xref: /openbmc/qemu/include/exec/memory.h (revision 1d300b5f)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #include <stdint.h>
20 #include <stdbool.h>
21 #include "qemu-common.h"
22 #include "exec/cpu-common.h"
23 #ifndef CONFIG_USER_ONLY
24 #include "exec/hwaddr.h"
25 #endif
26 #include "qemu/queue.h"
27 #include "qemu/int128.h"
28 #include "qemu/notify.h"
29 
30 #define MAX_PHYS_ADDR_SPACE_BITS 62
31 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
32 
33 typedef struct MemoryRegionOps MemoryRegionOps;
34 typedef struct MemoryRegionMmio MemoryRegionMmio;
35 
36 /* Must match *_DIRTY_FLAGS in cpu-all.h.  To be replaced with dynamic
37  * registration.
38  */
39 #define DIRTY_MEMORY_VGA       0
40 #define DIRTY_MEMORY_CODE      1
41 #define DIRTY_MEMORY_MIGRATION 3
42 
43 struct MemoryRegionMmio {
44     CPUReadMemoryFunc *read[3];
45     CPUWriteMemoryFunc *write[3];
46 };
47 
48 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
49 
50 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
51 typedef enum {
52     IOMMU_NONE = 0,
53     IOMMU_RO   = 1,
54     IOMMU_WO   = 2,
55     IOMMU_RW   = 3,
56 } IOMMUAccessFlags;
57 
58 struct IOMMUTLBEntry {
59     AddressSpace    *target_as;
60     hwaddr           iova;
61     hwaddr           translated_addr;
62     hwaddr           addr_mask;  /* 0xfff = 4k translation */
63     IOMMUAccessFlags perm;
64 };
65 
66 /*
67  * Memory region callbacks
68  */
69 struct MemoryRegionOps {
70     /* Read from the memory region. @addr is relative to @mr; @size is
71      * in bytes. */
72     uint64_t (*read)(void *opaque,
73                      hwaddr addr,
74                      unsigned size);
75     /* Write to the memory region. @addr is relative to @mr; @size is
76      * in bytes. */
77     void (*write)(void *opaque,
78                   hwaddr addr,
79                   uint64_t data,
80                   unsigned size);
81 
82     enum device_endian endianness;
83     /* Guest-visible constraints: */
84     struct {
85         /* If nonzero, specify bounds on access sizes beyond which a machine
86          * check is thrown.
87          */
88         unsigned min_access_size;
89         unsigned max_access_size;
90         /* If true, unaligned accesses are supported.  Otherwise unaligned
91          * accesses throw machine checks.
92          */
93          bool unaligned;
94         /*
95          * If present, and returns #false, the transaction is not accepted
96          * by the device (and results in machine dependent behaviour such
97          * as a machine check exception).
98          */
99         bool (*accepts)(void *opaque, hwaddr addr,
100                         unsigned size, bool is_write);
101     } valid;
102     /* Internal implementation constraints: */
103     struct {
104         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
105          * will be rounded upwards and a partial result will be returned.
106          */
107         unsigned min_access_size;
108         /* If nonzero, specifies the maximum size implemented.  Larger sizes
109          * will be done as a series of accesses with smaller sizes.
110          */
111         unsigned max_access_size;
112         /* If true, unaligned accesses are supported.  Otherwise all accesses
113          * are converted to (possibly multiple) naturally aligned accesses.
