on
2233  * memory regions that have MMIO coalescing enabled for themselves. For them,
2234  * automatic flushing will stop once coalescing is disabled.
2235  *
2236  * @mr: the memory region to be updated.
2237  */
2238 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
2239 
2240 /**
2241  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
2242  *                            is written to a location.
2243  *
2244  * Marks a word in an IO region (initialized with memory_region_init_io())
2245  * as a trigger for an eventfd event.  The I/O callback will not be called.
2246  * The caller must be prepared to handle failure (that is, take the required
2247  * action if the callback _is_ called).
2248  *
2249  * @mr: the memory region being updated.
2250  * @addr: the address within @mr that is to be monitored
2251  * @size: the size of the access to trigger the eventfd
2252  * @match_data: whether to match against @data, instead of just @addr
2253  * @data: the data to match against the guest write
2254  * @e: event notifier to be triggered when @addr, @size, and @data all match.
2255  **/
2256 void memory_region_add_eventfd(MemoryRegion *mr,
2257                                hwaddr addr,
2258                                unsigned size,
2259                                bool match_data,
2260                                uint64_t data,
2261                                EventNotifier *e);
2262 
2263 /**
2264  * memory_region_del_eventfd: Cancel an eventfd.
2265  *
2266  * Cancels an eventfd trigger requested by a previous
2267  * memory_region_add_eventfd() call.
2268  *
2269  * @mr: the memory region being updated.
2270  * @addr: the address within @mr that is to be monitored
2271  * @size: the size of the access to trigger the eventfd
2272  * @match_data: whether to match against @data, instead of just @addr
2273  * @data: the data to match against the guest write
2274  * @e: event notifier to be triggered when @addr, @size, and @data all match.
2275  */
2276 void memory_region_del_eventfd(MemoryRegion *mr,
2277                                hwaddr addr,
2278                                unsigned size,
2279                                bool match_data,
2280                                uint64_t data,
2281                                EventNotifier *e);
2282 
2283 /**
2284  * memory_region_add_subregion: Add a subregion to a container.
2285  *
2286  * Adds a subregion at @offset.  The subregion may not overlap with other
2287  * subregions (except for those explicitly marked as overlapping).  A region
2288  * may only be added once as a subregion (unless removed with
2289  * memory_region_del_subregion()); use memory_region_init_alias() if you
2290  * want a region to be a subregion in multiple locations.
2291  *
2292  * @mr: the region to contain the new subregion; must be a container
2293  *      initialized with memory_region_init().
2294  * @offset: the offset relative to @mr where @subregion is added.
2295  * @subregion: the subregion to be added.
2296  */
2297 void memory_region_add_subregion(MemoryRegion *mr,
2298                                  hwaddr offset,
2299                                  MemoryRegion *subregion);
2300 /**
2301  * memory_region_add_subregion_overlap: Add a subregion to a container
2302  *                                      with overlap.
2303  *
2304  * Adds a subregion at @offset.  The subregion may overlap with other
2305  * subregions.  Conflicts are resolved by having a higher @priority hide a
2306  * lower @priority. Subregions without priority are taken as @priority 0.
2307  * A region may only be added once as a subregion (unless removed with
2308  * memory_region_del_subregion()); use memory_region_init_alias() if you
2309  * want a region to be a subregion in multiple locations.
2310  *
2311  * @mr: the region to contain the new subregion; must be a container
2312  *      initialized with memory_region_init().
2313  * @offset: the offset relative to @mr where @subregion is added.
2314  * @subregion: the subregion to be added.
2315  * @priority: used for resolving overlaps; highest priority wins.
2316  */
2317 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2318                                          hwaddr offset,
2319                                          MemoryRegion *subregion,
2320                                          int priority);
2321 
2322 /**
2323  * memory_region_get_ram_addr: Get the ram address associated with a memory
2324  *                             region
2325  *
2326  * @mr: the region to be queried
2327  */
2328 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
2329 
2330 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
2331 /**
2332  * memory_region_del_subregion: Remove a subregion.
2333  *
2334  * Removes a subregion from its container.
2335  *
2336  * @mr: the container to be updated.
2337  * @subregion: the region being removed; must be a current subregion of @mr.
