1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef MEMORY_H 15 #define MEMORY_H 16 17 #ifndef CONFIG_USER_ONLY 18 19 #include "exec/cpu-common.h" 20 #include "exec/hwaddr.h" 21 #include "exec/memattrs.h" 22 #include "exec/memop.h" 23 #include "exec/ramlist.h" 24 #include "qemu/bswap.h" 25 #include "qemu/queue.h" 26 #include "qemu/int128.h" 27 #include "qemu/notify.h" 28 #include "qom/object.h" 29 #include "qemu/rcu.h" 30 31 #define RAM_ADDR_INVALID (~(ram_addr_t)0) 32 33 #define MAX_PHYS_ADDR_SPACE_BITS 62 34 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 35 36 #define TYPE_MEMORY_REGION "memory-region" 37 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION, 38 TYPE_MEMORY_REGION) 39 40 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region" 41 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass; 42 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass, 43 IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION) 44 45 #define TYPE_RAM_DISCARD_MANAGER "qemu:ram-discard-manager" 46 typedef struct RamDiscardManagerClass RamDiscardManagerClass; 47 typedef struct RamDiscardManager RamDiscardManager; 48 DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass, 49 RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER); 50 51 #ifdef CONFIG_FUZZ 52 void fuzz_dma_read_cb(size_t addr, 53 size_t len, 54 MemoryRegion *mr); 55 #else 56 static inline void fuzz_dma_read_cb(size_t addr, 57 size_t len, 58 MemoryRegion *mr) 59 { 60 /* Do Nothing */ 61 } 62 #endif 63 64 /* Possible bits for global_dirty_log_{start|stop} */ 65 66 /* Dirty tracking enabled because migration is running */ 67 #define GLOBAL_DIRTY_MIGRATION (1U << 0) 68 69 /* Dirty tracking enabled because measuring dirty rate */ 70 #define GLOBAL_DIRTY_DIRTY_RATE (1U << 1) 71 72 /* Dirty tracking enabled because dirty limit */ 73 #define GLOBAL_DIRTY_LIMIT (1U << 2) 74 75 #define GLOBAL_DIRTY_MASK (0x7) 76 77 extern unsigned int global_dirty_tracking; 78 79 typedef struct MemoryRegionOps MemoryRegionOps; 80 81 struct ReservedRegion { 82 hwaddr low; 83 hwaddr high; 84 unsigned type; 85 }; 86 87 /** 88 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion 89 * 90 * @mr: the region, or %NULL if empty 91 * @fv: the flat view of the address space the region is mapped in 92 * @offset_within_region: the beginning of the section, relative to @mr's start 93 * @size: the size of the section; will not exceed @mr's boundaries 94 * @offset_within_address_space: the address of the first byte of the section 95 * relative to the region's address space 96 * @readonly: writes to this section are ignored 97 * @nonvolatile: this section is non-volatile 98 * @unmergeable: this section should not get merged with adjacent sections 99 */ 100 struct MemoryRegionSection { 101 Int128 size; 102 MemoryRegion *mr; 103 FlatView *fv; 104 hwaddr offset_within_region; 105 hwaddr offset_within_address_space; 106 bool readonly; 107 bool nonvolatile; 108 bool unmergeable; 109 }; 110 111 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 112 113 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 114 typedef enum { 115 IOMMU_NONE = 0, 116 IOMMU_RO = 1, 117 IOMMU_WO = 2, 118 IOMMU_RW = 3, 119 } IOMMUAccessFlags; 120 121 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0)) 122 123 struct IOMMUTLBEntry { 124 AddressSpace *target_as; 125 hwaddr iova; 126 hwaddr translated_addr; 127 hwaddr addr_mask; /* 0xfff = 4k translation */ 128 IOMMUAccessFlags perm; 129 }; 130 131 /* 132 * Bitmap for different IOMMUNotifier capabilities. Each notifier can 133 * register with one or multiple IOMMU Notifier capability bit(s). 134 * 135 * Normally there're two use cases for the notifiers: 136 * 137 * (1) When the device needs accurate synchronizations of the vIOMMU page 138 * tables, it needs to register with both MAP|UNMAP notifies (which 139 * is defined as IOMMU_NOTIFIER_IOTLB_EVENTS below). 140 * 141 * Regarding to accurate synchronization, it's when the notified 142 * device maintains a shadow page table and must be notified on each 143 * guest MAP (page table entry creation) and UNMAP (invalidation) 144 * events (e.g. VFIO). Both notifications must be accurate so that 145 * the shadow page table is fully in sync with the guest view. 146 * 147 * (2) When the device doesn't need accurate synchronizations of the 148 * vIOMMU page tables, it needs to register only with UNMAP or 149 * DEVIOTLB_UNMAP notifies. 150 * 151 * It's when the device maintains a cache of IOMMU translations 152 * (IOTLB) and is able to fill that cache by requesting translations 153 * from the vIOMMU through a protocol similar to ATS (Address 154 * Translation Service). 155 * 156 * Note that in this mode the vIOMMU will not maintain a shadowed 157 * page table for the address space, and the UNMAP messages can cover 158 * more than the pages that used to get mapped. The IOMMU notifiee 159 * should be able to take care of over-sized invalidations. 160 */ 161 typedef enum { 162 IOMMU_NOTIFIER_NONE = 0, 163 /* Notify cache invalidations */ 164 IOMMU_NOTIFIER_UNMAP = 0x1, 165 /* Notify entry changes (newly created entries) */ 166 IOMMU_NOTIFIER_MAP = 0x2, 167 /* Notify changes on device IOTLB entries */ 168 IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04, 169 } IOMMUNotifierFlag; 170 171 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP) 172 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP 173 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \ 174 IOMMU_NOTIFIER_DEVIOTLB_EVENTS) 175 176 struct IOMMUNotifier; 177 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier, 178 IOMMUTLBEntry *data); 179 180 struct IOMMUNotifier { 181 IOMMUNotify notify; 182 IOMMUNotifierFlag notifier_flags; 183 /* Notify for address space range start <= addr <= end */ 184 hwaddr start; 185 hwaddr end; 186 int iommu_idx; 187 QLIST_ENTRY(IOMMUNotifier) node; 188 }; 189 typedef struct IOMMUNotifier IOMMUNotifier; 190 191 typedef struct IOMMUTLBEvent { 192 IOMMUNotifierFlag type; 193 IOMMUTLBEntry entry; 194 } IOMMUTLBEvent; 195 196 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ 197 #define RAM_PREALLOC (1 << 0) 198 199 /* RAM is mmap-ed with MAP_SHARED */ 200 #define RAM_SHARED (1 << 1) 201 202 /* Only a portion of RAM (used_length) is actually used, and migrated. 203 * Resizing RAM while migrating can result in the migration being canceled. 204 */ 205 #define RAM_RESIZEABLE (1 << 2) 206 207 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically 208 * zero the page and wake waiting processes. 209 * (Set during postcopy) 210 */ 211 #define RAM_UF_ZEROPAGE (1 << 3) 212 213 /* RAM can be migrated */ 214 #define RAM_MIGRATABLE (1 << 4) 215 216 /* RAM is a persistent kind memory */ 217 #define RAM_PMEM (1 << 5) 218 219 220 /* 221 * UFFDIO_WRITEPROTECT is used on this RAMBlock to 222 * support 'write-tracking' migration type. 223 * Implies ram_state->ram_wt_enabled. 224 */ 225 #define RAM_UF_WRITEPROTECT (1 << 6) 226 227 /* 228 * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge 229 * pages if applicable) is skipped: will bail out if not supported. When not 230 * set, the OS will do the reservation, if supported for the memory type. 231 */ 232 #define RAM_NORESERVE (1 << 7) 233 234 /* RAM that isn't accessible through normal means. */ 235 #define RAM_PROTECTED (1 << 8) 236 237 /* RAM is an mmap-ed named file */ 238 #define RAM_NAMED_FILE (1 << 9) 239 240 /* RAM is mmap-ed read-only */ 241 #define RAM_READONLY (1 << 10) 242 243 /* RAM FD is opened read-only */ 244 #define RAM_READONLY_FD (1 << 11) 245 246 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn, 247 IOMMUNotifierFlag flags, 248 hwaddr start, hwaddr end, 249 int iommu_idx) 250 { 251 n->notify = fn; 252 n->notifier_flags = flags; 253 n->start = start; 254 n->end = end; 255 n->iommu_idx = iommu_idx; 256 } 257 258 /* 259 * Memory region callbacks 260 */ 261 struct MemoryRegionOps { 262 /* Read from the memory region. @addr is relative to @mr; @size is 263 * in bytes. */ 264 uint64_t (*read)(void *opaque, 265 hwaddr addr, 266 unsigned size); 267 /* Write to the memory region. @addr is relative to @mr; @size is 268 * in bytes. */ 269 void (*write)(void *opaque, 270 hwaddr addr, 271 uint64_t data, 272 unsigned size); 273 274 MemTxResult (*read_with_attrs)(void *opaque, 275 hwaddr addr, 276 uint64_t *data, 277 unsigned size, 278 MemTxAttrs attrs); 279 MemTxResult (*write_with_attrs)(void *opaque, 280 hwaddr addr, 281 uint64_t data, 282 unsigned size, 283 MemTxAttrs attrs); 284 285 enum device_endian endianness; 286 /* Guest-visible constraints: */ 287 struct { 288 /* If nonzero, specify bounds on access sizes beyond which a machine 289 * check is thrown. 290 */ 291 unsigned min_access_size; 292 unsigned max_access_size; 293 /* If true, unaligned accesses are supported. Otherwise unaligned 294 * accesses throw machine checks. 295 */ 296 bool unaligned; 297 /* 298 * If present, and returns #false, the transaction is not accepted 299 * by the device (and results in machine dependent behaviour such 300 * as a machine check exception). 301 */ 302 bool (*accepts)(void *opaque, hwaddr addr, 303 unsigned size, bool is_write, 304 MemTxAttrs attrs); 305 } valid; 306 /* Internal implementation constraints: */ 307 struct { 308 /* If nonzero, specifies the minimum size implemented. Smaller sizes 309 * will be rounded upwards and a partial result will be returned. 310 */ 311 unsigned min_access_size; 312 /* If nonzero, specifies the maximum size implemented. Larger sizes 313 * will be done as a series of accesses with smaller sizes. 314 */ 315 unsigned max_access_size; 316 /* If true, unaligned accesses are supported. Otherwise all accesses 317 * are converted to (possibly multiple) naturally aligned accesses. 318 */ 319 bool unaligned; 320 } impl; 321 }; 322 323 typedef struct MemoryRegionClass { 324 /* private */ 325 ObjectClass parent_class; 326 } MemoryRegionClass; 327 328 329 enum IOMMUMemoryRegionAttr { 330 IOMMU_ATTR_SPAPR_TCE_FD 331 }; 332 333 /* 334 * IOMMUMemoryRegionClass: 335 * 336 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION 337 * and provide an implementation of at least the @translate method here 338 * to handle requests to the memory region. Other methods are optional. 339 * 340 * The IOMMU implementation must use the IOMMU notifier infrastructure 341 * to report whenever mappings are changed, by calling 342 * memory_region_notify_iommu() (or, if necessary, by calling 343 * memory_region_notify_iommu_one() for each registered notifier). 344 * 345 * Conceptually an IOMMU provides a mapping from input address 346 * to an output TLB entry. If the IOMMU is aware of memory transaction 347 * attributes and the output TLB entry depends on the transaction 348 * attributes, we represent this using IOMMU indexes. Each index 349 * selects a particular translation table that the IOMMU has: 350 * 351 * @attrs_to_index returns the IOMMU index for a set of transaction attributes 352 * 353 * @translate takes an input address and an IOMMU index 354 * 355 * and the mapping returned can only depend on the input address and the 356 * IOMMU index. 357 * 358 * Most IOMMUs don't care about the transaction attributes and support 359 * only a single IOMMU index. A more complex IOMMU might have one index 360 * for secure transactions and one for non-secure transactions. 361 */ 362 struct IOMMUMemoryRegionClass { 363 /* private: */ 364 MemoryRegionClass parent_class; 365 366 /* public: */ 367 /** 368 * @translate: 369 * 370 * Return a TLB entry that contains a given address. 371 * 372 * The IOMMUAccessFlags indicated via @flag are optional and may 373 * be specified as IOMMU_NONE to indicate that the caller needs 374 * the full translation information for both reads and writes. If 375 * the access flags are specified then the IOMMU implementation 376 * may use this as an optimization, to stop doing a page table 377 * walk as soon as it knows that the requested permissions are not 378 * allowed. If IOMMU_NONE is passed then the IOMMU must do the 379 * full page table walk and report the permissions in the returned 380 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not 381 * return different mappings for reads and writes.) 382 * 383 * The returned information remains valid while the caller is 384 * holding the big QEMU lock or is inside an RCU critical section; 385 * if the caller wishes to cache the mapping beyond that it must 386 * register an IOMMU notifier so it can invalidate its cached 387 * information when the IOMMU mapping changes. 388 * 389 * @iommu: the IOMMUMemoryRegion 390 * 391 * @hwaddr: address to be translated within the memory region 392 * 393 * @flag: requested access permission 394 * 395 * @iommu_idx: IOMMU index for the translation 396 */ 397 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr, 398 IOMMUAccessFlags flag, int iommu_idx); 399 /** 400 * @get_min_page_size: 401 * 402 * Returns minimum supported page size in bytes. 403 * 404 * If this method is not provided then the minimum is assumed to 405 * be TARGET_PAGE_SIZE. 406 * 407 * @iommu: the IOMMUMemoryRegion 408 */ 409 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu); 410 /** 411 * @notify_flag_changed: 412 * 413 * Called when IOMMU Notifier flag changes (ie when the set of 414 * events which IOMMU users are requesting notification for changes). 415 * Optional method -- need not be provided if the IOMMU does not 416 * need to know exactly which events must be notified. 417 * 418 * @iommu: the IOMMUMemoryRegion 419 * 420 * @old_flags: events which previously needed to be notified 421 * 422 * @new_flags: events which now need to be notified 423 * 424 * Returns 0 on success, or a negative errno; in particular 425 * returns -EINVAL if the new flag bitmap is not supported by the 426 * IOMMU memory region. In case of failure, the error object 427 * must be created 428 */ 429 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu, 430 IOMMUNotifierFlag old_flags, 431 IOMMUNotifierFlag new_flags, 432 Error **errp); 433 /** 434 * @replay: 435 * 436 * Called to handle memory_region_iommu_replay(). 