114          */
115          bool unaligned;
116     } impl;
117 
118     /* If .read and .write are not present, old_mmio may be used for
119      * backwards compatibility with old mmio registration
120      */
121     const MemoryRegionMmio old_mmio;
122 };
123 
124 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
125 
126 struct MemoryRegionIOMMUOps {
127     /* Return a TLB entry that contains a given address. */
128     IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr);
129 };
130 
131 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
132 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
133 
134 struct MemoryRegion {
135     /* All fields are private - violators will be prosecuted */
136     const MemoryRegionOps *ops;
137     const MemoryRegionIOMMUOps *iommu_ops;
138     void *opaque;
139     struct Object *owner;
140     MemoryRegion *parent;
141     Int128 size;
142     hwaddr addr;
143     void (*destructor)(MemoryRegion *mr);
144     ram_addr_t ram_addr;
145     bool subpage;
146     bool terminates;
147     bool romd_mode;
148     bool ram;
149     bool readonly; /* For RAM regions */
150     bool enabled;
151     bool rom_device;
152     bool warning_printed; /* For reservations */
153     bool flush_coalesced_mmio;
154     MemoryRegion *alias;
155     hwaddr alias_offset;
156     unsigned priority;
157     bool may_overlap;
158     QTAILQ_HEAD(subregions, MemoryRegion) subregions;
159     QTAILQ_ENTRY(MemoryRegion) subregions_link;
160     QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
161     const char *name;
162     uint8_t dirty_log_mask;
163     unsigned ioeventfd_nb;
164     MemoryRegionIoeventfd *ioeventfds;
165     NotifierList iommu_notify;
166 };
167 
168 typedef struct MemoryListener MemoryListener;
169 
170 /**
171  * MemoryListener: callbacks structure for updates to the physical memory map
172  *
173  * Allows a component to adjust to changes in the guest-visible memory map.
174  * Use with memory_listener_register() and memory_listener_unregister().
175  */
176 struct MemoryListener {
177     void (*begin)(MemoryListener *listener);
178     void (*commit)(MemoryListener *listener);
179     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
180     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
181     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
182     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section);
183     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section);
184     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
185     void (*log_global_start)(MemoryListener *listener);
186     void (*log_global_stop)(MemoryListener *listener);
187     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
188                         bool match_data, uint64_t data, EventNotifier *e);
189     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
190                         bool match_data, uint64_t data, EventNotifier *e);
191     void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
192                                hwaddr addr, hwaddr len);
193     void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
194                                hwaddr addr, hwaddr len);
195     /* Lower = earlier (during add), later (during del) */
196     unsigned priority;
197     AddressSpace *address_space_filter;
198     QTAILQ_ENTRY(MemoryListener) link;
199 };
200 
201 /**
202  * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
203  */
204 struct AddressSpace {
205     /* All fields are private. */
206     char *name;
207     MemoryRegion *root;
208     struct FlatView *current_map;
209     int ioeventfd_nb;
210     struct MemoryRegionIoeventfd *ioeventfds;
211     struct AddressSpaceDispatch *dispatch;
212     struct AddressSpaceDispatch *next_dispatch;
213     MemoryListener dispatch_listener;
214 
215     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
216 };
217 
218 /**
219  * MemoryRegionSection: describes a fragment of a #MemoryRegion
220  *
221  * @mr: the region, or %NULL if empty
222  * @address_space: the address space the region is mapped in
223  * @offset_within_region: the beginning of the section, relative to @mr's start
224  * @size: the size of the section; will not exceed @mr's boundaries
225  * @offset_within_address_space: the address of the first byte of the section
226  *     relative to the region's address space
227  * @readonly: writes to this section are ignored
228  */
229 struct MemoryRegionSection {
230     MemoryRegion *mr;
231     AddressSpace *address_space;
232     hwaddr offset_within_region;
233     Int128 size;
234     hwaddr offset_within_address_space;
235     bool readonly;
236 };
237 
238 /**
239  * memory_region_init: Initialize a memory region
240  *
241  * The region typically acts as a container for other memory regions.  Use
242  * memory_region_add_subregion() to add subregions.
243  *
244  * @mr: the #MemoryRegion to be initialized
245  * @owner: the object that tracks the region's reference count
246  * @name: used for debugging; not visible to the user or ABI
247  * @size: size of the region; any subregions beyond this size will be clipped
248  */
249 void memory_region_init(MemoryRegion *mr,
250                         struct Object *owner,
251                         const char *name,
252                         uint64_t size);
253 
254 /**
255  * memory_region_ref: Add 1 to a memory region's reference count
256  *
257  * Whenever memory regions are accessed outside the BQL, they need to be
258  * preserved against hot-unplug.  MemoryRegions actually do not have their
259  * own reference count; they piggyback on a QOM object, their "owner".