2338  */
2339 void memory_region_del_subregion(MemoryRegion *mr,
2340                                  MemoryRegion *subregion);
2341 
2342 /*
2343  * memory_region_set_enabled: dynamically enable or disable a region
2344  *
2345  * Enables or disables a memory region.  A disabled memory region
2346  * ignores all accesses to itself and its subregions.  It does not
2347  * obscure sibling subregions with lower priority - it simply behaves as
2348  * if it was removed from the hierarchy.
2349  *
2350  * Regions default to being enabled.
2351  *
2352  * @mr: the region to be updated
2353  * @enabled: whether to enable or disable the region
2354  */
2355 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
2356 
2357 /*
2358  * memory_region_set_address: dynamically update the address of a region
2359  *
2360  * Dynamically updates the address of a region, relative to its container.
2361  * May be used on regions are currently part of a memory hierarchy.
2362  *
2363  * @mr: the region to be updated
2364  * @addr: new address, relative to container region
2365  */
2366 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
2367 
2368 /*
2369  * memory_region_set_size: dynamically update the size of a region.
2370  *
2371  * Dynamically updates the size of a region.
2372  *
2373  * @mr: the region to be updated
2374  * @size: used size of the region.
2375  */
2376 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
2377 
2378 /*
2379  * memory_region_set_alias_offset: dynamically update a memory alias's offset
2380  *
2381  * Dynamically updates the offset into the target region that an alias points
2382  * to, as if the fourth argument to memory_region_init_alias() has changed.
2383  *
2384  * @mr: the #MemoryRegion to be updated; should be an alias.
2385  * @offset: the new offset into the target memory region
2386  */
2387 void memory_region_set_alias_offset(MemoryRegion *mr,
2388                                     hwaddr offset);
2389 
2390 /*
2391  * memory_region_set_unmergeable: Set a memory region unmergeable
2392  *
2393  * Mark a memory region unmergeable, resulting in the memory region (or
2394  * everything contained in a memory region container) not getting merged when
2395  * simplifying the address space and notifying memory listeners. Consequently,
2396  * memory listeners will never get notified about ranges that are larger than
2397  * the original memory regions.
2398  *
2399  * This is primarily useful when multiple aliases to a RAM memory region are
2400  * mapped into a memory region container, and updates (e.g., enable/disable or
2401  * map/unmap) of individual memory region aliases are not supposed to affect
2402  * other memory regions in the same container.
2403  *
2404  * @mr: the #MemoryRegion to be updated
2405  * @unmergeable: whether to mark the #MemoryRegion unmergeable
2406  */
2407 void memory_region_set_unmergeable(MemoryRegion *mr, bool unmergeable);
2408 
2409 /**
2410  * memory_region_present: checks if an address relative to a @container
2411  * translates into #MemoryRegion within @container
2412  *
2413  * Answer whether a #MemoryRegion within @container covers the address
2414  * @addr.
2415  *
2416  * @container: a #MemoryRegion within which @addr is a relative address
2417  * @addr: the area within @container to be searched
2418  */
2419 bool memory_region_present(MemoryRegion *container, hwaddr addr);
2420 
2421 /**
2422  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
2423  * into another memory region, which does not necessarily imply that it is
2424  * mapped into an address space.
2425  *
2426  * @mr: a #MemoryRegion which should be checked if it's mapped
2427  */
2428 bool memory_region_is_mapped(MemoryRegion *mr);
2429 
2430 /**
2431  * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a
2432  * #MemoryRegion
2433  *
2434  * The #RamDiscardManager cannot change while a memory region is mapped.
2435  *
2436  * @mr: the #MemoryRegion
2437  */
2438 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr);
2439 
2440 /**
2441  * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a
2442  * #RamDiscardManager assigned
2443  *
2444  * @mr: the #MemoryRegion
2445  */
2446 static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr)
2447 {
2448     return !!memory_region_get_ram_discard_manager(mr);
2449 }
2450 
2451 /**
2452  * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a
2453  * #MemoryRegion
2454  *
2455  * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion
2456  * that does not cover RAM, or a #MemoryRegion that already has a
2457  * #RamDiscardManager assigned.
2458  *
2459  * @mr: the #MemoryRegion
2460  * @rdm: #RamDiscardManager to set
2461  */
2462 void memory_region_set_ram_discard_manager(MemoryRegion *mr,
2463                                            RamDiscardManager *rdm);
2464 
2465 /**
2466  * memory_region_find: translate an address/size relative to a
2467  * MemoryRegion into a #MemoryRegionSection.