437 * 438 * The default implementation of memory_region_iommu_replay() is to 439 * call the IOMMU translate method for every page in the address space 440 * with flag == IOMMU_NONE and then call the notifier if translate 441 * returns a valid mapping. If this method is implemented then it 442 * overrides the default behaviour, and must provide the full semantics 443 * of memory_region_iommu_replay(), by calling @notifier for every 444 * translation present in the IOMMU. 445 * 446 * Optional method -- an IOMMU only needs to provide this method 447 * if the default is inefficient or produces undesirable side effects. 448 * 449 * Note: this is not related to record-and-replay functionality. 450 */ 451 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier); 452 453 /** 454 * @get_attr: 455 * 456 * Get IOMMU misc attributes. This is an optional method that 457 * can be used to allow users of the IOMMU to get implementation-specific 458 * information. The IOMMU implements this method to handle calls 459 * by IOMMU users to memory_region_iommu_get_attr() by filling in 460 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that 461 * the IOMMU supports. If the method is unimplemented then 462 * memory_region_iommu_get_attr() will always return -EINVAL. 463 * 464 * @iommu: the IOMMUMemoryRegion 465 * 466 * @attr: attribute being queried 467 * 468 * @data: memory to fill in with the attribute data 469 * 470 * Returns 0 on success, or a negative errno; in particular 471 * returns -EINVAL for unrecognized or unimplemented attribute types. 472 */ 473 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr, 474 void *data); 475 476 /** 477 * @attrs_to_index: 478 * 479 * Return the IOMMU index to use for a given set of transaction attributes. 480 * 481 * Optional method: if an IOMMU only supports a single IOMMU index then 482 * the default implementation of memory_region_iommu_attrs_to_index() 483 * will return 0. 484 * 485 * The indexes supported by an IOMMU must be contiguous, starting at 0. 486 * 487 * @iommu: the IOMMUMemoryRegion 488 * @attrs: memory transaction attributes 489 */ 490 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs); 491 492 /** 493 * @num_indexes: 494 * 495 * Return the number of IOMMU indexes this IOMMU supports. 496 * 497 * Optional method: if this method is not provided, then 498 * memory_region_iommu_num_indexes() will return 1, indicating that 499 * only a single IOMMU index is supported. 500 * 501 * @iommu: the IOMMUMemoryRegion 502 */ 503 int (*num_indexes)(IOMMUMemoryRegion *iommu); 504 505 /** 506 * @iommu_set_page_size_mask: 507 * 508 * Restrict the page size mask that can be supported with a given IOMMU 509 * memory region. Used for example to propagate host physical IOMMU page 510 * size mask limitations to the virtual IOMMU. 511 * 512 * Optional method: if this method is not provided, then the default global 513 * page mask is used. 514 * 515 * @iommu: the IOMMUMemoryRegion 516 * 517 * @page_size_mask: a bitmask of supported page sizes. At least one bit, 518 * representing the smallest page size, must be set. Additional set bits 519 * represent supported block sizes. For example a host physical IOMMU that 520 * uses page tables with a page size of 4kB, and supports 2MB and 4GB 521 * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate 522 * block sizes is specified with mask 0xfffffffffffff000. 523 * 524 * Returns 0 on success, or a negative error. In case of failure, the error 525 * object must be created. 526 */ 527 int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu, 528 uint64_t page_size_mask, 529 Error **errp); 530 }; 531 532 typedef struct RamDiscardListener RamDiscardListener; 533 typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl, 534 MemoryRegionSection *section); 535 typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl, 536 MemoryRegionSection *section); 537 538 struct RamDiscardListener { 539 /* 540 * @notify_populate: 541 * 542 * Notification that previously discarded memory is about to get populated. 543 * Listeners are able to object. If any listener objects, already 544 * successfully notified listeners are notified about a discard again. 545 * 546 * @rdl: the #RamDiscardListener getting notified 547 * @section: the #MemoryRegionSection to get populated. The section 548 * is aligned within the memory region to the minimum granularity 549 * unless it would exceed the registered section. 550 * 551 * Returns 0 on success. If the notification is rejected by the listener, 552 * an error is returned. 553 */ 554 NotifyRamPopulate notify_populate; 555 556 /* 557 * @notify_discard: 558 * 559 * Notification that previously populated memory was discarded successfully 560 * and listeners should drop all references to such memory and prevent 561 * new population (e.g., unmap). 562 * 563 * @rdl: the #RamDiscardListener getting notified 564 * @section: the #MemoryRegionSection to get populated. The section 565 * is aligned within the memory region to the minimum granularity 566 * unless it would exceed the registered section. 567 */ 568 NotifyRamDiscard notify_discard; 569 570 /* 571 * @double_discard_supported: 572 * 573 * The listener suppors getting @notify_discard notifications that span 574 * already discarded parts. 575 */ 576 bool double_discard_supported; 577 578 MemoryRegionSection *section; 579 QLIST_ENTRY(RamDiscardListener) next; 580 }; 581 582 static inline void ram_discard_listener_init(RamDiscardListener *rdl, 583 NotifyRamPopulate populate_fn, 584 NotifyRamDiscard discard_fn, 585 bool double_discard_supported) 586 { 587 rdl->notify_populate = populate_fn; 588 rdl->notify_discard = discard_fn; 589 rdl->double_discard_supported = double_discard_supported; 590 } 591 592 typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque); 593 typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque); 594 595 /* 596 * RamDiscardManagerClass: 597 * 598 * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion 599 * regions are currently populated to be used/accessed by the VM, notifying 600 * after parts were discarded (freeing up memory) and before parts will be 601 * populated (consuming memory), to be used/accessed by the VM. 602 * 603 * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the 604 * #MemoryRegion isn't mapped into an address space yet (either directly 605 * or via an alias); it cannot change while the #MemoryRegion is 606 * mapped into an address space. 607 * 608 * The #RamDiscardManager is intended to be used by technologies that are 609 * incompatible with discarding of RAM (e.g., VFIO, which may pin all 610 * memory inside a #MemoryRegion), and require proper coordination to only 611 * map the currently populated parts, to hinder parts that are expected to 612 * remain discarded from silently getting populated and consuming memory. 613 * Technologies that support discarding of RAM don't have to bother and can 614 * simply map the whole #MemoryRegion. 615 * 616 * An example #RamDiscardManager is virtio-mem, which logically (un)plugs 617 * memory within an assigned RAM #MemoryRegion, coordinated with the VM. 618 * Logically unplugging memory consists of discarding RAM. The VM agreed to not 619 * access unplugged (discarded) memory - especially via DMA. virtio-mem will 620 * properly coordinate with listeners before memory is plugged (populated), 621 * and after memory is unplugged (discarded). 622 * 623 * Listeners are called in multiples of the minimum granularity (unless it 624 * would exceed the registered range) and changes are aligned to the minimum 625 * granularity within the #MemoryRegion. Listeners have to prepare for memory 626 * becoming discarded in a different granularity than it was populated and the 627 * other way around. 628 */ 629 struct RamDiscardManagerClass { 630 /* private */ 631 InterfaceClass parent_class; 632 633 /* public */ 634 635 /** 636 * @get_min_granularity: 637 * 638 * Get the minimum granularity in which listeners will get notified 639 * about changes within the #MemoryRegion via the #RamDiscardManager. 640 * 641 * @rdm: the #RamDiscardManager 642 * @mr: the #MemoryRegion 643 * 644 * Returns the minimum granularity. 645 */ 646 uint64_t (*get_min_granularity)(const RamDiscardManager *rdm, 647 const MemoryRegion *mr); 648 649 /** 650 * @is_populated: 651 * 652 * Check whether the given #MemoryRegionSection is completely populated 653 * (i.e., no parts are currently discarded) via the #RamDiscardManager. 654 * There are no alignment requirements. 655 * 656 * @rdm: the #RamDiscardManager 657 * @section: the #MemoryRegionSection 658 * 659 * Returns whether the given range is completely populated. 660 */ 661 bool (*is_populated)(const RamDiscardManager *rdm, 662 const MemoryRegionSection *section); 663 664 /** 665 * @replay_populated: 666 * 667 * Call the #ReplayRamPopulate callback for all populated parts within the 668 * #MemoryRegionSection via the #RamDiscardManager. 669 * 670 * In case any call fails, no further calls are made. 671 * 672 * @rdm: the #RamDiscardManager 673 * @section: the #MemoryRegionSection 674 * @replay_fn: the #ReplayRamPopulate callback 675 * @opaque: pointer to forward to the callback 676 * 677 * Returns 0 on success, or a negative error if any notification failed. 678 */ 679 int (*replay_populated)(const RamDiscardManager *rdm, 680 MemoryRegionSection *section, 681 ReplayRamPopulate replay_fn, void *opaque); 682 683 /** 684 * @replay_discarded: 685 * 686 * Call the #ReplayRamDiscard callback for all discarded parts within the 687 * #MemoryRegionSection via the #RamDiscardManager. 688 * 689 * @rdm: the #RamDiscardManager 690 * @section: the #MemoryRegionSection 691 * @replay_fn: the #ReplayRamDiscard callback 692 * @opaque: pointer to forward to the callback 693 */ 694 void (*replay_discarded)(const RamDiscardManager *rdm, 695 MemoryRegionSection *section, 696 ReplayRamDiscard replay_fn, void *opaque); 697 698 /** 699 * @register_listener: 700 * 701 * Register a #RamDiscardListener for the given #MemoryRegionSection and 702 * immediately notify the #RamDiscardListener about all populated parts 703 * within the #MemoryRegionSection via the #RamDiscardManager. 704 * 705 * In case any notification fails, no further notifications are triggered 706 * and an error is logged. 707 * 708 * @rdm: the #RamDiscardManager 709 * @rdl: the #RamDiscardListener 710 * @section: the #MemoryRegionSection 711 */ 712 void (*register_listener)(RamDiscardManager *rdm, 713 RamDiscardListener *rdl, 714 MemoryRegionSection *section); 715 716 /** 717 * @unregister_listener: 718 * 719 * Unregister a previously registered #RamDiscardListener via the 720 * #RamDiscardManager after notifying the #RamDiscardListener about all 721 * populated parts becoming unpopulated within the registered 722 * #MemoryRegionSection. 723 * 724 * @rdm: the #RamDiscardManager 725 * @rdl: the #RamDiscardListener 726 */ 727 void (*unregister_listener)(RamDiscardManager *rdm, 728 RamDiscardListener *rdl); 729 }; 730 731 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm, 732 const MemoryRegion *mr); 733 734 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm, 735 const MemoryRegionSection *section); 736 737 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm, 738 MemoryRegionSection *section, 739 ReplayRamPopulate replay_fn, 740 void *opaque); 741 742 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm, 743 MemoryRegionSection *section, 744 ReplayRamDiscard replay_fn, 745 void *opaque); 746 747 void ram_discard_manager_register_listener(RamDiscardManager *rdm, 748 RamDiscardListener *rdl, 749 MemoryRegionSection *section); 750 751 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm, 752 RamDiscardListener *rdl); 753 754 bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr, 755 ram_addr_t *ram_addr, bool *read_only, 756 bool *mr_has_discard_manager); 757 758 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 759 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 760 761 /** MemoryRegion: 762 * 763 * A struct representing a memory region. 764 */ 765 struct MemoryRegion { 766 Object parent_obj; 767 768 /* private: */ 769 770 /* The following fields should fit in a cache line */ 771 bool romd_mode; 772 bool ram; 773 bool subpage; 774 bool readonly; /* For RAM regions */ 775 bool nonvolatile; 776 bool rom_device; 777 bool flush_coalesced_mmio; 778 bool unmergeable; 779 uint8_t dirty_log_mask; 780 bool is_iommu; 781 RAMBlock *ram_block; 782 Object *owner; 783 /* owner as TYPE_DEVICE. Used for re-entrancy checks in MR access hotpath */ 784 DeviceState *dev; 785 786 const MemoryRegionOps *ops; 787 void *opaque; 788 MemoryRegion *container; 789 int mapped_via_alias; /* Mapped via an alias, container might be NULL */ 790 Int128 size; 791 hwaddr addr; 792 void (*destructor)(MemoryRegion *mr); 793 uint64_t align; 794 bool terminates; 795 bool ram_device; 796 bool enabled; 797 bool warning_printed; /* For reservations */ 798 uint8_t vga_logging_count; 799 MemoryRegion *alias; 800 hwaddr alias_offset; 801 int32_t priority; 802 QTAILQ_HEAD(, MemoryRegion) subregions; 803 QTAILQ_ENTRY(MemoryRegion) subregions_link; 804 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced; 805 const char *name; 806 unsigned ioeventfd_nb; 807 MemoryRegionIoeventfd *ioeventfds; 808 RamDiscardManager *rdm; /* Only for RAM */ 809 810 /* For devices designed to perform re-entrant IO into their own IO MRs */ 811 bool disable_reentrancy_guard; 812 }; 813 814 struct IOMMUMemoryRegion { 815 MemoryRegion parent_obj; 816 817 QLIST_HEAD(, IOMMUNotifier) iommu_notify; 818 IOMMUNotifierFlag iommu_notify_flags; 819 }; 820 821 #define IOMMU_NOTIFIER_FOREACH(n, mr) \ 822 QLIST_FOREACH((n), &(mr)->iommu_notify, node) 823 824 #define MEMORY_LISTENER_PRIORITY_MIN 0 825 #define MEMORY_LISTENER_PRIORITY_ACCEL 10 826 #define MEMORY_LISTENER_PRIORITY_DEV_BACKEND 10 827 828 /** 829 * struct MemoryListener: callbacks structure for updates to the physical memory map 830 * 831 * Allows a component to adjust to changes in the guest-visible memory map. 832 * Use with memory_listener_register() and memory_listener_unregister(). 