260  * This function adds a reference to the owner.
261  *
262  * All MemoryRegions must have an owner if they can disappear, even if the
263  * device they belong to operates exclusively under the BQL.  This is because
264  * the region could be returned at any time by memory_region_find, and this
265  * is usually under guest control.
266  *
267  * @mr: the #MemoryRegion
268  */
269 void memory_region_ref(MemoryRegion *mr);
270 
271 /**
272  * memory_region_unref: Remove 1 to a memory region's reference count
273  *
274  * Whenever memory regions are accessed outside the BQL, they need to be
275  * preserved against hot-unplug.  MemoryRegions actually do not have their
276  * own reference count; they piggyback on a QOM object, their "owner".
277  * This function removes a reference to the owner and possibly destroys it.
278  *
279  * @mr: the #MemoryRegion
280  */
281 void memory_region_unref(MemoryRegion *mr);
282 
283 /**
284  * memory_region_init_io: Initialize an I/O memory region.
285  *
286  * Accesses into the region will cause the callbacks in @ops to be called.
287  * if @size is nonzero, subregions will be clipped to @size.
288  *
289  * @mr: the #MemoryRegion to be initialized.
290  * @owner: the object that tracks the region's reference count
291  * @ops: a structure containing read and write callbacks to be used when
292  *       I/O is performed on the region.
293  * @opaque: passed to to the read and write callbacks of the @ops structure.
294  * @name: used for debugging; not visible to the user or ABI
295  * @size: size of the region.
296  */
297 void memory_region_init_io(MemoryRegion *mr,
298                            struct Object *owner,
299                            const MemoryRegionOps *ops,
300                            void *opaque,
301                            const char *name,
302                            uint64_t size);
303 
304 /**
305  * memory_region_init_ram:  Initialize RAM memory region.  Accesses into the
306  *                          region will modify memory directly.
307  *
308  * @mr: the #MemoryRegion to be initialized.
309  * @owner: the object that tracks the region's reference count
310  * @name: the name of the region.
311  * @size: size of the region.
312  */
313 void memory_region_init_ram(MemoryRegion *mr,
314                             struct Object *owner,
315                             const char *name,
316                             uint64_t size);
317 
318 /**
319  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
320  *                              user-provided pointer.  Accesses into the
321  *                              region will modify memory directly.
322  *
323  * @mr: the #MemoryRegion to be initialized.
324  * @owner: the object that tracks the region's reference count
325  * @name: the name of the region.
326  * @size: size of the region.
327  * @ptr: memory to be mapped; must contain at least @size bytes.
328  */
329 void memory_region_init_ram_ptr(MemoryRegion *mr,
330                                 struct Object *owner,
331                                 const char *name,
332                                 uint64_t size,
333                                 void *ptr);
334 
335 /**
336  * memory_region_init_alias: Initialize a memory region that aliases all or a
337  *                           part of another memory region.
338  *
339  * @mr: the #MemoryRegion to be initialized.
340  * @owner: the object that tracks the region's reference count
341  * @name: used for debugging; not visible to the user or ABI
342  * @orig: the region to be referenced; @mr will be equivalent to
343  *        @orig between @offset and @offset + @size - 1.
344  * @offset: start of the section in @orig to be referenced.
345  * @size: size of the region.
346  */
347 void memory_region_init_alias(MemoryRegion *mr,
348                               struct Object *owner,
349                               const char *name,
350                               MemoryRegion *orig,
351                               hwaddr offset,
352                               uint64_t size);
353 
354 /**
355  * memory_region_init_rom_device:  Initialize a ROM memory region.  Writes are
356  *                                 handled via callbacks.
357  *
358  * @mr: the #MemoryRegion to be initialized.
359  * @owner: the object that tracks the region's reference count
360  * @ops: callbacks for write access handling.
361  * @name: the name of the region.