2468  *
2469  * Locates the first #MemoryRegion within @mr that overlaps the range
2470  * given by @addr and @size.
2471  *
2472  * Returns a #MemoryRegionSection that describes a contiguous overlap.
2473  * It will have the following characteristics:
2474  * - @size = 0 iff no overlap was found
2475  * - @mr is non-%NULL iff an overlap was found
2476  *
2477  * Remember that in the return value the @offset_within_region is
2478  * relative to the returned region (in the .@mr field), not to the
2479  * @mr argument.
2480  *
2481  * Similarly, the .@offset_within_address_space is relative to the
2482  * address space that contains both regions, the passed and the
2483  * returned one.  However, in the special case where the @mr argument
2484  * has no container (and thus is the root of the address space), the
2485  * following will hold:
2486  * - @offset_within_address_space >= @addr
2487  * - @offset_within_address_space + .@size <= @addr + @size
2488  *
2489  * @mr: a MemoryRegion within which @addr is a relative address
2490  * @addr: start of the area within @as to be searched
2491  * @size: size of the area to be searched
2492  */
2493 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2494                                        hwaddr addr, uint64_t size);
2495 
2496 /**
2497  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2498  *
2499  * Synchronizes the dirty page log for all address spaces.
2500  *
2501  * @last_stage: whether this is the last stage of live migration
2502  */
2503 void memory_global_dirty_log_sync(bool last_stage);
2504 
2505 /**
2506  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2507  *
2508  * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
2509  * This function must be called after the dirty log bitmap is cleared, and
2510  * before dirty guest memory pages are read.  If you are using
2511  * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
2512  * care of doing this.
2513  */
2514 void memory_global_after_dirty_log_sync(void);
2515 
2516 /**
2517  * memory_region_transaction_begin: Start a transaction.
2518  *
2519  * During a transaction, changes will be accumulated and made visible
2520  * only when the transaction ends (is committed).
2521  */
2522 void memory_region_transaction_begin(void);
2523 
2524 /**
2525  * memory_region_transaction_commit: Commit a transaction and make changes
2526  *                                   visible to the guest.
2527  */
2528 void memory_region_transaction_commit(void);
2529 
2530 /**
2531  * memory_listener_register: register callbacks to be called when memory
2532  *                           sections are mapped or unmapped into an address
2533  *                           space
2534  *
2535  * @listener: an object containing the callbacks to be called
2536  * @filter: if non-%NULL, only regions in this address space will be observed
2537  */
2538 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
2539 
2540 /**
2541  * memory_listener_unregister: undo the effect of memory_listener_register()
2542  *
2543  * @listener: an object containing the callbacks to be removed
2544  */
2545 void memory_listener_unregister(MemoryListener *listener);
2546 
2547 /**
2548  * memory_global_dirty_log_start: begin dirty logging for all regions
2549  *
2550  * @flags: purpose of starting dirty log, migration or dirty rate
2551  * @errp: pointer to Error*, to store an error if it happens.
2552  *
2553  * Return: true on success, else false setting @errp with error.
2554  */
2555 bool memory_global_dirty_log_start(unsigned int flags, Error **errp);
2556 
2557 /**
2558  * memory_global_dirty_log_stop: end dirty logging for all regions
2559  *
2560  * @flags: purpose of stopping dirty log, migration or dirty rate
2561  */
2562 void memory_global_dirty_log_stop(unsigned int flags);
2563 
2564 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled);
2565 
2566 bool memory_region_access_valid(MemoryRegion *mr, hwaddr addr,
2567                                 unsigned size, bool is_write,
2568                                 MemTxAttrs attrs);
2569 
2570 /**
2571  * memory_region_dispatch_read: perform a read directly to the specified
2572  * MemoryRegion.
2573  *
2574  * @mr: #MemoryRegion to access
2575  * @addr: address within that region
2576  * @pval: pointer to uint64_t which the data is written to
2577  * @op: size, sign, and endianness of the memory operation
2578  * @attrs: memory transaction attributes to use for the access
2579  */
2580 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
2581                                         hwaddr addr,
2582                                         uint64_t *pval,
2583                                         MemOp op,
2584                                         MemTxAttrs attrs);
2585 /**
2586  * memory_region_dispatch_write: perform a write directly to the specified
2587  * MemoryRegion.