833 */ 834 struct MemoryListener { 835 /** 836 * @begin: 837 * 838 * Called at the beginning of an address space update transaction. 839 * Followed by calls to #MemoryListener.region_add(), 840 * #MemoryListener.region_del(), #MemoryListener.region_nop(), 841 * #MemoryListener.log_start() and #MemoryListener.log_stop() in 842 * increasing address order. 843 * 844 * @listener: The #MemoryListener. 845 */ 846 void (*begin)(MemoryListener *listener); 847 848 /** 849 * @commit: 850 * 851 * Called at the end of an address space update transaction, 852 * after the last call to #MemoryListener.region_add(), 853 * #MemoryListener.region_del() or #MemoryListener.region_nop(), 854 * #MemoryListener.log_start() and #MemoryListener.log_stop(). 855 * 856 * @listener: The #MemoryListener. 857 */ 858 void (*commit)(MemoryListener *listener); 859 860 /** 861 * @region_add: 862 * 863 * Called during an address space update transaction, 864 * for a section of the address space that is new in this address space 865 * space since the last transaction. 866 * 867 * @listener: The #MemoryListener. 868 * @section: The new #MemoryRegionSection. 869 */ 870 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 871 872 /** 873 * @region_del: 874 * 875 * Called during an address space update transaction, 876 * for a section of the address space that has disappeared in the address 877 * space since the last transaction. 878 * 879 * @listener: The #MemoryListener. 880 * @section: The old #MemoryRegionSection. 881 */ 882 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 883 884 /** 885 * @region_nop: 886 * 887 * Called during an address space update transaction, 888 * for a section of the address space that is in the same place in the address 889 * space as in the last transaction. 890 * 891 * @listener: The #MemoryListener. 892 * @section: The #MemoryRegionSection. 893 */ 894 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 895 896 /** 897 * @log_start: 898 * 899 * Called during an address space update transaction, after 900 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or 901 * #MemoryListener.region_nop(), if dirty memory logging clients have 902 * become active since the last transaction. 903 * 904 * @listener: The #MemoryListener. 905 * @section: The #MemoryRegionSection. 906 * @old: A bitmap of dirty memory logging clients that were active in 907 * the previous transaction. 908 * @new: A bitmap of dirty memory logging clients that are active in 909 * the current transaction. 910 */ 911 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 912 int old, int new); 913 914 /** 915 * @log_stop: 916 * 917 * Called during an address space update transaction, after 918 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or 919 * #MemoryListener.region_nop() and possibly after 920 * #MemoryListener.log_start(), if dirty memory logging clients have 921 * become inactive since the last transaction. 922 * 923 * @listener: The #MemoryListener. 924 * @section: The #MemoryRegionSection. 925 * @old: A bitmap of dirty memory logging clients that were active in 926 * the previous transaction. 927 * @new: A bitmap of dirty memory logging clients that are active in 928 * the current transaction. 929 */ 930 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 931 int old, int new); 932 933 /** 934 * @log_sync: 935 * 936 * Called by memory_region_snapshot_and_clear_dirty() and 937 * memory_global_dirty_log_sync(), before accessing QEMU's "official" 938 * copy of the dirty memory bitmap for a #MemoryRegionSection. 939 * 940 * @listener: The #MemoryListener. 941 * @section: The #MemoryRegionSection. 942 */ 943 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 944 945 /** 946 * @log_sync_global: 947 * 948 * This is the global version of @log_sync when the listener does 949 * not have a way to synchronize the log with finer granularity. 950 * When the listener registers with @log_sync_global defined, then 951 * its @log_sync must be NULL. Vice versa. 952 * 953 * @listener: The #MemoryListener. 954 * @last_stage: The last stage to synchronize the log during migration. 955 * The caller should guarantee that the synchronization with true for 956 * @last_stage is triggered for once after all VCPUs have been stopped. 957 */ 958 void (*log_sync_global)(MemoryListener *listener, bool last_stage); 959 960 /** 961 * @log_clear: 962 * 963 * Called before reading the dirty memory bitmap for a 964 * #MemoryRegionSection. 965 * 966 * @listener: The #MemoryListener. 967 * @section: The #MemoryRegionSection. 968 */ 969 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section); 970 971 /** 972 * @log_global_start: 973 * 974 * Called by memory_global_dirty_log_start(), which 975 * enables the %DIRTY_LOG_MIGRATION client on all memory regions in 976 * the address space. #MemoryListener.log_global_start() is also 977 * called when a #MemoryListener is added, if global dirty logging is 978 * active at that time. 979 * 980 * @listener: The #MemoryListener. 981 */ 982 void (*log_global_start)(MemoryListener *listener); 983 984 /** 985 * @log_global_stop: 986 * 987 * Called by memory_global_dirty_log_stop(), which 988 * disables the %DIRTY_LOG_MIGRATION client on all memory regions in 989 * the address space. 990 * 991 * @listener: The #MemoryListener. 992 */ 993 void (*log_global_stop)(MemoryListener *listener); 994 995 /** 996 * @log_global_after_sync: 997 * 998 * Called after reading the dirty memory bitmap 999 * for any #MemoryRegionSection. 1000 * 1001 * @listener: The #MemoryListener. 1002 */ 1003 void (*log_global_after_sync)(MemoryListener *listener); 1004 1005 /** 1006 * @eventfd_add: 1007 * 1008 * Called during an address space update transaction, 1009 * for a section of the address space that has had a new ioeventfd 1010 * registration since the last transaction. 1011 * 1012 * @listener: The #MemoryListener. 1013 * @section: The new #MemoryRegionSection. 1014 * @match_data: The @match_data parameter for the new ioeventfd. 1015 * @data: The @data parameter for the new ioeventfd. 1016 * @e: The #EventNotifier parameter for the new ioeventfd. 1017 */ 1018 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 1019 bool match_data, uint64_t data, EventNotifier *e); 1020 1021 /** 1022 * @eventfd_del: 1023 * 1024 * Called during an address space update transaction, 1025 * for a section of the address space that has dropped an ioeventfd 1026 * registration since the last transaction. 1027 * 1028 * @listener: The #MemoryListener. 1029 * @section: The new #MemoryRegionSection. 1030 * @match_data: The @match_data parameter for the dropped ioeventfd. 1031 * @data: The @data parameter for the dropped ioeventfd. 1032 * @e: The #EventNotifier parameter for the dropped ioeventfd. 1033 */ 1034 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 1035 bool match_data, uint64_t data, EventNotifier *e); 1036 1037 /** 1038 * @coalesced_io_add: 1039 * 1040 * Called during an address space update transaction, 1041 * for a section of the address space that has had a new coalesced 1042 * MMIO range registration since the last transaction. 1043 * 1044 * @listener: The #MemoryListener. 1045 * @section: The new #MemoryRegionSection. 1046 * @addr: The starting address for the coalesced MMIO range. 1047 * @len: The length of the coalesced MMIO range. 1048 */ 1049 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section, 1050 hwaddr addr, hwaddr len); 1051 1052 /** 1053 * @coalesced_io_del: 1054 * 1055 * Called during an address space update transaction, 1056 * for a section of the address space that has dropped a coalesced 1057 * MMIO range since the last transaction. 1058 * 1059 * @listener: The #MemoryListener. 1060 * @section: The new #MemoryRegionSection. 1061 * @addr: The starting address for the coalesced MMIO range. 1062 * @len: The length of the coalesced MMIO range. 1063 */ 1064 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section, 1065 hwaddr addr, hwaddr len); 1066 /** 1067 * @priority: 1068 * 1069 * Govern the order in which memory listeners are invoked. Lower priorities 1070 * are invoked earlier for "add" or "start" callbacks, and later for "delete" 1071 * or "stop" callbacks. 1072 */ 1073 unsigned priority; 1074 1075 /** 1076 * @name: 1077 * 1078 * Name of the listener. It can be used in contexts where we'd like to 1079 * identify one memory listener with the rest. 1080 */ 1081 const char *name; 1082 1083 /* private: */ 1084 AddressSpace *address_space; 1085 QTAILQ_ENTRY(MemoryListener) link; 1086 QTAILQ_ENTRY(MemoryListener) link_as; 1087 }; 1088 1089 /** 1090 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects 1091 */ 1092 struct AddressSpace { 1093 /* private: */ 1094 struct rcu_head rcu; 1095 char *name; 1096 MemoryRegion *root; 1097 1098 /* Accessed via RCU. */ 1099 struct FlatView *current_map; 1100 1101 int ioeventfd_nb; 1102 int ioeventfd_notifiers; 1103 struct MemoryRegionIoeventfd *ioeventfds; 1104 QTAILQ_HEAD(, MemoryListener) listeners; 1105 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 1106 }; 1107 1108 typedef struct AddressSpaceDispatch AddressSpaceDispatch; 1109 typedef struct FlatRange FlatRange; 1110 1111 /* Flattened global view of current active memory hierarchy. Kept in sorted 1112 * order. 1113 */ 1114 struct FlatView { 1115 struct rcu_head rcu; 1116 unsigned ref; 1117 FlatRange *ranges; 1118 unsigned nr; 1119 unsigned nr_allocated; 1120 struct AddressSpaceDispatch *dispatch; 1121 MemoryRegion *root; 1122 }; 1123 1124 static inline FlatView *address_space_to_flatview(AddressSpace *as) 1125 { 1126 return qatomic_rcu_read(&as->current_map); 1127 } 1128 1129 /** 1130 * typedef flatview_cb: callback for flatview_for_each_range() 1131 * 1132 * @start: start address of the range within the FlatView 1133 * @len: length of the range in bytes 1134 * @mr: MemoryRegion covering this range 1135 * @offset_in_region: offset of the first byte of the range within @mr 1136 * @opaque: data pointer passed to flatview_for_each_range() 1137 * 1138 * Returns: true to stop the iteration, false to keep going. 1139 */ 1140 typedef bool (*flatview_cb)(Int128 start, 1141 Int128 len, 1142 const MemoryRegion *mr, 1143 hwaddr offset_in_region, 1144 void *opaque); 1145 1146 /** 1147 * flatview_for_each_range: Iterate through a FlatView 1148 * @fv: the FlatView to iterate through 1149 * @cb: function to call for each range 1150 * @opaque: opaque data pointer to pass to @cb 1151 * 1152 * A FlatView is made up of a list of non-overlapping ranges, each of 1153 * which is a slice of a MemoryRegion. This function iterates through 1154 * each range in @fv, calling @cb. The callback function can terminate 1155 * iteration early by returning 'true'. 1156 */ 1157 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque); 1158 1159 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a, 1160 MemoryRegionSection *b) 1161 { 1162 return a->mr == b->mr && 1163 a->fv == b->fv && 1164 a->offset_within_region == b->offset_within_region && 1165 a->offset_within_address_space == b->offset_within_address_space && 1166 int128_eq(a->size, b->size) && 1167 a->readonly == b->readonly && 1168 a->nonvolatile == b->nonvolatile; 1169 } 1170 1171 /** 1172 * memory_region_section_new_copy: Copy a memory region section 1173 * 1174 * Allocate memory for a new copy, copy the memory region section, and 1175 * properly take a reference on all relevant members. 1176 * 1177 * @s: the #MemoryRegionSection to copy 1178 */ 1179 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s); 1180 1181 /** 1182 * memory_region_section_new_copy: Free a copied memory region section 1183 * 1184 * Free a copy of a memory section created via memory_region_section_new_copy(). 1185 * properly dropping references on all relevant members. 1186 * 1187 * @s: the #MemoryRegionSection to copy 1188 */ 1189 void memory_region_section_free_copy(MemoryRegionSection *s); 1190 1191 /** 1192 * memory_region_init: Initialize a memory region 1193 * 1194 * The region typically acts as a container for other memory regions. Use 1195 * memory_region_add_subregion() to add subregions. 1196 * 1197 * @mr: the #MemoryRegion to be initialized 1198 * @owner: the object that tracks the region's reference count 1199 * @name: used for debugging; not visible to the user or ABI 1200 * @size: size of the region; any subregions beyond this size will be clipped 1201 */ 1202 void memory_region_init(MemoryRegion *mr, 1203 Object *owner, 1204 const char *name, 1205 uint64_t size); 1206 1207 /** 1208 * memory_region_ref: Add 1 to a memory region's reference count 1209 * 1210 * Whenever memory regions are accessed outside the BQL, they need to be 1211 * preserved against hot-unplug. MemoryRegions actually do not have their 1212 * own reference count; they piggyback on a QOM object, their "owner". 1213 * This function adds a reference to the owner. 1214 * 1215 * All MemoryRegions must have an owner if they can disappear, even if the 1216 * device they belong to operates exclusively under the BQL. This is because 1217 * the region could be returned at any time by memory_region_find, and this 1218 * is usually under guest control. 1219 * 1220 * @mr: the #MemoryRegion 1221 */ 1222 void memory_region_ref(MemoryRegion *mr); 1223 1224 /** 1225 * memory_region_unref: Remove 1 to a memory region's reference count 1226 * 1227 * Whenever memory regions are accessed outside the BQL, they need to be 1228 * preserved against hot-unplug. MemoryRegions actually do not have their 1229 * own reference count; they piggyback on a QOM object, their "owner". 1230 * This function removes a reference to the owner and possibly destroys it. 1231 * 1232 * @mr: the #MemoryRegion 1233 */ 1234 void memory_region_unref(MemoryRegion *mr); 1235 1236 /** 1237 * memory_region_init_io: Initialize an I/O memory region. 