362  * @size: size of the region.
363  */
364 void memory_region_init_rom_device(MemoryRegion *mr,
365                                    struct Object *owner,
366                                    const MemoryRegionOps *ops,
367                                    void *opaque,
368                                    const char *name,
369                                    uint64_t size);
370 
371 /**
372  * memory_region_init_reservation: Initialize a memory region that reserves
373  *                                 I/O space.
374  *
375  * A reservation region primariy serves debugging purposes.  It claims I/O
376  * space that is not supposed to be handled by QEMU itself.  Any access via
377  * the memory API will cause an abort().
378  *
379  * @mr: the #MemoryRegion to be initialized
380  * @owner: the object that tracks the region's reference count
381  * @name: used for debugging; not visible to the user or ABI
382  * @size: size of the region.
383  */
384 void memory_region_init_reservation(MemoryRegion *mr,
385                                     struct Object *owner,
386                                     const char *name,
387                                     uint64_t size);
388 
389 /**
390  * memory_region_init_iommu: Initialize a memory region that translates
391  * addresses
392  *
393  * An IOMMU region translates addresses and forwards accesses to a target
394  * memory region.
395  *
396  * @mr: the #MemoryRegion to be initialized
397  * @owner: the object that tracks the region's reference count
398  * @ops: a function that translates addresses into the @target region
399  * @name: used for debugging; not visible to the user or ABI
400  * @size: size of the region.
401  */
402 void memory_region_init_iommu(MemoryRegion *mr,
403                               struct Object *owner,
404                               const MemoryRegionIOMMUOps *ops,
405                               const char *name,
406                               uint64_t size);
407 
408 /**
409  * memory_region_destroy: Destroy a memory region and reclaim all resources.
410  *
411  * @mr: the region to be destroyed.  May not currently be a subregion
412  *      (see memory_region_add_subregion()) or referenced in an alias
413  *      (see memory_region_init_alias()).
414  */
415 void memory_region_destroy(MemoryRegion *mr);
416 
417 /**
418  * memory_region_owner: get a memory region's owner.
419  *
420  * @mr: the memory region being queried.
421  */
422 struct Object *memory_region_owner(MemoryRegion *mr);
423 
424 /**
425  * memory_region_size: get a memory region's size.
426  *
427  * @mr: the memory region being queried.
428  */
429 uint64_t memory_region_size(MemoryRegion *mr);
430 
431 /**
432  * memory_region_is_ram: check whether a memory region is random access
433  *
434  * Returns %true is a memory region is random access.
435  *
436  * @mr: the memory region being queried
437  */
438 bool memory_region_is_ram(MemoryRegion *mr);
439 
440 /**
441  * memory_region_is_romd: check whether a memory region is in ROMD mode
442  *
443  * Returns %true if a memory region is a ROM device and currently set to allow
444  * direct reads.
445  *
446  * @mr: the memory region being queried
447  */
448 static inline bool memory_region_is_romd(MemoryRegion *mr)
449 {
450     return mr->rom_device && mr->romd_mode;
451 }
452 
453 /**
454  * memory_region_is_iommu: check whether a memory region is an iommu
455  *
456  * Returns %true is a memory region is an iommu.
457  *
458  * @mr: the memory region being queried
459  */
460 bool memory_region_is_iommu(MemoryRegion *mr);
461 
462 /**
463  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
464  *
465  * @mr: the memory region that was changed
466  * @entry: the new entry in the IOMMU translation table.  The entry
467  *         replaces all old entries for the same virtual I/O address range.
468  *         Deleted entries have .@perm == 0.
469  */
470 void memory_region_notify_iommu(MemoryRegion *mr,
471                                 IOMMUTLBEntry entry);
472 
473 /**
474  * memory_region_register_iommu_notifier: register a notifier for changes to
475  * IOMMU translation entries.
476  *
477  * @mr: the memory region to observe
478  * @n: the notifier to be added; the notifier receives a pointer to an
479  *     #IOMMUTLBEntry as the opaque value; the pointer ceases to be
480  *     valid on exit from the notifier.