2588  *
2589  * @mr: #MemoryRegion to access
2590  * @addr: address within that region
2591  * @data: data to write
2592  * @op: size, sign, and endianness of the memory operation
2593  * @attrs: memory transaction attributes to use for the access
2594  */
2595 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
2596                                          hwaddr addr,
2597                                          uint64_t data,
2598                                          MemOp op,
2599                                          MemTxAttrs attrs);
2600 
2601 /**
2602  * address_space_init: initializes an address space
2603  *
2604  * @as: an uninitialized #AddressSpace
2605  * @root: a #MemoryRegion that routes addresses for the address space
2606  * @name: an address space name.  The name is only used for debugging
2607  *        output.
2608  */
2609 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
2610 
2611 /**
2612  * address_space_destroy: destroy an address space
2613  *
2614  * Releases all resources associated with an address space.  After an address space
2615  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
2616  * as well.
2617  *
2618  * @as: address space to be destroyed
2619  */
2620 void address_space_destroy(AddressSpace *as);
2621 
2622 /**
2623  * address_space_remove_listeners: unregister all listeners of an address space
2624  *
2625  * Removes all callbacks previously registered with memory_listener_register()
2626  * for @as.
2627  *
2628  * @as: an initialized #AddressSpace
2629  */
2630 void address_space_remove_listeners(AddressSpace *as);
2631 
2632 /**
2633  * address_space_rw: read from or write to an address space.
2634  *
2635  * Return a MemTxResult indicating whether the operation succeeded
2636  * or failed (eg unassigned memory, device rejected the transaction,
2637  * IOMMU fault).
2638  *
2639  * @as: #AddressSpace to be accessed
2640  * @addr: address within that address space
2641  * @attrs: memory transaction attributes
2642  * @buf: buffer with the data transferred
2643  * @len: the number of bytes to read or write
2644  * @is_write: indicates the transfer direction
2645  */
2646 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
2647                              MemTxAttrs attrs, void *buf,
2648                              hwaddr len, bool is_write);
2649 
2650 /**
2651  * address_space_write: write to address space.
2652  *
2653  * Return a MemTxResult indicating whether the operation succeeded
2654  * or failed (eg unassigned memory, device rejected the transaction,
2655  * IOMMU fault).
2656  *
2657  * @as: #AddressSpace to be accessed
2658  * @addr: address within that address space
2659  * @attrs: memory transaction attributes
2660  * @buf: buffer with the data transferred
2661  * @len: the number of bytes to write
2662  */
2663 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2664                                 MemTxAttrs attrs,
2665                                 const void *buf, hwaddr len);
2666 
2667 /**
2668  * address_space_write_rom: write to address space, including ROM.
2669  *
2670  * This function writes to the specified address space, but will
2671  * write data to both ROM and RAM. This is used for non-guest
2672  * writes like writes from the gdb debug stub or initial loading
2673  * of ROM contents.
2674  *
2675  * Note that portions of the write which attempt to write data to
2676  * a device will be silently ignored -- only real RAM and ROM will
2677  * be written to.
2678  *
2679  * Return a MemTxResult indicating whether the operation succeeded
2680  * or failed (eg unassigned memory, device rejected the transaction,
2681  * IOMMU fault).
2682  *
2683  * @as: #AddressSpace to be accessed
2684  * @addr: address within that address space
2685  * @attrs: memory transaction attributes
2686  * @buf: buffer with the data transferred
2687  * @len: the number of bytes to write
2688  */
2689 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2690                                     MemTxAttrs attrs,
2691                                     const void *buf, hwaddr len);
2692 
2693 /* address_space_ld*: load from an address space
2694  * address_space_st*: store to an address space
2695  *
2696  * These functions perform a load or store of the byte, word,
2697  * longword or quad to the specified address within the AddressSpace.
2698  * The _le suffixed functions treat the data as little endian;
2699  * _be indicates big endian; no suffix indicates "same endianness
2700  * as guest CPU".
2701  *
2702  * The "guest CPU endianness" accessors are deprecated for use outside
2703  * target-* code; devices should be CPU-agnostic and use either the LE
2704  * or the BE accessors.