1238 * 1239 * Accesses into the region will cause the callbacks in @ops to be called. 1240 * if @size is nonzero, subregions will be clipped to @size. 1241 * 1242 * @mr: the #MemoryRegion to be initialized. 1243 * @owner: the object that tracks the region's reference count 1244 * @ops: a structure containing read and write callbacks to be used when 1245 * I/O is performed on the region. 1246 * @opaque: passed to the read and write callbacks of the @ops structure. 1247 * @name: used for debugging; not visible to the user or ABI 1248 * @size: size of the region. 1249 */ 1250 void memory_region_init_io(MemoryRegion *mr, 1251 Object *owner, 1252 const MemoryRegionOps *ops, 1253 void *opaque, 1254 const char *name, 1255 uint64_t size); 1256 1257 /** 1258 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses 1259 * into the region will modify memory 1260 * directly. 1261 * 1262 * @mr: the #MemoryRegion to be initialized. 1263 * @owner: the object that tracks the region's reference count 1264 * @name: Region name, becomes part of RAMBlock name used in migration stream 1265 * must be unique within any device 1266 * @size: size of the region. 1267 * @errp: pointer to Error*, to store an error if it happens. 1268 * 1269 * Note that this function does not do anything to cause the data in the 1270 * RAM memory region to be migrated; that is the responsibility of the caller. 1271 */ 1272 void memory_region_init_ram_nomigrate(MemoryRegion *mr, 1273 Object *owner, 1274 const char *name, 1275 uint64_t size, 1276 Error **errp); 1277 1278 /** 1279 * memory_region_init_ram_flags_nomigrate: Initialize RAM memory region. 1280 * Accesses into the region will 1281 * modify memory directly. 1282 * 1283 * @mr: the #MemoryRegion to be initialized. 1284 * @owner: the object that tracks the region's reference count 1285 * @name: Region name, becomes part of RAMBlock name used in migration stream 1286 * must be unique within any device 1287 * @size: size of the region. 1288 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE. 1289 * @errp: pointer to Error*, to store an error if it happens. 1290 * 1291 * Note that this function does not do anything to cause the data in the 1292 * RAM memory region to be migrated; that is the responsibility of the caller. 1293 */ 1294 void memory_region_init_ram_flags_nomigrate(MemoryRegion *mr, 1295 Object *owner, 1296 const char *name, 1297 uint64_t size, 1298 uint32_t ram_flags, 1299 Error **errp); 1300 1301 /** 1302 * memory_region_init_resizeable_ram: Initialize memory region with resizable 1303 * RAM. Accesses into the region will 1304 * modify memory directly. Only an initial 1305 * portion of this RAM is actually used. 1306 * Changing the size while migrating 1307 * can result in the migration being 1308 * canceled. 1309 * 1310 * @mr: the #MemoryRegion to be initialized. 1311 * @owner: the object that tracks the region's reference count 1312 * @name: Region name, becomes part of RAMBlock name used in migration stream 1313 * must be unique within any device 1314 * @size: used size of the region. 1315 * @max_size: max size of the region. 1316 * @resized: callback to notify owner about used size change. 1317 * @errp: pointer to Error*, to store an error if it happens. 1318 * 1319 * Note that this function does not do anything to cause the data in the 1320 * RAM memory region to be migrated; that is the responsibility of the caller. 1321 */ 1322 void memory_region_init_resizeable_ram(MemoryRegion *mr, 1323 Object *owner, 1324 const char *name, 1325 uint64_t size, 1326 uint64_t max_size, 1327 void (*resized)(const char*, 1328 uint64_t length, 1329 void *host), 1330 Error **errp); 1331 #ifdef CONFIG_POSIX 1332 1333 /** 1334 * memory_region_init_ram_from_file: Initialize RAM memory region with a 1335 * mmap-ed backend. 1336 * 1337 * @mr: the #MemoryRegion to be initialized. 1338 * @owner: the object that tracks the region's reference count 1339 * @name: Region name, becomes part of RAMBlock name used in migration stream 1340 * must be unique within any device 1341 * @size: size of the region. 1342 * @align: alignment of the region base address; if 0, the default alignment 1343 * (getpagesize()) will be used. 1344 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM, 1345 * RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY, 1346 * RAM_READONLY_FD 1347 * @path: the path in which to allocate the RAM. 1348 * @offset: offset within the file referenced by path 1349 * @errp: pointer to Error*, to store an error if it happens. 1350 * 1351 * Note that this function does not do anything to cause the data in the 1352 * RAM memory region to be migrated; that is the responsibility of the caller. 1353 */ 1354 void memory_region_init_ram_from_file(MemoryRegion *mr, 1355 Object *owner, 1356 const char *name, 1357 uint64_t size, 1358 uint64_t align, 1359 uint32_t ram_flags, 1360 const char *path, 1361 ram_addr_t offset, 1362 Error **errp); 1363 1364 /** 1365 * memory_region_init_ram_from_fd: Initialize RAM memory region with a 1366 * mmap-ed backend. 1367 * 1368 * @mr: the #MemoryRegion to be initialized. 1369 * @owner: the object that tracks the region's reference count 1370 * @name: the name of the region. 1371 * @size: size of the region. 1372 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM, 1373 * RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY, 1374 * RAM_READONLY_FD 1375 * @fd: the fd to mmap. 1376 * @offset: offset within the file referenced by fd 1377 * @errp: pointer to Error*, to store an error if it happens. 1378 * 1379 * Note that this function does not do anything to cause the data in the 1380 * RAM memory region to be migrated; that is the responsibility of the caller. 1381 */ 1382 void memory_region_init_ram_from_fd(MemoryRegion *mr, 1383 Object *owner, 1384 const char *name, 1385 uint64_t size, 1386 uint32_t ram_flags, 1387 int fd, 1388 ram_addr_t offset, 1389 Error **errp); 1390 #endif 1391 1392 /** 1393 * memory_region_init_ram_ptr: Initialize RAM memory region from a 1394 * user-provided pointer. Accesses into the 1395 * region will modify memory directly. 1396 * 1397 * @mr: the #MemoryRegion to be initialized. 1398 * @owner: the object that tracks the region's reference count 1399 * @name: Region name, becomes part of RAMBlock name used in migration stream 1400 * must be unique within any device 1401 * @size: size of the region. 1402 * @ptr: memory to be mapped; must contain at least @size bytes. 1403 * 1404 * Note that this function does not do anything to cause the data in the 1405 * RAM memory region to be migrated; that is the responsibility of the caller. 1406 */ 1407 void memory_region_init_ram_ptr(MemoryRegion *mr, 1408 Object *owner, 1409 const char *name, 1410 uint64_t size, 1411 void *ptr); 1412 1413 /** 1414 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from 1415 * a user-provided pointer. 1416 * 1417 * A RAM device represents a mapping to a physical device, such as to a PCI 1418 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped 1419 * into the VM address space and access to the region will modify memory 1420 * directly. However, the memory region should not be included in a memory 1421 * dump (device may not be enabled/mapped at the time of the dump), and 1422 * operations incompatible with manipulating MMIO should be avoided. Replaces 1423 * skip_dump flag. 1424 * 1425 * @mr: the #MemoryRegion to be initialized. 1426 * @owner: the object that tracks the region's reference count 1427 * @name: the name of the region. 1428 * @size: size of the region. 1429 * @ptr: memory to be mapped; must contain at least @size bytes. 1430 * 1431 * Note that this function does not do anything to cause the data in the 1432 * RAM memory region to be migrated; that is the responsibility of the caller. 1433 * (For RAM device memory regions, migrating the contents rarely makes sense.) 1434 */ 1435 void memory_region_init_ram_device_ptr(MemoryRegion *mr, 1436 Object *owner, 1437 const char *name, 1438 uint64_t size, 1439 void *ptr); 1440 1441 /** 1442 * memory_region_init_alias: Initialize a memory region that aliases all or a 1443 * part of another memory region. 1444 * 1445 * @mr: the #MemoryRegion to be initialized. 1446 * @owner: the object that tracks the region's reference count 1447 * @name: used for debugging; not visible to the user or ABI 1448 * @orig: the region to be referenced; @mr will be equivalent to 1449 * @orig between @offset and @offset + @size - 1. 1450 * @offset: start of the section in @orig to be referenced. 1451 * @size: size of the region. 1452 */ 1453 void memory_region_init_alias(MemoryRegion *mr, 1454 Object *owner, 1455 const char *name, 1456 MemoryRegion *orig, 1457 hwaddr offset, 1458 uint64_t size); 1459 1460 /** 1461 * memory_region_init_rom_nomigrate: Initialize a ROM memory region. 1462 * 1463 * This has the same effect as calling memory_region_init_ram_nomigrate() 1464 * and then marking the resulting region read-only with 1465 * memory_region_set_readonly(). 1466 * 1467 * Note that this function does not do anything to cause the data in the 1468 * RAM side of the memory region to be migrated; that is the responsibility 1469 * of the caller. 1470 * 1471 * @mr: the #MemoryRegion to be initialized. 1472 * @owner: the object that tracks the region's reference count 1473 * @name: Region name, becomes part of RAMBlock name used in migration stream 1474 * must be unique within any device 1475 * @size: size of the region. 1476 * @errp: pointer to Error*, to store an error if it happens. 1477 */ 1478 void memory_region_init_rom_nomigrate(MemoryRegion *mr, 1479 Object *owner, 1480 const char *name, 1481 uint64_t size, 1482 Error **errp); 1483 1484 /** 1485 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region. 1486 * Writes are handled via callbacks. 1487 * 1488 * Note that this function does not do anything to cause the data in the 1489 * RAM side of the memory region to be migrated; that is the responsibility 1490 * of the caller. 1491 * 1492 * @mr: the #MemoryRegion to be initialized. 1493 * @owner: the object that tracks the region's reference count 1494 * @ops: callbacks for write access handling (must not be NULL). 1495 * @opaque: passed to the read and write callbacks of the @ops structure. 1496 * @name: Region name, becomes part of RAMBlock name used in migration stream 1497 * must be unique within any device 1498 * @size: size of the region. 1499 * @errp: pointer to Error*, to store an error if it happens. 1500 */ 1501 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr, 1502 Object *owner, 1503 const MemoryRegionOps *ops, 1504 void *opaque, 1505 const char *name, 1506 uint64_t size, 1507 Error **errp); 1508 1509 /** 1510 * memory_region_init_iommu: Initialize a memory region of a custom type 1511 * that translates addresses 1512 * 1513 * An IOMMU region translates addresses and forwards accesses to a target 1514 * memory region. 1515 * 1516 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION. 1517 * @_iommu_mr should be a pointer to enough memory for an instance of 1518 * that subclass, @instance_size is the size of that subclass, and 1519 * @mrtypename is its name. This function will initialize @_iommu_mr as an 1520 * instance of the subclass, and its methods will then be called to handle 1521 * accesses to the memory region. See the documentation of 1522 * #IOMMUMemoryRegionClass for further details. 1523 * 1524 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized 1525 * @instance_size: the IOMMUMemoryRegion subclass instance size 1526 * @mrtypename: the type name of the #IOMMUMemoryRegion 1527 * @owner: the object that tracks the region's reference count 1528 * @name: used for debugging; not visible to the user or ABI 1529 * @size: size of the region. 1530 */ 1531 void memory_region_init_iommu(void *_iommu_mr, 1532 size_t instance_size, 1533 const char *mrtypename, 1534 Object *owner, 1535 const char *name, 1536 uint64_t size); 1537 1538 /** 1539 * memory_region_init_ram - Initialize RAM memory region. Accesses into the 1540 * region will modify memory directly. 1541 * 1542 * @mr: the #MemoryRegion to be initialized 1543 * @owner: the object that tracks the region's reference count (must be 1544 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL) 1545 * @name: name of the memory region 1546 * @size: size of the region in bytes 1547 * @errp: pointer to Error*, to store an error if it happens. 1548 * 1549 * This function allocates RAM for a board model or device, and 1550 * arranges for it to be migrated (by calling vmstate_register_ram() 1551 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1552 * @owner is NULL). 1553 * 1554 * TODO: Currently we restrict @owner to being either NULL (for 1555 * global RAM regions with no owner) or devices, so that we can 1556 * give the RAM block a unique name for migration purposes. 1557 * We should lift this restriction and allow arbitrary Objects. 1558 * If you pass a non-NULL non-device @owner then we will assert. 1559 */ 1560 void memory_region_init_ram(MemoryRegion *mr, 1561 Object *owner, 1562 const char *name, 1563 uint64_t size, 1564 Error **errp); 1565 1566 /** 1567 * memory_region_init_rom: Initialize a ROM memory region. 1568 * 1569 * This has the same effect as calling memory_region_init_ram() 1570 * and then marking the resulting region read-only with 1571 * memory_region_set_readonly(). This includes arranging for the 1572 * contents to be migrated. 1573 * 1574 * TODO: Currently we restrict @owner to being either NULL (for 1575 * global RAM regions with no owner) or devices, so that we can 1576 * give the RAM block a unique name for migration purposes. 1577 * We should lift this restriction and allow arbitrary Objects. 1578 * If you pass a non-NULL non-device @owner then we will assert. 1579 * 1580 * @mr: the #MemoryRegion to be initialized. 1581 * @owner: the object that tracks the region's reference count 1582 * @name: Region name, becomes part of RAMBlock name used in migration stream 1583 * must be unique within any device 1584 * @size: size of the region. 