481  */
482 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n);
483 
484 /**
485  * memory_region_unregister_iommu_notifier: unregister a notifier for
486  * changes to IOMMU translation entries.
487  *
488  * @n: the notifier to be removed.
489  */
490 void memory_region_unregister_iommu_notifier(Notifier *n);
491 
492 /**
493  * memory_region_name: get a memory region's name
494  *
495  * Returns the string that was used to initialize the memory region.
496  *
497  * @mr: the memory region being queried
498  */
499 const char *memory_region_name(MemoryRegion *mr);
500 
501 /**
502  * memory_region_is_logging: return whether a memory region is logging writes
503  *
504  * Returns %true if the memory region is logging writes
505  *
506  * @mr: the memory region being queried
507  */
508 bool memory_region_is_logging(MemoryRegion *mr);
509 
510 /**
511  * memory_region_is_rom: check whether a memory region is ROM
512  *
513  * Returns %true is a memory region is read-only memory.
514  *
515  * @mr: the memory region being queried
516  */
517 bool memory_region_is_rom(MemoryRegion *mr);
518 
519 /**
520  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
521  *
522  * Returns a host pointer to a RAM memory region (created with
523  * memory_region_init_ram() or memory_region_init_ram_ptr()).  Use with
524  * care.
525  *
526  * @mr: the memory region being queried.
527  */
528 void *memory_region_get_ram_ptr(MemoryRegion *mr);
529 
530 /**
531  * memory_region_set_log: Turn dirty logging on or off for a region.
532  *
533  * Turns dirty logging on or off for a specified client (display, migration).
534  * Only meaningful for RAM regions.
535  *
536  * @mr: the memory region being updated.
537  * @log: whether dirty logging is to be enabled or disabled.
538  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
539  *          %DIRTY_MEMORY_VGA.
540  */
541 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
542 
543 /**
544  * memory_region_get_dirty: Check whether a range of bytes is dirty
545  *                          for a specified client.
546  *
547  * Checks whether a range of bytes has been written to since the last
548  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
549  * must be enabled.
550  *
551  * @mr: the memory region being queried.
552  * @addr: the address (relative to the start of the region) being queried.
553  * @size: the size of the range being queried.
554  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
555  *          %DIRTY_MEMORY_VGA.
556  */
557 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
558                              hwaddr size, unsigned client);
559 
560 /**
561  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
562  *
563  * Marks a range of bytes as dirty, after it has been dirtied outside
564  * guest code.
565  *
566  * @mr: the memory region being dirtied.
567  * @addr: the address (relative to the start of the region) being dirtied.
568  * @size: size of the range being dirtied.
569  */
570 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
571                              hwaddr size);
572 
573 /**
574  * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
575  *                                     for a specified client. It clears them.
576  *
577  * Checks whether a range of bytes has been written to since the last
578  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
579  * must be enabled.
580  *
581  * @mr: the memory region being queried.
582  * @addr: the address (relative to the start of the region) being queried.
583  * @size: the size of the range being queried.
584  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
585  *          %DIRTY_MEMORY_VGA.
586  */
587 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
588                                         hwaddr size, unsigned client);
589 /**
590  * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
591  *                                  any external TLBs (e.g. kvm)
592  *
593  * Flushes dirty information from accelerators such as kvm and vhost-net
594  * and makes it available to users of the memory API.
595  *
596  * @mr: the region being flushed.
597  */
598 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
599 
600 /**
601  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
602  *                            client.
603  *
604  * Marks a range of pages as no longer dirty.
605  *
606  * @mr: the region being updated.
607  * @addr: the start of the subrange being cleaned.
608  * @size: the size of the subrange being cleaned.
609  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
610  *          %DIRTY_MEMORY_VGA.
611  */
612 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
613                                hwaddr size, unsigned client);
614 
615 /**
616  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
617  *
618  * Allows a memory region to be marked as read-only (turning it into a ROM).
619  * only useful on RAM regions.
620  *
621  * @mr: the region being updated.