2705  *
2706  * @as #AddressSpace to be accessed
2707  * @addr: address within that address space
2708  * @val: data value, for stores
2709  * @attrs: memory transaction attributes
2710  * @result: location to write the success/failure of the transaction;
2711  *   if NULL, this information is discarded
2712  */
2713 
2714 #define SUFFIX
2715 #define ARG1         as
2716 #define ARG1_DECL    AddressSpace *as
2717 #include "exec/memory_ldst.h.inc"
2718 
2719 #define SUFFIX
2720 #define ARG1         as
2721 #define ARG1_DECL    AddressSpace *as
2722 #include "exec/memory_ldst_phys.h.inc"
2723 
2724 struct MemoryRegionCache {
2725     uint8_t *ptr;
2726     hwaddr xlat;
2727     hwaddr len;
2728     FlatView *fv;
2729     MemoryRegionSection mrs;
2730     bool is_write;
2731 };
2732 
2733 /* address_space_ld*_cached: load from a cached #MemoryRegion
2734  * address_space_st*_cached: store into a cached #MemoryRegion
2735  *
2736  * These functions perform a load or store of the byte, word,
2737  * longword or quad to the specified address.  The address is
2738  * a physical address in the AddressSpace, but it must lie within
2739  * a #MemoryRegion that was mapped with address_space_cache_init.
2740  *
2741  * The _le suffixed functions treat the data as little endian;
2742  * _be indicates big endian; no suffix indicates "same endianness
2743  * as guest CPU".
2744  *
2745  * The "guest CPU endianness" accessors are deprecated for use outside
2746  * target-* code; devices should be CPU-agnostic and use either the LE
2747  * or the BE accessors.
2748  *
2749  * @cache: previously initialized #MemoryRegionCache to be accessed
2750  * @addr: address within the address space
2751  * @val: data value, for stores
2752  * @attrs: memory transaction attributes
2753  * @result: location to write the success/failure of the transaction;
2754  *   if NULL, this information is discarded
2755  */
2756 
2757 #define SUFFIX       _cached_slow
2758 #define ARG1         cache
2759 #define ARG1_DECL    MemoryRegionCache *cache
2760 #include "exec/memory_ldst.h.inc"
2761 
2762 /* Inline fast path for direct RAM access.  */
2763 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
2764     hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
2765 {
2766     assert(addr < cache->len);
2767     if (likely(cache->ptr)) {
2768         return ldub_p(cache->ptr + addr);
2769     } else {
2770         return address_space_ldub_cached_slow(cache, addr, attrs, result);
2771     }
2772 }
2773 
2774 static inline void address_space_stb_cached(MemoryRegionCache *cache,
2775     hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result)
2776 {
2777     assert(addr < cache->len);
2778     if (likely(cache->ptr)) {
2779         stb_p(cache->ptr + addr, val);
2780     } else {
2781         address_space_stb_cached_slow(cache, addr, val, attrs, result);
2782     }
2783 }
2784 
2785 #define ENDIANNESS   _le
2786 #include "exec/memory_ldst_cached.h.inc"
2787 
2788 #define ENDIANNESS   _be
2789 #include "exec/memory_ldst_cached.h.inc"
2790 
2791 #define SUFFIX       _cached
2792 #define ARG1         cache
2793 #define ARG1_DECL    MemoryRegionCache *cache
2794 #include "exec/memory_ldst_phys.h.inc"
2795 
2796 /* address_space_cache_init: prepare for repeated access to a physical
2797  * memory region
2798  *
2799  * @cache: #MemoryRegionCache to be filled
2800  * @as: #AddressSpace to be accessed
2801  * @addr: address within that address space
2802  * @len: length of buffer
2803  * @is_write: indicates the transfer direction
2804  *
2805  * Will only work with RAM, and may map a subset of the requested range by
2806  * returning a value that is less than @len.  On failure, return a negative
2807  * errno value.
2808  *
2809  * Because it only works with RAM, this function can be used for
2810  * read-modify-write operations.  In this case, is_write should be %true.
2811  *
2812  * Note that addresses passed to the address_space_*_cached functions
2813  * are relative to @addr.
2814  */
2815 int64_t address_space_cache_init(MemoryRegionCache *cache,
2816                                  AddressSpace *as,
2817                                  hwaddr addr,
2818                                  hwaddr len,
2819                                  bool is_write);
2820 
2821 /**
2822  * address_space_cache_init_empty: Initialize empty #MemoryRegionCache
2823  *
2824  * @cache: The #MemoryRegionCache to operate on.