1585 * @errp: pointer to Error*, to store an error if it happens. 1586 */ 1587 void memory_region_init_rom(MemoryRegion *mr, 1588 Object *owner, 1589 const char *name, 1590 uint64_t size, 1591 Error **errp); 1592 1593 /** 1594 * memory_region_init_rom_device: Initialize a ROM memory region. 1595 * Writes are handled via callbacks. 1596 * 1597 * This function initializes a memory region backed by RAM for reads 1598 * and callbacks for writes, and arranges for the RAM backing to 1599 * be migrated (by calling vmstate_register_ram() 1600 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1601 * @owner is NULL). 1602 * 1603 * TODO: Currently we restrict @owner to being either NULL (for 1604 * global RAM regions with no owner) or devices, so that we can 1605 * give the RAM block a unique name for migration purposes. 1606 * We should lift this restriction and allow arbitrary Objects. 1607 * If you pass a non-NULL non-device @owner then we will assert. 1608 * 1609 * @mr: the #MemoryRegion to be initialized. 1610 * @owner: the object that tracks the region's reference count 1611 * @ops: callbacks for write access handling (must not be NULL). 1612 * @opaque: passed to the read and write callbacks of the @ops structure. 1613 * @name: Region name, becomes part of RAMBlock name used in migration stream 1614 * must be unique within any device 1615 * @size: size of the region. 1616 * @errp: pointer to Error*, to store an error if it happens. 1617 */ 1618 void memory_region_init_rom_device(MemoryRegion *mr, 1619 Object *owner, 1620 const MemoryRegionOps *ops, 1621 void *opaque, 1622 const char *name, 1623 uint64_t size, 1624 Error **errp); 1625 1626 1627 /** 1628 * memory_region_owner: get a memory region's owner. 1629 * 1630 * @mr: the memory region being queried. 1631 */ 1632 Object *memory_region_owner(MemoryRegion *mr); 1633 1634 /** 1635 * memory_region_size: get a memory region's size. 1636 * 1637 * @mr: the memory region being queried. 1638 */ 1639 uint64_t memory_region_size(MemoryRegion *mr); 1640 1641 /** 1642 * memory_region_is_ram: check whether a memory region is random access 1643 * 1644 * Returns %true if a memory region is random access. 1645 * 1646 * @mr: the memory region being queried 1647 */ 1648 static inline bool memory_region_is_ram(MemoryRegion *mr) 1649 { 1650 return mr->ram; 1651 } 1652 1653 /** 1654 * memory_region_is_ram_device: check whether a memory region is a ram device 1655 * 1656 * Returns %true if a memory region is a device backed ram region 1657 * 1658 * @mr: the memory region being queried 1659 */ 1660 bool memory_region_is_ram_device(MemoryRegion *mr); 1661 1662 /** 1663 * memory_region_is_romd: check whether a memory region is in ROMD mode 1664 * 1665 * Returns %true if a memory region is a ROM device and currently set to allow 1666 * direct reads. 1667 * 1668 * @mr: the memory region being queried 1669 */ 1670 static inline bool memory_region_is_romd(MemoryRegion *mr) 1671 { 1672 return mr->rom_device && mr->romd_mode; 1673 } 1674 1675 /** 1676 * memory_region_is_protected: check whether a memory region is protected 1677 * 1678 * Returns %true if a memory region is protected RAM and cannot be accessed 1679 * via standard mechanisms, e.g. DMA. 1680 * 1681 * @mr: the memory region being queried 1682 */ 1683 bool memory_region_is_protected(MemoryRegion *mr); 1684 1685 /** 1686 * memory_region_get_iommu: check whether a memory region is an iommu 1687 * 1688 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu, 1689 * otherwise NULL. 1690 * 1691 * @mr: the memory region being queried 1692 */ 1693 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr) 1694 { 1695 if (mr->alias) { 1696 return memory_region_get_iommu(mr->alias); 1697 } 1698 if (mr->is_iommu) { 1699 return (IOMMUMemoryRegion *) mr; 1700 } 1701 return NULL; 1702 } 1703 1704 /** 1705 * memory_region_get_iommu_class_nocheck: returns iommu memory region class 1706 * if an iommu or NULL if not 1707 * 1708 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu, 1709 * otherwise NULL. This is fast path avoiding QOM checking, use with caution. 1710 * 1711 * @iommu_mr: the memory region being queried 1712 */ 1713 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck( 1714 IOMMUMemoryRegion *iommu_mr) 1715 { 1716 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class); 1717 } 1718 1719 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL) 1720 1721 /** 1722 * memory_region_iommu_get_min_page_size: get minimum supported page size 1723 * for an iommu 1724 * 1725 * Returns minimum supported page size for an iommu. 1726 * 1727 * @iommu_mr: the memory region being queried 1728 */ 1729 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr); 1730 1731 /** 1732 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 1733 * 1734 * Note: for any IOMMU implementation, an in-place mapping change 1735 * should be notified with an UNMAP followed by a MAP. 1736 * 1737 * @iommu_mr: the memory region that was changed 1738 * @iommu_idx: the IOMMU index for the translation table which has changed 1739 * @event: TLB event with the new entry in the IOMMU translation table. 1740 * The entry replaces all old entries for the same virtual I/O address 1741 * range. 1742 */ 1743 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr, 1744 int iommu_idx, 1745 IOMMUTLBEvent event); 1746 1747 /** 1748 * memory_region_notify_iommu_one: notify a change in an IOMMU translation 1749 * entry to a single notifier 1750 * 1751 * This works just like memory_region_notify_iommu(), but it only 1752 * notifies a specific notifier, not all of them. 1753 * 1754 * @notifier: the notifier to be notified 1755 * @event: TLB event with the new entry in the IOMMU translation table. 1756 * The entry replaces all old entries for the same virtual I/O address 1757 * range. 1758 */ 1759 void memory_region_notify_iommu_one(IOMMUNotifier *notifier, 1760 IOMMUTLBEvent *event); 1761 1762 /** 1763 * memory_region_unmap_iommu_notifier_range: notify a unmap for an IOMMU 1764 * translation that covers the 1765 * range of a notifier 1766 * 1767 * @notifier: the notifier to be notified 1768 */ 1769 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier); 1770 1771 1772 /** 1773 * memory_region_register_iommu_notifier: register a notifier for changes to 1774 * IOMMU translation entries. 1775 * 1776 * Returns 0 on success, or a negative errno otherwise. In particular, 1777 * -EINVAL indicates that at least one of the attributes of the notifier 1778 * is not supported (flag/range) by the IOMMU memory region. In case of error 1779 * the error object must be created. 1780 * 1781 * @mr: the memory region to observe 1782 * @n: the IOMMUNotifier to be added; the notify callback receives a 1783 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer 1784 * ceases to be valid on exit from the notifier. 1785 * @errp: pointer to Error*, to store an error if it happens. 1786 */ 1787 int memory_region_register_iommu_notifier(MemoryRegion *mr, 1788 IOMMUNotifier *n, Error **errp); 1789 1790 /** 1791 * memory_region_iommu_replay: replay existing IOMMU translations to 1792 * a notifier with the minimum page granularity returned by 1793 * mr->iommu_ops->get_page_size(). 1794 * 1795 * Note: this is not related to record-and-replay functionality. 1796 * 1797 * @iommu_mr: the memory region to observe 1798 * @n: the notifier to which to replay iommu mappings 1799 */ 1800 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n); 1801 1802 /** 1803 * memory_region_unregister_iommu_notifier: unregister a notifier for 1804 * changes to IOMMU translation entries. 1805 * 1806 * @mr: the memory region which was observed and for which notity_stopped() 1807 * needs to be called 1808 * @n: the notifier to be removed. 1809 */ 1810 void memory_region_unregister_iommu_notifier(MemoryRegion *mr, 1811 IOMMUNotifier *n); 1812 1813 /** 1814 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is 1815 * defined on the IOMMU. 1816 * 1817 * Returns 0 on success, or a negative errno otherwise. In particular, 1818 * -EINVAL indicates that the IOMMU does not support the requested 1819 * attribute. 1820 * 1821 * @iommu_mr: the memory region 1822 * @attr: the requested attribute 1823 * @data: a pointer to the requested attribute data 1824 */ 1825 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr, 1826 enum IOMMUMemoryRegionAttr attr, 1827 void *data); 1828 1829 /** 1830 * memory_region_iommu_attrs_to_index: return the IOMMU index to 1831 * use for translations with the given memory transaction attributes. 1832 * 1833 * @iommu_mr: the memory region 1834 * @attrs: the memory transaction attributes 1835 */ 1836 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr, 1837 MemTxAttrs attrs); 1838 1839 /** 1840 * memory_region_iommu_num_indexes: return the total number of IOMMU 1841 * indexes that this IOMMU supports. 1842 * 1843 * @iommu_mr: the memory region 1844 */ 1845 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr); 1846 1847 /** 1848 * memory_region_iommu_set_page_size_mask: set the supported page 1849 * sizes for a given IOMMU memory region 1850 * 1851 * @iommu_mr: IOMMU memory region 1852 * @page_size_mask: supported page size mask 1853 * @errp: pointer to Error*, to store an error if it happens. 1854 */ 1855 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr, 1856 uint64_t page_size_mask, 1857 Error **errp); 1858 1859 /** 1860 * memory_region_name: get a memory region's name 1861 * 1862 * Returns the string that was used to initialize the memory region. 1863 * 1864 * @mr: the memory region being queried 1865 */ 1866 const char *memory_region_name(const MemoryRegion *mr); 1867 1868 /** 1869 * memory_region_is_logging: return whether a memory region is logging writes 1870 * 1871 * Returns %true if the memory region is logging writes for the given client 1872 * 1873 * @mr: the memory region being queried 1874 * @client: the client being queried 1875 */ 1876 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 1877 1878 /** 1879 * memory_region_get_dirty_log_mask: return the clients for which a 1880 * memory region is logging writes. 1881 * 1882 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 1883 * are the bit indices. 1884 * 1885 * @mr: the memory region being queried 1886 */ 1887 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 1888 1889 /** 1890 * memory_region_is_rom: check whether a memory region is ROM 1891 * 1892 * Returns %true if a memory region is read-only memory. 1893 * 1894 * @mr: the memory region being queried 1895 */ 1896 static inline bool memory_region_is_rom(MemoryRegion *mr) 1897 { 1898 return mr->ram && mr->readonly; 1899 } 1900 1901 /** 1902 * memory_region_is_nonvolatile: check whether a memory region is non-volatile 1903 * 1904 * Returns %true is a memory region is non-volatile memory. 1905 * 1906 * @mr: the memory region being queried 1907 */ 1908 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr) 1909 { 1910 return mr->nonvolatile; 1911 } 1912 1913 /** 1914 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 1915 * 1916 * Returns a file descriptor backing a file-based RAM memory region, 1917 * or -1 if the region is not a file-based RAM memory region. 1918 * 1919 * @mr: the RAM or alias memory region being queried. 1920 */ 1921 int memory_region_get_fd(MemoryRegion *mr); 1922 1923 /** 1924 * memory_region_from_host: Convert a pointer into a RAM memory region 1925 * and an offset within it. 1926 * 1927 * Given a host pointer inside a RAM memory region (created with 1928 * memory_region_init_ram() or memory_region_init_ram_ptr()), return 1929 * the MemoryRegion and the offset within it. 1930 * 1931 * Use with care; by the time this function returns, the returned pointer is 1932 * not protected by RCU anymore. If the caller is not within an RCU critical 1933 * section and does not hold the iothread lock, it must have other means of 1934 * protecting the pointer, such as a reference to the region that includes 1935 * the incoming ram_addr_t. 1936 * 1937 * @ptr: the host pointer to be converted 1938 * @offset: the offset within memory region 1939 */ 1940 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset); 1941 1942 /** 1943 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 1944 * 1945 * Returns a host pointer to a RAM memory region (created with 1946 * memory_region_init_ram() or memory_region_init_ram_ptr()). 1947 * 1948 * Use with care; by the time this function returns, the returned pointer is 1949 * not protected by RCU anymore. If the caller is not within an RCU critical 1950 * section and does not hold the iothread lock, it must have other means of 1951 * protecting the pointer, such as a reference to the region that includes 1952 * the incoming ram_addr_t. 1953 * 1954 * @mr: the memory region being queried. 1955 */ 1956 void *memory_region_get_ram_ptr(MemoryRegion *mr); 1957 1958 /* memory_region_ram_resize: Resize a RAM region. 1959 * 1960 * Resizing RAM while migrating can result in the migration being canceled. 1961 * Care has to be taken if the guest might have already detected the memory. 1962 * 1963 * @mr: a memory region created with @memory_region_init_resizeable_ram. 1964 * @newsize: the new size the region 1965 * @errp: pointer to Error*, to store an error if it happens. 1966 */ 1967 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 1968 Error **errp); 1969 1970 /** 1971 * memory_region_msync: Synchronize selected address range of 1972 * a memory mapped region 1973 * 1974 * @mr: the memory region to be msync 1975 * @addr: the initial address of the range to be sync 1976 * @size: the size of the range to be sync 1977 */ 1978 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size); 1979 1980 /** 1981 * memory_region_writeback: Trigger cache writeback for 1982 * selected address range 1983 * 1984 * @mr: the memory region to be updated 1985 * @addr: the initial address of the range to be written back 1986 * @size: the size of the range to be written back 1987 */ 1988 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size); 1989 1990 /** 1991 * memory_region_set_log: Turn dirty logging on or off for a region. 