622  * @readonly: whether rhe region is to be ROM or RAM.
623  */
624 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
625 
626 /**
627  * memory_region_rom_device_set_romd: enable/disable ROMD mode
628  *
629  * Allows a ROM device (initialized with memory_region_init_rom_device() to
630  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
631  * device is mapped to guest memory and satisfies read access directly.
632  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
633  * Writes are always handled by the #MemoryRegion.write function.
634  *
635  * @mr: the memory region to be updated
636  * @romd_mode: %true to put the region into ROMD mode
637  */
638 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
639 
640 /**
641  * memory_region_set_coalescing: Enable memory coalescing for the region.
642  *
643  * Enabled writes to a region to be queued for later processing. MMIO ->write
644  * callbacks may be delayed until a non-coalesced MMIO is issued.
645  * Only useful for IO regions.  Roughly similar to write-combining hardware.
646  *
647  * @mr: the memory region to be write coalesced
648  */
649 void memory_region_set_coalescing(MemoryRegion *mr);
650 
651 /**
652  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
653  *                               a region.
654  *
655  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
656  * Multiple calls can be issued coalesced disjoint ranges.
657  *
658  * @mr: the memory region to be updated.
659  * @offset: the start of the range within the region to be coalesced.
660  * @size: the size of the subrange to be coalesced.
661  */
662 void memory_region_add_coalescing(MemoryRegion *mr,
663                                   hwaddr offset,
664                                   uint64_t size);
665 
666 /**
667  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
668  *
669  * Disables any coalescing caused by memory_region_set_coalescing() or
670  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
671  * hardware.
672  *
673  * @mr: the memory region to be updated.
674  */
675 void memory_region_clear_coalescing(MemoryRegion *mr);
676 
677 /**
678  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
679  *                                    accesses.
680  *
681  * Ensure that pending coalesced MMIO request are flushed before the memory
682  * region is accessed. This property is automatically enabled for all regions
683  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
684  *
685  * @mr: the memory region to be updated.
686  */
687 void memory_region_set_flush_coalesced(MemoryRegion *mr);
688 
689 /**
690  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
691  *                                      accesses.
692  *
693  * Clear the automatic coalesced MMIO flushing enabled via
694  * memory_region_set_flush_coalesced. Note that this service has no effect on
695  * memory regions that have MMIO coalescing enabled for themselves. For them,
696  * automatic flushing will stop once coalescing is disabled.
697  *
698  * @mr: the memory region to be updated.
699  */
700 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
701 
702 /**
703  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
704  *                            is written to a location.
705  *
706  * Marks a word in an IO region (initialized with memory_region_init_io())
707  * as a trigger for an eventfd event.  The I/O callback will not be called.
708  * The caller must be prepared to handle failure (that is, take the required
709  * action if the callback _is_ called).
710  *
711  * @mr: the memory region being updated.
712  * @addr: the address within @mr that is to be monitored
713  * @size: the size of the access to trigger the eventfd
714  * @match_data: whether to match against @data, instead of just @addr
715  * @data: the data to match against the guest write
716  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
717  **/
718 void memory_region_add_eventfd(MemoryRegion *mr,
719                                hwaddr addr,
720                                unsigned size,
721                                bool match_data,
722                                uint64_t data,
723                                EventNotifier *e);
724 
725 /**
726  * memory_region_del_eventfd: Cancel an eventfd.
727  *
728  * Cancels an eventfd trigger requested by a previous
729  * memory_region_add_eventfd() call.
730  *
731  * @mr: the memory region being updated.
732  * @addr: the address within @mr that is to be monitored
733  * @size: the size of the access to trigger the eventfd
734  * @match_data: whether to match against @data, instead of just @addr
735  * @data: the data to match against the guest write
736  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
737  */
738 void memory_region_del_eventfd(MemoryRegion *mr,
739                                hwaddr addr,
740                                unsigned size,
741                                bool match_data,
742                                uint64_t data,
743                                EventNotifier *e);
744 
745 /**
746  * memory_region_add_subregion: Add a subregion to a container.