2825  *
2826  * Initializes #MemoryRegionCache structure without memory region attached.
2827  * Cache initialized this way can only be safely destroyed, but not used.
2828  */
2829 static inline void address_space_cache_init_empty(MemoryRegionCache *cache)
2830 {
2831     cache->mrs.mr = NULL;
2832     /* There is no real need to initialize fv, but it makes Coverity happy. */
2833     cache->fv = NULL;
2834 }
2835 
2836 /**
2837  * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2838  *
2839  * @cache: The #MemoryRegionCache to operate on.
2840  * @addr: The first physical address that was written, relative to the
2841  * address that was passed to @address_space_cache_init.
2842  * @access_len: The number of bytes that were written starting at @addr.
2843  */
2844 void address_space_cache_invalidate(MemoryRegionCache *cache,
2845                                     hwaddr addr,
2846                                     hwaddr access_len);
2847 
2848 /**
2849  * address_space_cache_destroy: free a #MemoryRegionCache
2850  *
2851  * @cache: The #MemoryRegionCache whose memory should be released.
2852  */
2853 void address_space_cache_destroy(MemoryRegionCache *cache);
2854 
2855 /* address_space_get_iotlb_entry: translate an address into an IOTLB
2856  * entry. Should be called from an RCU critical section.
2857  */
2858 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2859                                             bool is_write, MemTxAttrs attrs);
2860 
2861 /* address_space_translate: translate an address range into an address space
2862  * into a MemoryRegion and an address range into that section.  Should be
2863  * called from an RCU critical section, to avoid that the last reference
2864  * to the returned region disappears after address_space_translate returns.
2865  *
2866  * @fv: #FlatView to be accessed
2867  * @addr: address within that address space
2868  * @xlat: pointer to address within the returned memory region section's
2869  * #MemoryRegion.
2870  * @len: pointer to length
2871  * @is_write: indicates the transfer direction
2872  * @attrs: memory attributes
2873  */
2874 MemoryRegion *flatview_translate(FlatView *fv,
2875                                  hwaddr addr, hwaddr *xlat,
2876                                  hwaddr *len, bool is_write,
2877                                  MemTxAttrs attrs);
2878 
2879 static inline MemoryRegion *address_space_translate(AddressSpace *as,
2880                                                     hwaddr addr, hwaddr *xlat,
2881                                                     hwaddr *len, bool is_write,
2882                                                     MemTxAttrs attrs)
2883 {
2884     return flatview_translate(address_space_to_flatview(as),
2885                               addr, xlat, len, is_write, attrs);
2886 }
2887 
2888 /* address_space_access_valid: check for validity of accessing an address
2889  * space range
2890  *
2891  * Check whether memory is assigned to the given address space range, and
2892  * access is permitted by any IOMMU regions that are active for the address
2893  * space.
2894  *
2895  * For now, addr and len should be aligned to a page size.  This limitation
2896  * will be lifted in the future.
2897  *
2898  * @as: #AddressSpace to be accessed
2899  * @addr: address within that address space
2900  * @len: length of the area to be checked
2901  * @is_write: indicates the transfer direction
2902  * @attrs: memory attributes
2903  */
2904 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2905                                 bool is_write, MemTxAttrs attrs);
2906 
2907 /* address_space_map: map a physical memory region into a host virtual address
2908  *
2909  * May map a subset of the requested range, given by and returned in @plen.
2910  * May return %NULL and set *@plen to zero(0), if resources needed to perform
2911  * the mapping are exhausted.
2912  * Use only for reads OR writes - not for read-modify-write operations.
2913  * Use address_space_register_map_client() to know when retrying the map
2914  * operation is likely to succeed.
2915  *
2916  * @as: #AddressSpace to be accessed
2917  * @addr: address within that address space
2918  * @plen: pointer to length of buffer; updated on return
2919  * @is_write: indicates the transfer direction
2920  * @attrs: memory attributes
2921  */
2922 void *address_space_map(AddressSpace *as, hwaddr addr,
2923                         hwaddr *plen, bool is_write, MemTxAttrs attrs);
2924 
2925 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2926  *
2927  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
2928  * the amount of memory that was actually read or written by the caller.