1992 * 1993 * Turns dirty logging on or off for a specified client (display, migration). 1994 * Only meaningful for RAM regions. 1995 * 1996 * @mr: the memory region being updated. 1997 * @log: whether dirty logging is to be enabled or disabled. 1998 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 1999 */ 2000 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 2001 2002 /** 2003 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 2004 * 2005 * Marks a range of bytes as dirty, after it has been dirtied outside 2006 * guest code. 2007 * 2008 * @mr: the memory region being dirtied. 2009 * @addr: the address (relative to the start of the region) being dirtied. 2010 * @size: size of the range being dirtied. 2011 */ 2012 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 2013 hwaddr size); 2014 2015 /** 2016 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range 2017 * 2018 * This function is called when the caller wants to clear the remote 2019 * dirty bitmap of a memory range within the memory region. This can 2020 * be used by e.g. KVM to manually clear dirty log when 2021 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host 2022 * kernel. 2023 * 2024 * @mr: the memory region to clear the dirty log upon 2025 * @start: start address offset within the memory region 2026 * @len: length of the memory region to clear dirty bitmap 2027 */ 2028 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start, 2029 hwaddr len); 2030 2031 /** 2032 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty 2033 * bitmap and clear it. 2034 * 2035 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and 2036 * returns the snapshot. The snapshot can then be used to query dirty 2037 * status, using memory_region_snapshot_get_dirty. Snapshotting allows 2038 * querying the same page multiple times, which is especially useful for 2039 * display updates where the scanlines often are not page aligned. 2040 * 2041 * The dirty bitmap region which gets copied into the snapshot (and 2042 * cleared afterwards) can be larger than requested. The boundaries 2043 * are rounded up/down so complete bitmap longs (covering 64 pages on 2044 * 64bit hosts) can be copied over into the bitmap snapshot. Which 2045 * isn't a problem for display updates as the extra pages are outside 2046 * the visible area, and in case the visible area changes a full 2047 * display redraw is due anyway. Should other use cases for this 2048 * function emerge we might have to revisit this implementation 2049 * detail. 2050 * 2051 * Use g_free to release DirtyBitmapSnapshot. 2052 * 2053 * @mr: the memory region being queried. 2054 * @addr: the address (relative to the start of the region) being queried. 2055 * @size: the size of the range being queried. 2056 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA. 2057 */ 2058 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr, 2059 hwaddr addr, 2060 hwaddr size, 2061 unsigned client); 2062 2063 /** 2064 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty 2065 * in the specified dirty bitmap snapshot. 2066 * 2067 * @mr: the memory region being queried. 2068 * @snap: the dirty bitmap snapshot 2069 * @addr: the address (relative to the start of the region) being queried. 2070 * @size: the size of the range being queried. 2071 */ 2072 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, 2073 DirtyBitmapSnapshot *snap, 2074 hwaddr addr, hwaddr size); 2075 2076 /** 2077 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 2078 * client. 2079 * 2080 * Marks a range of pages as no longer dirty. 2081 * 2082 * @mr: the region being updated. 2083 * @addr: the start of the subrange being cleaned. 2084 * @size: the size of the subrange being cleaned. 2085 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 2086 * %DIRTY_MEMORY_VGA. 2087 */ 2088 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 2089 hwaddr size, unsigned client); 2090 2091 /** 2092 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate 2093 * TBs (for self-modifying code). 2094 * 2095 * The MemoryRegionOps->write() callback of a ROM device must use this function 2096 * to mark byte ranges that have been modified internally, such as by directly 2097 * accessing the memory returned by memory_region_get_ram_ptr(). 2098 * 2099 * This function marks the range dirty and invalidates TBs so that TCG can 2100 * detect self-modifying code. 2101 * 2102 * @mr: the region being flushed. 2103 * @addr: the start, relative to the start of the region, of the range being 2104 * flushed. 2105 * @size: the size, in bytes, of the range being flushed. 2106 */ 2107 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size); 2108 2109 /** 2110 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 2111 * 2112 * Allows a memory region to be marked as read-only (turning it into a ROM). 2113 * only useful on RAM regions. 2114 * 2115 * @mr: the region being updated. 2116 * @readonly: whether rhe region is to be ROM or RAM. 2117 */ 2118 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 2119 2120 /** 2121 * memory_region_set_nonvolatile: Turn a memory region non-volatile 2122 * 2123 * Allows a memory region to be marked as non-volatile. 2124 * only useful on RAM regions. 2125 * 2126 * @mr: the region being updated. 2127 * @nonvolatile: whether rhe region is to be non-volatile. 2128 */ 2129 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile); 2130 2131 /** 2132 * memory_region_rom_device_set_romd: enable/disable ROMD mode 2133 * 2134 * Allows a ROM device (initialized with memory_region_init_rom_device() to 2135 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 2136 * device is mapped to guest memory and satisfies read access directly. 2137 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 2138 * Writes are always handled by the #MemoryRegion.write function. 2139 * 2140 * @mr: the memory region to be updated 2141 * @romd_mode: %true to put the region into ROMD mode 2142 */ 2143 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 2144 2145 /** 2146 * memory_region_set_coalescing: Enable memory coalescing for the region. 2147 * 2148 * Enabled writes to a region to be queued for later processing. MMIO ->write 2149 * callbacks may be delayed until a non-coalesced MMIO is issued. 2150 * Only useful for IO regions. Roughly similar to write-combining hardware. 2151 * 2152 * @mr: the memory region to be write coalesced 2153 */ 2154 void memory_region_set_coalescing(MemoryRegion *mr); 2155 2156 /** 2157 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 2158 * a region. 2159 * 2160 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 2161 * Multiple calls can be issued coalesced disjoint ranges. 2162 * 2163 * @mr: the memory region to be updated. 2164 * @offset: the start of the range within the region to be coalesced. 2165 * @size: the size of the subrange to be coalesced. 2166 */ 2167 void memory_region_add_coalescing(MemoryRegion *mr, 2168 hwaddr offset, 2169 uint64_t size); 2170 2171 /** 2172 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 2173 * 2174 * Disables any coalescing caused by memory_region_set_coalescing() or 2175 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 2176 * hardware. 2177 * 2178 * @mr: the memory region to be updated. 2179 */ 2180 void memory_region_clear_coalescing(MemoryRegion *mr); 2181 2182 /** 2183 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 2184 * accesses. 2185 * 2186 * Ensure that pending coalesced MMIO request are flushed before the memory 2187 * region is accessed. This property is automatically enabled for all regions 2188 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 2189 * 2190 * @mr: the memory region to be updated. 2191 */ 2192 void memory_region_set_flush_coalesced(MemoryRegion *mr); 2193 2194 /** 2195 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 2196 * accesses. 2197 * 2198 * Clear the automatic coalesced MMIO flushing enabled via 2199 * memory_region_set_flush_coalesced. Note that this service has no effect on 2200 * memory regions that have MMIO coalescing enabled for themselves. For them, 2201 * automatic flushing will stop once coalescing is disabled. 2202 * 2203 * @mr: the memory region to be updated. 2204 */ 2205 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 2206 2207 /** 2208 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 2209 * is written to a location. 2210 * 2211 * Marks a word in an IO region (initialized with memory_region_init_io()) 2212 * as a trigger for an eventfd event. The I/O callback will not be called. 2213 * The caller must be prepared to handle failure (that is, take the required 2214 * action if the callback _is_ called). 2215 * 2216 * @mr: the memory region being updated. 2217 * @addr: the address within @mr that is to be monitored 2218 * @size: the size of the access to trigger the eventfd 2219 * @match_data: whether to match against @data, instead of just @addr 2220 * @data: the data to match against the guest write 2221 * @e: event notifier to be triggered when @addr, @size, and @data all match. 2222 **/ 2223 void memory_region_add_eventfd(MemoryRegion *mr, 2224 hwaddr addr, 2225 unsigned size, 2226 bool match_data, 2227 uint64_t data, 2228 EventNotifier *e); 2229 2230 /** 2231 * memory_region_del_eventfd: Cancel an eventfd. 2232 * 2233 * Cancels an eventfd trigger requested by a previous 2234 * memory_region_add_eventfd() call. 2235 * 2236 * @mr: the memory region being updated. 2237 * @addr: the address within @mr that is to be monitored 2238 * @size: the size of the access to trigger the eventfd 2239 * @match_data: whether to match against @data, instead of just @addr 2240 * @data: the data to match against the guest write 2241 * @e: event notifier to be triggered when @addr, @size, and @data all match. 2242 */ 2243 void memory_region_del_eventfd(MemoryRegion *mr, 2244 hwaddr addr, 2245 unsigned size, 2246 bool match_data, 2247 uint64_t data, 2248 EventNotifier *e); 2249 2250 /** 2251 * memory_region_add_subregion: Add a subregion to a container. 2252 * 2253 * Adds a subregion at @offset. The subregion may not overlap with other 2254 * subregions (except for those explicitly marked as overlapping). A region 2255 * may only be added once as a subregion (unless removed with 2256 * memory_region_del_subregion()); use memory_region_init_alias() if you 2257 * want a region to be a subregion in multiple locations. 2258 * 2259 * @mr: the region to contain the new subregion; must be a container 2260 * initialized with memory_region_init(). 2261 * @offset: the offset relative to @mr where @subregion is added. 2262 * @subregion: the subregion to be added. 2263 */ 2264 void memory_region_add_subregion(MemoryRegion *mr, 2265 hwaddr offset, 2266 MemoryRegion *subregion); 2267 /** 2268 * memory_region_add_subregion_overlap: Add a subregion to a container 2269 * with overlap. 2270 * 2271 * Adds a subregion at @offset. The subregion may overlap with other 2272 * subregions. Conflicts are resolved by having a higher @priority hide a 2273 * lower @priority. Subregions without priority are taken as @priority 0. 2274 * A region may only be added once as a subregion (unless removed with 2275 * memory_region_del_subregion()); use memory_region_init_alias() if you 2276 * want a region to be a subregion in multiple locations. 2277 * 2278 * @mr: the region to contain the new subregion; must be a container 2279 * initialized with memory_region_init(). 2280 * @offset: the offset relative to @mr where @subregion is added. 2281 * @subregion: the subregion to be added. 2282 * @priority: used for resolving overlaps; highest priority wins. 2283 */ 2284 void memory_region_add_subregion_overlap(MemoryRegion *mr, 2285 hwaddr offset, 2286 MemoryRegion *subregion, 2287 int priority); 2288 2289 /** 2290 * memory_region_get_ram_addr: Get the ram address associated with a memory 2291 * region 2292 * 2293 * @mr: the region to be queried 2294 */ 2295 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 2296 2297 uint64_t memory_region_get_alignment(const MemoryRegion *mr); 2298 /** 2299 * memory_region_del_subregion: Remove a subregion. 2300 * 2301 * Removes a subregion from its container. 2302 * 2303 * @mr: the container to be updated. 2304 * @subregion: the region being removed; must be a current subregion of @mr. 2305 */ 2306 void memory_region_del_subregion(MemoryRegion *mr, 2307 MemoryRegion *subregion); 2308 2309 /* 2310 * memory_region_set_enabled: dynamically enable or disable a region 2311 * 2312 * Enables or disables a memory region. A disabled memory region 2313 * ignores all accesses to itself and its subregions. It does not 2314 * obscure sibling subregions with lower priority - it simply behaves as 2315 * if it was removed from the hierarchy. 2316 * 2317 * Regions default to being enabled. 2318 * 2319 * @mr: the region to be updated 2320 * @enabled: whether to enable or disable the region 2321 */ 2322 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 2323 2324 /* 2325 * memory_region_set_address: dynamically update the address of a region 2326 * 2327 * Dynamically updates the address of a region, relative to its container. 2328 * May be used on regions are currently part of a memory hierarchy. 2329 * 2330 * @mr: the region to be updated 2331 * @addr: new address, relative to container region 2332 */ 2333 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 2334 2335 /* 2336 * memory_region_set_size: dynamically update the size of a region. 2337 * 2338 * Dynamically updates the size of a region. 2339 * 2340 * @mr: the region to be updated 2341 * @size: used size of the region. 2342 */ 2343 void memory_region_set_size(MemoryRegion *mr, uint64_t size); 2344 2345 /* 2346 * memory_region_set_alias_offset: dynamically update a memory alias's offset 2347 * 2348 * Dynamically updates the offset into the target region that an alias points 2349 * to, as if the fourth argument to memory_region_init_alias() has changed. 