747  *
748  * Adds a subregion at @offset.  The subregion may not overlap with other
749  * subregions (except for those explicitly marked as overlapping).  A region
750  * may only be added once as a subregion (unless removed with
751  * memory_region_del_subregion()); use memory_region_init_alias() if you
752  * want a region to be a subregion in multiple locations.
753  *
754  * @mr: the region to contain the new subregion; must be a container
755  *      initialized with memory_region_init().
756  * @offset: the offset relative to @mr where @subregion is added.
757  * @subregion: the subregion to be added.
758  */
759 void memory_region_add_subregion(MemoryRegion *mr,
760                                  hwaddr offset,
761                                  MemoryRegion *subregion);
762 /**
763  * memory_region_add_subregion_overlap: Add a subregion to a container
764  *                                      with overlap.
765  *
766  * Adds a subregion at @offset.  The subregion may overlap with other
767  * subregions.  Conflicts are resolved by having a higher @priority hide a
768  * lower @priority. Subregions without priority are taken as @priority 0.
769  * A region may only be added once as a subregion (unless removed with
770  * memory_region_del_subregion()); use memory_region_init_alias() if you
771  * want a region to be a subregion in multiple locations.
772  *
773  * @mr: the region to contain the new subregion; must be a container
774  *      initialized with memory_region_init().
775  * @offset: the offset relative to @mr where @subregion is added.
776  * @subregion: the subregion to be added.
777  * @priority: used for resolving overlaps; highest priority wins.
778  */
779 void memory_region_add_subregion_overlap(MemoryRegion *mr,
780                                          hwaddr offset,
781                                          MemoryRegion *subregion,
782                                          unsigned priority);
783 
784 /**
785  * memory_region_get_ram_addr: Get the ram address associated with a memory
786  *                             region
787  *
788  * DO NOT USE THIS FUNCTION.  This is a temporary workaround while the Xen
789  * code is being reworked.
790  */
791 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
792 
793 /**
794  * memory_region_del_subregion: Remove a subregion.
795  *
796  * Removes a subregion from its container.
797  *
798  * @mr: the container to be updated.
799  * @subregion: the region being removed; must be a current subregion of @mr.
800  */
801 void memory_region_del_subregion(MemoryRegion *mr,
802                                  MemoryRegion *subregion);
803 
804 /*
805  * memory_region_set_enabled: dynamically enable or disable a region
806  *
807  * Enables or disables a memory region.  A disabled memory region
808  * ignores all accesses to itself and its subregions.  It does not
809  * obscure sibling subregions with lower priority - it simply behaves as
810  * if it was removed from the hierarchy.
811  *
812  * Regions default to being enabled.
813  *
814  * @mr: the region to be updated
815  * @enabled: whether to enable or disable the region
816  */
817 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
818 
819 /*
820  * memory_region_set_address: dynamically update the address of a region
821  *
822  * Dynamically updates the address of a region, relative to its parent.
823  * May be used on regions are currently part of a memory hierarchy.
824  *
825  * @mr: the region to be updated
826  * @addr: new address, relative to parent region
827  */
828 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
829 
830 /*
831  * memory_region_set_alias_offset: dynamically update a memory alias's offset
832  *
833  * Dynamically updates the offset into the target region that an alias points
834  * to, as if the fourth argument to memory_region_init_alias() has changed.
835  *
836  * @mr: the #MemoryRegion to be updated; should be an alias.
837  * @offset: the new offset into the target memory region
838  */
839 void memory_region_set_alias_offset(MemoryRegion *mr,
840                                     hwaddr offset);
841 
842 /**
843  * memory_region_present: translate an address/size relative to a
844  * MemoryRegion into a #MemoryRegionSection.
845  *
846  * Answer whether a #MemoryRegion within @parent covers the address
847  * @addr.
848  *
849  * @parent: a MemoryRegion within which @addr is a relative address
850  * @addr: the area within @parent to be searched
851  */
852 bool memory_region_present(MemoryRegion *parent, hwaddr addr);
853 
854 /**
855  * memory_region_find: translate an address/size relative to a
856  * MemoryRegion into a #MemoryRegionSection.