2929  *
2930  * @as: #AddressSpace used
2931  * @buffer: host pointer as returned by address_space_map()
2932  * @len: buffer length as returned by address_space_map()
2933  * @access_len: amount of data actually transferred
2934  * @is_write: indicates the transfer direction
2935  */
2936 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2937                          bool is_write, hwaddr access_len);
2938 
2939 /*
2940  * address_space_register_map_client: Register a callback to invoke when
2941  * resources for address_space_map() are available again.
2942  *
2943  * address_space_map may fail when there are not enough resources available,
2944  * such as when bounce buffer memory would exceed the limit. The callback can
2945  * be used to retry the address_space_map operation. Note that the callback
2946  * gets automatically removed after firing.
2947  *
2948  * @as: #AddressSpace to be accessed
2949  * @bh: callback to invoke when address_space_map() retry is appropriate
2950  */
2951 void address_space_register_map_client(AddressSpace *as, QEMUBH *bh);
2952 
2953 /*
2954  * address_space_unregister_map_client: Unregister a callback that has
2955  * previously been registered and not fired yet.
2956  *
2957  * @as: #AddressSpace to be accessed
2958  * @bh: callback to unregister
2959  */
2960 void address_space_unregister_map_client(AddressSpace *as, QEMUBH *bh);
2961 
2962 /* Internal functions, part of the implementation of address_space_read.  */
2963 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2964                                     MemTxAttrs attrs, void *buf, hwaddr len);
2965 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2966                                    MemTxAttrs attrs, void *buf,
2967                                    hwaddr len, hwaddr addr1, hwaddr l,
2968                                    MemoryRegion *mr);
2969 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2970 
2971 /* Internal functions, part of the implementation of address_space_read_cached
2972  * and address_space_write_cached.  */
2973 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache,
2974                                            hwaddr addr, void *buf, hwaddr len);
2975 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
2976                                             hwaddr addr, const void *buf,
2977                                             hwaddr len);
2978 
2979 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr);
2980 bool prepare_mmio_access(MemoryRegion *mr);
2981 
2982 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2983 {
2984     if (is_write) {
2985         return memory_region_is_ram(mr) && !mr->readonly &&
2986                !mr->rom_device && !memory_region_is_ram_device(mr);
2987     } else {
2988         return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2989                memory_region_is_romd(mr);
2990     }
2991 }
2992 
2993 /**
2994  * address_space_read: read from an address space.
2995  *
2996  * Return a MemTxResult indicating whether the operation succeeded
2997  * or failed (eg unassigned memory, device rejected the transaction,
2998  * IOMMU fault).  Called within RCU critical section.
2999  *
3000  * @as: #AddressSpace to be accessed
3001  * @addr: address within that address space
3002  * @attrs: memory transaction attributes
3003  * @buf: buffer with the data transferred
3004  * @len: length of the data transferred
3005  */
3006 static inline __attribute__((__always_inline__))
3007 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
3008                                MemTxAttrs attrs, void *buf,
3009                                hwaddr len)
3010 {
3011     MemTxResult result = MEMTX_OK;
3012     hwaddr l, addr1;
3013     void *ptr;
3014     MemoryRegion *mr;
3015     FlatView *fv;
3016 
3017     if (__builtin_constant_p(len)) {
3018         if (len) {
3019             RCU_READ_LOCK_GUARD();
3020             fv = address_space_to_flatview(as);
3021             l = len;
3022             mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3023             if (len == l && memory_access_is_direct(mr, false)) {
3024                 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3025                 memcpy(buf, ptr, len);
3026             } else {
3027                 result = flatview_read_continue(fv, addr, attrs, buf, len,
3028                                                 addr1, l, mr);
3029             }
3030         }
3031     } else {
3032         result = address_space_read_full(as, addr, attrs, buf, len);
3033     }
3034     return result;
3035 }
3036 
3037 /**
3038  * address_space_read_cached: read from a cached RAM region
3039  *
3040  * @cache: Cached region to be addressed
3041  * @addr: address relative to the base of the RAM region
3042  * @buf: buffer with the data transferred
3043  * @len: length of the data transferred
3044  */
3045 static inline MemTxResult
3046 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
3047                           void *buf, hwaddr len)
3048 {
3049     assert(addr < cache->len && len <= cache->len - addr);
3050     fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr);
3051     if (likely(cache->ptr)) {
3052         memcpy(buf, cache->ptr + addr, len);
3053         return MEMTX_OK;
3054     } else {
3055         return address_space_read_cached_slow(cache, addr, buf, len);
3056     }
3057 }
3058 
3059 /**
3060  * address_space_write_cached: write to a cached RAM region
3061  *
3062  * @cache: Cached region to be addressed
3063  * @addr: address relative to the base of the RAM region
3064  * @buf: buffer with the data transferred
3065  * @len: length of the data transferred
3066  */
3067 static inline MemTxResult
3068 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
3069                            const void *buf, hwaddr len)
3070 {
3071     assert(addr < cache->len && len <= cache->len - addr);
3072     if (likely(cache->ptr)) {
3073         memcpy(cache->ptr + addr, buf, len);
3074         return MEMTX_OK;
3075     } else {
3076         return address_space_write_cached_slow(cache, addr, buf, len);
3077     }
3078 }
3079 
3080 /**
3081  * address_space_set: Fill address space with a constant byte.