2350 * 2351 * @mr: the #MemoryRegion to be updated; should be an alias. 2352 * @offset: the new offset into the target memory region 2353 */ 2354 void memory_region_set_alias_offset(MemoryRegion *mr, 2355 hwaddr offset); 2356 2357 /* 2358 * memory_region_set_unmergeable: Set a memory region unmergeable 2359 * 2360 * Mark a memory region unmergeable, resulting in the memory region (or 2361 * everything contained in a memory region container) not getting merged when 2362 * simplifying the address space and notifying memory listeners. Consequently, 2363 * memory listeners will never get notified about ranges that are larger than 2364 * the original memory regions. 2365 * 2366 * This is primarily useful when multiple aliases to a RAM memory region are 2367 * mapped into a memory region container, and updates (e.g., enable/disable or 2368 * map/unmap) of individual memory region aliases are not supposed to affect 2369 * other memory regions in the same container. 2370 * 2371 * @mr: the #MemoryRegion to be updated 2372 * @unmergeable: whether to mark the #MemoryRegion unmergeable 2373 */ 2374 void memory_region_set_unmergeable(MemoryRegion *mr, bool unmergeable); 2375 2376 /** 2377 * memory_region_present: checks if an address relative to a @container 2378 * translates into #MemoryRegion within @container 2379 * 2380 * Answer whether a #MemoryRegion within @container covers the address 2381 * @addr. 2382 * 2383 * @container: a #MemoryRegion within which @addr is a relative address 2384 * @addr: the area within @container to be searched 2385 */ 2386 bool memory_region_present(MemoryRegion *container, hwaddr addr); 2387 2388 /** 2389 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 2390 * into another memory region, which does not necessarily imply that it is 2391 * mapped into an address space. 2392 * 2393 * @mr: a #MemoryRegion which should be checked if it's mapped 2394 */ 2395 bool memory_region_is_mapped(MemoryRegion *mr); 2396 2397 /** 2398 * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a 2399 * #MemoryRegion 2400 * 2401 * The #RamDiscardManager cannot change while a memory region is mapped. 2402 * 2403 * @mr: the #MemoryRegion 2404 */ 2405 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr); 2406 2407 /** 2408 * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a 2409 * #RamDiscardManager assigned 2410 * 2411 * @mr: the #MemoryRegion 2412 */ 2413 static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr) 2414 { 2415 return !!memory_region_get_ram_discard_manager(mr); 2416 } 2417 2418 /** 2419 * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a 2420 * #MemoryRegion 2421 * 2422 * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion 2423 * that does not cover RAM, or a #MemoryRegion that already has a 2424 * #RamDiscardManager assigned. 2425 * 2426 * @mr: the #MemoryRegion 2427 * @rdm: #RamDiscardManager to set 2428 */ 2429 void memory_region_set_ram_discard_manager(MemoryRegion *mr, 2430 RamDiscardManager *rdm); 2431 2432 /** 2433 * memory_region_find: translate an address/size relative to a 2434 * MemoryRegion into a #MemoryRegionSection. 2435 * 2436 * Locates the first #MemoryRegion within @mr that overlaps the range 2437 * given by @addr and @size. 2438 * 2439 * Returns a #MemoryRegionSection that describes a contiguous overlap. 2440 * It will have the following characteristics: 2441 * - @size = 0 iff no overlap was found 2442 * - @mr is non-%NULL iff an overlap was found 2443 * 2444 * Remember that in the return value the @offset_within_region is 2445 * relative to the returned region (in the .@mr field), not to the 2446 * @mr argument. 2447 * 2448 * Similarly, the .@offset_within_address_space is relative to the 2449 * address space that contains both regions, the passed and the 2450 * returned one. However, in the special case where the @mr argument 2451 * has no container (and thus is the root of the address space), the 2452 * following will hold: 2453 * - @offset_within_address_space >= @addr 2454 * - @offset_within_address_space + .@size <= @addr + @size 2455 * 2456 * @mr: a MemoryRegion within which @addr is a relative address 2457 * @addr: start of the area within @as to be searched 2458 * @size: size of the area to be searched 2459 */ 2460 MemoryRegionSection memory_region_find(MemoryRegion *mr, 2461 hwaddr addr, uint64_t size); 2462 2463 /** 2464 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 2465 * 2466 * Synchronizes the dirty page log for all address spaces. 2467 * 2468 * @last_stage: whether this is the last stage of live migration 2469 */ 2470 void memory_global_dirty_log_sync(bool last_stage); 2471 2472 /** 2473 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 2474 * 2475 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap. 2476 * This function must be called after the dirty log bitmap is cleared, and 2477 * before dirty guest memory pages are read. If you are using 2478 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes 2479 * care of doing this. 2480 */ 2481 void memory_global_after_dirty_log_sync(void); 2482 2483 /** 2484 * memory_region_transaction_begin: Start a transaction. 2485 * 2486 * During a transaction, changes will be accumulated and made visible 2487 * only when the transaction ends (is committed). 2488 */ 2489 void memory_region_transaction_begin(void); 2490 2491 /** 2492 * memory_region_transaction_commit: Commit a transaction and make changes 2493 * visible to the guest. 2494 */ 2495 void memory_region_transaction_commit(void); 2496 2497 /** 2498 * memory_listener_register: register callbacks to be called when memory 2499 * sections are mapped or unmapped into an address 2500 * space 2501 * 2502 * @listener: an object containing the callbacks to be called 2503 * @filter: if non-%NULL, only regions in this address space will be observed 2504 */ 2505 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 2506 2507 /** 2508 * memory_listener_unregister: undo the effect of memory_listener_register() 2509 * 2510 * @listener: an object containing the callbacks to be removed 2511 */ 2512 void memory_listener_unregister(MemoryListener *listener); 2513 2514 /** 2515 * memory_global_dirty_log_start: begin dirty logging for all regions 2516 * 2517 * @flags: purpose of starting dirty log, migration or dirty rate 2518 */ 2519 void memory_global_dirty_log_start(unsigned int flags); 2520 2521 /** 2522 * memory_global_dirty_log_stop: end dirty logging for all regions 2523 * 2524 * @flags: purpose of stopping dirty log, migration or dirty rate 2525 */ 2526 void memory_global_dirty_log_stop(unsigned int flags); 2527 2528 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled); 2529 2530 bool memory_region_access_valid(MemoryRegion *mr, hwaddr addr, 2531 unsigned size, bool is_write, 2532 MemTxAttrs attrs); 2533 2534 /** 2535 * memory_region_dispatch_read: perform a read directly to the specified 2536 * MemoryRegion. 2537 * 2538 * @mr: #MemoryRegion to access 2539 * @addr: address within that region 2540 * @pval: pointer to uint64_t which the data is written to 2541 * @op: size, sign, and endianness of the memory operation 2542 * @attrs: memory transaction attributes to use for the access 2543 */ 2544 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 2545 hwaddr addr, 2546 uint64_t *pval, 2547 MemOp op, 2548 MemTxAttrs attrs); 2549 /** 2550 * memory_region_dispatch_write: perform a write directly to the specified 2551 * MemoryRegion. 2552 * 2553 * @mr: #MemoryRegion to access 2554 * @addr: address within that region 2555 * @data: data to write 2556 * @op: size, sign, and endianness of the memory operation 2557 * @attrs: memory transaction attributes to use for the access 2558 */ 2559 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 2560 hwaddr addr, 2561 uint64_t data, 2562 MemOp op, 2563 MemTxAttrs attrs); 2564 2565 /** 2566 * address_space_init: initializes an address space 2567 * 2568 * @as: an uninitialized #AddressSpace 2569 * @root: a #MemoryRegion that routes addresses for the address space 2570 * @name: an address space name. The name is only used for debugging 2571 * output. 2572 */ 2573 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 2574 2575 /** 2576 * address_space_destroy: destroy an address space 2577 * 2578 * Releases all resources associated with an address space. After an address space 2579 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 2580 * as well. 2581 * 2582 * @as: address space to be destroyed 2583 */ 2584 void address_space_destroy(AddressSpace *as); 2585 2586 /** 2587 * address_space_remove_listeners: unregister all listeners of an address space 2588 * 2589 * Removes all callbacks previously registered with memory_listener_register() 2590 * for @as. 2591 * 2592 * @as: an initialized #AddressSpace 2593 */ 2594 void address_space_remove_listeners(AddressSpace *as); 2595 2596 /** 2597 * address_space_rw: read from or write to an address space. 2598 * 2599 * Return a MemTxResult indicating whether the operation succeeded 2600 * or failed (eg unassigned memory, device rejected the transaction, 2601 * IOMMU fault). 2602 * 2603 * @as: #AddressSpace to be accessed 2604 * @addr: address within that address space 2605 * @attrs: memory transaction attributes 2606 * @buf: buffer with the data transferred 2607 * @len: the number of bytes to read or write 2608 * @is_write: indicates the transfer direction 2609 */ 2610 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 2611 MemTxAttrs attrs, void *buf, 2612 hwaddr len, bool is_write); 2613 2614 /** 2615 * address_space_write: write to address space. 2616 * 2617 * Return a MemTxResult indicating whether the operation succeeded 2618 * or failed (eg unassigned memory, device rejected the transaction, 2619 * IOMMU fault). 2620 * 2621 * @as: #AddressSpace to be accessed 2622 * @addr: address within that address space 2623 * @attrs: memory transaction attributes 2624 * @buf: buffer with the data transferred 2625 * @len: the number of bytes to write 2626 */ 2627 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 2628 MemTxAttrs attrs, 2629 const void *buf, hwaddr len); 2630 2631 /** 2632 * address_space_write_rom: write to address space, including ROM. 2633 * 2634 * This function writes to the specified address space, but will 2635 * write data to both ROM and RAM. This is used for non-guest 2636 * writes like writes from the gdb debug stub or initial loading 2637 * of ROM contents. 2638 * 2639 * Note that portions of the write which attempt to write data to 2640 * a device will be silently ignored -- only real RAM and ROM will 2641 * be written to. 2642 * 2643 * Return a MemTxResult indicating whether the operation succeeded 2644 * or failed (eg unassigned memory, device rejected the transaction, 2645 * IOMMU fault). 2646 * 2647 * @as: #AddressSpace to be accessed 2648 * @addr: address within that address space 2649 * @attrs: memory transaction attributes 2650 * @buf: buffer with the data transferred 2651 * @len: the number of bytes to write 2652 */ 2653 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 2654 MemTxAttrs attrs, 2655 const void *buf, hwaddr len); 2656 2657 /* address_space_ld*: load from an address space 2658 * address_space_st*: store to an address space 2659 * 2660 * These functions perform a load or store of the byte, word, 2661 * longword or quad to the specified address within the AddressSpace. 2662 * The _le suffixed functions treat the data as little endian; 2663 * _be indicates big endian; no suffix indicates "same endianness 2664 * as guest CPU". 2665 * 2666 * The "guest CPU endianness" accessors are deprecated for use outside 2667 * target-* code; devices should be CPU-agnostic and use either the LE 2668 * or the BE accessors. 2669 * 2670 * @as #AddressSpace to be accessed 2671 * @addr: address within that address space 2672 * @val: data value, for stores 2673 * @attrs: memory transaction attributes 2674 * @result: location to write the success/failure of the transaction; 2675 * if NULL, this information is discarded 2676 */ 2677 2678 #define SUFFIX 2679 #define ARG1 as 2680 #define ARG1_DECL AddressSpace *as 2681 #include "exec/memory_ldst.h.inc" 2682 2683 #define SUFFIX 2684 #define ARG1 as 2685 #define ARG1_DECL AddressSpace *as 2686 #include "exec/memory_ldst_phys.h.inc" 2687 2688 struct MemoryRegionCache { 2689 void *ptr; 2690 hwaddr xlat; 2691 hwaddr len; 2692 FlatView *fv; 2693 MemoryRegionSection mrs; 2694 bool is_write; 2695 }; 2696 2697 /* address_space_ld*_cached: load from a cached #MemoryRegion 2698 * address_space_st*_cached: store into a cached #MemoryRegion 2699 * 2700 * These functions perform a load or store of the byte, word, 2701 * longword or quad to the specified address. The address is 2702 * a physical address in the AddressSpace, but it must lie within 2703 * a #MemoryRegion that was mapped with address_space_cache_init. 2704 * 2705 * The _le suffixed functions treat the data as little endian; 2706 * _be indicates big endian; no suffix indicates "same endianness 2707 * as guest CPU". 2708 * 2709 * The "guest CPU endianness" accessors are deprecated for use outside 2710 * target-* code; devices should be CPU-agnostic and use either the LE 2711 * or the BE accessors. 2712 * 2713 * @cache: previously initialized #MemoryRegionCache to be accessed 2714 * @addr: address within the address space 2715 * @val: data value, for stores 2716 * @attrs: memory transaction attributes 2717 * @result: location to write the success/failure of the transaction; 2718 * if NULL, this information is discarded 2719 */ 2720 2721 #define SUFFIX _cached_slow 2722 #define ARG1 cache 2723 #define ARG1_DECL MemoryRegionCache *cache 2724 #include "exec/memory_ldst.h.inc" 2725 2726 /* Inline fast path for direct RAM access. */ 2727 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache, 2728 hwaddr addr, MemTxAttrs attrs, MemTxResult *result) 2729 { 2730 assert(addr < cache->len); 2731 if (likely(cache->ptr)) { 2732 return ldub_p(cache->ptr + addr); 2733 } else { 2734 return address_space_ldub_cached_slow(cache, addr, attrs, result); 2735 } 2736 } 2737 2738 static inline void address_space_stb_cached(MemoryRegionCache *cache, 2739 hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result) 2740 { 2741 assert(addr < cache->len); 2742 if (likely(cache->ptr)) { 2743 stb_p(cache->ptr + addr, val); 2744 } else { 2745 address_space_stb_cached_slow(cache, addr, val, attrs, result); 2746 } 2747 } 2748 2749 #define ENDIANNESS _le 2750 #include "exec/memory_ldst_cached.h.inc" 2751 2752 #define ENDIANNESS _be 2753 #include "exec/memory_ldst_cached.h.inc" 2754 2755 #define SUFFIX _cached 2756 #define ARG1 cache 2757 #define ARG1_DECL MemoryRegionCache *cache 2758 #include "exec/memory_ldst_phys.h.inc" 2759 2760 /* address_space_cache_init: prepare for repeated access to a physical 2761 * memory region 2762 * 2763 * @cache: #MemoryRegionCache to be filled 2764 * @as: #AddressSpace to be accessed 2765 * @addr: address within that address space 2766 * @len: length of buffer 2767 * @is_write: indicates the transfer direction 2768 * 2769 * Will only work with RAM, and may map a subset of the requested range by 2770 * returning a value that is less than @len. On failure, return a negative 2771 * errno value. 2772 * 2773 * Because it only works with RAM, this function can be used for 2774 * read-modify-write operations. In this case, is_write should be %true. 2775 * 2776 * Note that addresses passed to the address_space_*_cached functions 2777 * are relative to @addr. 2778 */ 2779 int64_t address_space_cache_init(MemoryRegionCache *cache, 2780 AddressSpace *as, 2781 hwaddr addr, 2782 hwaddr len, 2783 bool is_write); 2784 2785 /** 2786 * address_space_cache_init_empty: Initialize empty #MemoryRegionCache 2787 * 2788 * @cache: The #MemoryRegionCache to operate on. 2789 * 2790 * Initializes #MemoryRegionCache structure without memory region attached. 2791 * Cache initialized this way can only be safely destroyed, but not used. 2792 */ 2793 static inline void address_space_cache_init_empty(MemoryRegionCache *cache) 2794 { 2795 cache->mrs.mr = NULL; 2796 /* There is no real need to initialize fv, but it makes Coverity happy. */ 2797 cache->fv = NULL; 2798 } 2799 2800 /** 2801 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache 2802 * 2803 * @cache: The #MemoryRegionCache to operate on. 2804 * @addr: The first physical address that was written, relative to the 2805 * address that was passed to @address_space_cache_init. 2806 * @access_len: The number of bytes that were written starting at @addr. 2807 */ 2808 void address_space_cache_invalidate(MemoryRegionCache *cache, 2809 hwaddr addr, 2810 hwaddr access_len); 2811 2812 /** 2813 * address_space_cache_destroy: free a #MemoryRegionCache 2814 * 2815 * @cache: The #MemoryRegionCache whose memory should be released. 2816 */ 2817 void address_space_cache_destroy(MemoryRegionCache *cache); 2818 2819 /* address_space_get_iotlb_entry: translate an address into an IOTLB 2820 * entry. Should be called from an RCU critical section. 2821 */ 2822 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 2823 bool is_write, MemTxAttrs attrs); 2824 2825 /* address_space_translate: translate an address range into an address space 2826 * into a MemoryRegion and an address range into that section. Should be 2827 * called from an RCU critical section, to avoid that the last reference 2828 * to the returned region disappears after address_space_translate returns. 2829 * 2830 * @fv: #FlatView to be accessed 2831 * @addr: address within that address space 2832 * @xlat: pointer to address within the returned memory region section's 2833 * #MemoryRegion. 2834 * @len: pointer to length 2835 * @is_write: indicates the transfer direction 2836 * @attrs: memory attributes 2837 */ 2838 MemoryRegion *flatview_translate(FlatView *fv, 2839 hwaddr addr, hwaddr *xlat, 2840 hwaddr *len, bool is_write, 2841 MemTxAttrs attrs); 2842 2843 static inline MemoryRegion *address_space_translate(AddressSpace *as, 2844 hwaddr addr, hwaddr *xlat, 2845 hwaddr *len, bool is_write, 2846 MemTxAttrs attrs) 2847 { 2848 return flatview_translate(address_space_to_flatview(as), 2849 addr, xlat, len, is_write, attrs); 2850 } 2851 2852 /* address_space_access_valid: check for validity of accessing an address 2853 * space range 2854 * 2855 * Check whether memory is assigned to the given address space range, and 2856 * access is permitted by any IOMMU regions that are active for the address 2857 * space. 2858 * 2859 * For now, addr and len should be aligned to a page size. This limitation 2860 * will be lifted in the future. 2861 * 2862 * @as: #AddressSpace to be accessed 2863 * @addr: address within that address space 2864 * @len: length of the area to be checked 2865 * @is_write: indicates the transfer direction 2866 * @attrs: memory attributes 2867 */ 2868 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len, 2869 bool is_write, MemTxAttrs attrs); 2870 2871 /* address_space_map: map a physical memory region into a host virtual address 2872 * 2873 * May map a subset of the requested range, given by and returned in @plen. 2874 * May return %NULL and set *@plen to zero(0), if resources needed to perform 2875 * the mapping are exhausted. 2876 * Use only for reads OR writes - not for read-modify-write operations. 2877 * Use cpu_register_map_client() to know when retrying the map operation is 2878 * likely to succeed. 2879 * 2880 * @as: #AddressSpace to be accessed 2881 * @addr: address within that address space 2882 * @plen: pointer to length of buffer; updated on return 2883 * @is_write: indicates the transfer direction 2884 * @attrs: memory attributes 2885 */ 2886 void *address_space_map(AddressSpace *as, hwaddr addr, 2887 hwaddr *plen, bool is_write, MemTxAttrs attrs); 2888 2889 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 2890 * 2891 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 2892 * the amount of memory that was actually read or written by the caller. 2893 * 2894 * @as: #AddressSpace used 2895 * @buffer: host pointer as returned by address_space_map() 2896 * @len: buffer length as returned by address_space_map() 2897 * @access_len: amount of data actually transferred 2898 * @is_write: indicates the transfer direction 2899 */ 2900 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 2901 bool is_write, hwaddr access_len); 2902 2903 2904 /* Internal functions, part of the implementation of address_space_read. */ 2905 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2906 MemTxAttrs attrs, void *buf, hwaddr len); 2907 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2908 MemTxAttrs attrs, void *buf, 2909 hwaddr len, hwaddr addr1, hwaddr l, 2910 MemoryRegion *mr); 2911 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr); 2912 2913 /* Internal functions, part of the implementation of address_space_read_cached 2914 * and address_space_write_cached. */ 2915 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache, 2916 hwaddr addr, void *buf, hwaddr len); 2917 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache, 2918 hwaddr addr, const void *buf, 2919 hwaddr len); 2920 2921 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr); 2922 bool prepare_mmio_access(MemoryRegion *mr); 2923 2924 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) 2925 { 2926 if (is_write) { 2927 return memory_region_is_ram(mr) && !mr->readonly && 2928 !mr->rom_device && !memory_region_is_ram_device(mr); 2929 } else { 2930 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) || 2931 memory_region_is_romd(mr); 2932 } 2933 } 2934 2935 /** 2936 * address_space_read: read from an address space. 2937 * 2938 * Return a MemTxResult indicating whether the operation succeeded 2939 * or failed (eg unassigned memory, device rejected the transaction, 2940 * IOMMU fault). Called within RCU critical section. 2941 * 2942 * @as: #AddressSpace to be accessed 2943 * @addr: address within that address space 2944 * @attrs: memory transaction attributes 2945 * @buf: buffer with the data transferred 2946 * @len: length of the data transferred 2947 */ 2948 static inline __attribute__((__always_inline__)) 2949 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, 2950 MemTxAttrs attrs, void *buf, 2951 hwaddr len) 2952 { 2953 MemTxResult result = MEMTX_OK; 2954 hwaddr l, addr1; 2955 void *ptr; 2956 MemoryRegion *mr; 2957 FlatView *fv; 2958 2959 if (__builtin_constant_p(len)) { 2960 if (len) { 2961 RCU_READ_LOCK_GUARD(); 2962 fv = address_space_to_flatview(as); 2963 l = len; 2964 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2965 if (len == l && memory_access_is_direct(mr, false)) { 2966 ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 2967 memcpy(buf, ptr, len); 2968 } else { 2969 result = flatview_read_continue(fv, addr, attrs, buf, len, 2970 addr1, l, mr); 2971 } 2972 } 2973 } else { 2974 result = address_space_read_full(as, addr, attrs, buf, len); 2975 } 2976 return result; 2977 } 2978 2979 /** 2980 * address_space_read_cached: read from a cached RAM region 2981 * 2982 * @cache: Cached region to be addressed 2983 * @addr: address relative to the base of the RAM region 2984 * @buf: buffer with the data transferred 2985 * @len: length of the data transferred 2986 */ 2987 static inline MemTxResult 2988 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr, 2989 void *buf, hwaddr len) 2990 { 2991 assert(addr < cache->len && len <= cache->len - addr); 2992 fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr); 2993 if (likely(cache->ptr)) { 2994 memcpy(buf, cache->ptr + addr, len); 2995 return MEMTX_OK; 2996 } else { 2997 return address_space_read_cached_slow(cache, addr, buf, len); 2998 } 2999 } 3000 3001 /** 3002 * address_space_write_cached: write to a cached RAM region 3003 * 3004 * @cache: Cached region to be addressed 3005 * @addr: address relative to the base of the RAM region 3006 * @buf: buffer with the data transferred 3007 * @len: length of the data transferred 3008 */ 3009 static inline MemTxResult 3010 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr, 3011 const void *buf, hwaddr len) 3012 { 3013 assert(addr < cache->len && len <= cache->len - addr); 3014 if (likely(cache->ptr)) { 3015 memcpy(cache->ptr + addr, buf, len); 3016 return MEMTX_OK; 3017 } else { 3018 return address_space_write_cached_slow(cache, addr, buf, len); 3019 } 3020 } 3021 3022 /** 3023 * address_space_set: Fill address space with a constant byte. 3024 * 3025 * Return a MemTxResult indicating whether the operation succeeded 3026 * or failed (eg unassigned memory, device rejected the transaction, 3027 * IOMMU fault). 3028 * 3029 * @as: #AddressSpace to be accessed 3030 * @addr: address within that address space 3031 * @c: constant byte to fill the memory 3032 * @len: the number of bytes to fill with the constant byte 3033 * @attrs: memory transaction attributes 3034 */ 3035 MemTxResult address_space_set(AddressSpace *as, hwaddr addr, 3036 uint8_t c, hwaddr len, MemTxAttrs attrs); 3037 3038 #ifdef NEED_CPU_H 3039 /* enum device_endian to MemOp. */ 3040 static inline MemOp devend_memop(enum device_endian end) 3041 { 3042 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN && 3043 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN); 3044 3045 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 3046 /* Swap if non-host endianness or native (target) endianness */ 3047 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP; 3048 #else 3049 const int non_host_endianness = 3050 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN; 3051 3052 /* In this case, native (target) endianness needs no swap. */ 3053 return (end == non_host_endianness) ? MO_BSWAP : 0; 3054 #endif 3055 } 3056 #endif 3057 3058 /* 3059 * Inhibit technologies that require discarding of pages in RAM blocks, e.g., 3060 * to manage the actual amount of memory consumed by the VM (then, the memory 3061 * provided by RAM blocks might be bigger than the desired memory consumption). 3062 * This *must* be set if: 3063 * - Discarding parts of a RAM blocks does not result in the change being 3064 * reflected in the VM and the pages getting freed. 3065 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous 3066 * discards blindly. 3067 * - Discarding parts of a RAM blocks will result in integrity issues (e.g., 3068 * encrypted VMs). 3069 * Technologies that only temporarily pin the current working set of a 3070 * driver are fine, because we don't expect such pages to be discarded 3071 * (esp. based on guest action like balloon inflation). 3072 * 3073 * This is *not* to be used to protect from concurrent discards (esp., 3074 * postcopy). 3075 * 3076 * Returns 0 if successful. Returns -EBUSY if a technology that relies on 3077 * discards to work reliably is active. 3078 */ 3079 int ram_block_discard_disable(bool state); 3080 3081 /* 3082 * See ram_block_discard_disable(): only disable uncoordinated discards, 3083 * keeping coordinated discards (via the RamDiscardManager) enabled. 3084 */ 3085 int ram_block_uncoordinated_discard_disable(bool state); 3086 3087 /* 3088 * Inhibit technologies that disable discarding of pages in RAM blocks. 3089 * 3090 * Returns 0 if successful. Returns -EBUSY if discards are already set to 3091 * broken. 3092 */ 3093 int ram_block_discard_require(bool state); 3094 3095 /* 3096 * See ram_block_discard_require(): only inhibit technologies that disable 3097 * uncoordinated discarding of pages in RAM blocks, allowing co-existance with 3098 * technologies that only inhibit uncoordinated discards (via the 3099 * RamDiscardManager). 3100 */ 3101 int ram_block_coordinated_discard_require(bool state); 3102 3103 /* 3104 * Test if any discarding of memory in ram blocks is disabled. 3105 */ 3106 bool ram_block_discard_is_disabled(void); 3107 3108 /* 3109 * Test if any discarding of memory in ram blocks is required to work reliably. 3110 */ 3111 bool ram_block_discard_is_required(void); 3112 3113 #endif 3114 3115 #endif 3116