3082  *
3083  * Return a MemTxResult indicating whether the operation succeeded
3084  * or failed (eg unassigned memory, device rejected the transaction,
3085  * IOMMU fault).
3086  *
3087  * @as: #AddressSpace to be accessed
3088  * @addr: address within that address space
3089  * @c: constant byte to fill the memory
3090  * @len: the number of bytes to fill with the constant byte
3091  * @attrs: memory transaction attributes
3092  */
3093 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
3094                               uint8_t c, hwaddr len, MemTxAttrs attrs);
3095 
3096 #ifdef COMPILING_PER_TARGET
3097 /* enum device_endian to MemOp.  */
3098 static inline MemOp devend_memop(enum device_endian end)
3099 {
3100     QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
3101                       DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
3102 
3103 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
3104     /* Swap if non-host endianness or native (target) endianness */
3105     return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
3106 #else
3107     const int non_host_endianness =
3108         DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
3109 
3110     /* In this case, native (target) endianness needs no swap.  */
3111     return (end == non_host_endianness) ? MO_BSWAP : 0;
3112 #endif
3113 }
3114 #endif /* COMPILING_PER_TARGET */
3115 
3116 /*
3117  * Inhibit technologies that require discarding of pages in RAM blocks, e.g.,
3118  * to manage the actual amount of memory consumed by the VM (then, the memory
3119  * provided by RAM blocks might be bigger than the desired memory consumption).
3120  * This *must* be set if:
3121  * - Discarding parts of a RAM blocks does not result in the change being
3122  *   reflected in the VM and the pages getting freed.
3123  * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous
3124  *   discards blindly.
3125  * - Discarding parts of a RAM blocks will result in integrity issues (e.g.,
3126  *   encrypted VMs).
3127  * Technologies that only temporarily pin the current working set of a
3128  * driver are fine, because we don't expect such pages to be discarded
3129  * (esp. based on guest action like balloon inflation).
3130  *
3131  * This is *not* to be used to protect from concurrent discards (esp.,
3132  * postcopy).
3133  *
3134  * Returns 0 if successful. Returns -EBUSY if a technology that relies on
3135  * discards to work reliably is active.
3136  */
3137 int ram_block_discard_disable(bool state);
3138 
3139 /*
3140  * See ram_block_discard_disable(): only disable uncoordinated discards,
3141  * keeping coordinated discards (via the RamDiscardManager) enabled.
3142  */
3143 int ram_block_uncoordinated_discard_disable(bool state);
3144 
3145 /*
3146  * Inhibit technologies that disable discarding of pages in RAM blocks.
3147  *
3148  * Returns 0 if successful. Returns -EBUSY if discards are already set to
3149  * broken.
3150  */
3151 int ram_block_discard_require(bool state);
3152 
3153 /*
3154  * See ram_block_discard_require(): only inhibit technologies that disable
3155  * uncoordinated discarding of pages in RAM blocks, allowing co-existence with
3156  * technologies that only inhibit uncoordinated discards (via the
3157  * RamDiscardManager).
3158  */
3159 int ram_block_coordinated_discard_require(bool state);
3160 
3161 /*
3162  * Test if any discarding of memory in ram blocks is disabled.
3163  */
3164 bool ram_block_discard_is_disabled(void);
3165 
3166 /*
3167  * Test if any discarding of memory in ram blocks is required to work reliably.
3168  */
3169 bool ram_block_discard_is_required(void);
3170 
3171 #endif
3172 
3173 #endif
3174