857  *
858  * Locates the first #MemoryRegion within @mr that overlaps the range
859  * given by @addr and @size.
860  *
861  * Returns a #MemoryRegionSection that describes a contiguous overlap.
862  * It will have the following characteristics:
863  *    .@size = 0 iff no overlap was found
864  *    .@mr is non-%NULL iff an overlap was found
865  *
866  * Remember that in the return value the @offset_within_region is
867  * relative to the returned region (in the .@mr field), not to the
868  * @mr argument.
869  *
870  * Similarly, the .@offset_within_address_space is relative to the
871  * address space that contains both regions, the passed and the
872  * returned one.  However, in the special case where the @mr argument
873  * has no parent (and thus is the root of the address space), the
874  * following will hold:
875  *    .@offset_within_address_space >= @addr
876  *    .@offset_within_address_space + .@size <= @addr + @size
877  *
878  * @mr: a MemoryRegion within which @addr is a relative address
879  * @addr: start of the area within @as to be searched
880  * @size: size of the area to be searched
881  */
882 MemoryRegionSection memory_region_find(MemoryRegion *mr,
883                                        hwaddr addr, uint64_t size);
884 
885 /**
886  * address_space_sync_dirty_bitmap: synchronize the dirty log for all memory
887  *
888  * Synchronizes the dirty page log for an entire address space.
889  * @as: the address space that contains the memory being synchronized
890  */
891 void address_space_sync_dirty_bitmap(AddressSpace *as);
892 
893 /**
894  * memory_region_transaction_begin: Start a transaction.
895  *
896  * During a transaction, changes will be accumulated and made visible
897  * only when the transaction ends (is committed).
898  */
899 void memory_region_transaction_begin(void);
900 
901 /**
902  * memory_region_transaction_commit: Commit a transaction and make changes
903  *                                   visible to the guest.
904  */
905 void memory_region_transaction_commit(void);
906 
907 /**
908  * memory_listener_register: register callbacks to be called when memory
909  *                           sections are mapped or unmapped into an address
910  *                           space
911  *
912  * @listener: an object containing the callbacks to be called
913  * @filter: if non-%NULL, only regions in this address space will be observed
914  */
915 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
916 
917 /**
918  * memory_listener_unregister: undo the effect of memory_listener_register()
919  *
920  * @listener: an object containing the callbacks to be removed
921  */
922 void memory_listener_unregister(MemoryListener *listener);
923 
924 /**
925  * memory_global_dirty_log_start: begin dirty logging for all regions
926  */
927 void memory_global_dirty_log_start(void);
928 
929 /**
930  * memory_global_dirty_log_stop: end dirty logging for all regions
931  */
932 void memory_global_dirty_log_stop(void);
933 
934 void mtree_info(fprintf_function mon_printf, void *f);
935 
936 /**
937  * address_space_init: initializes an address space
938  *
939  * @as: an uninitialized #AddressSpace
940  * @root: a #MemoryRegion that routes addesses for the address space
941  * @name: an address space name.  The name is only used for debugging
942  *        output.
943  */
944 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
945 
946 
947 /**
948  * address_space_destroy: destroy an address space
949  *
950  * Releases all resources associated with an address space.  After an address space
951  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
952  * as well.
953  *
954  * @as: address space to be destroyed
955  */
956 void address_space_destroy(AddressSpace *as);
957 
958 /**
959  * address_space_rw: read from or write to an address space.
960  *
961  * Return true if the operation hit any unassigned memory or encountered an
962  * IOMMU fault.
963  *
964  * @as: #AddressSpace to be accessed
965  * @addr: address within that address space
966  * @buf: buffer with the data transferred
967  * @is_write: indicates the transfer direction
968  */
969 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
970                       int len, bool is_write);
971 
972 /**
973  * address_space_write: write to address space.
974  *
975  * Return true if the operation hit any unassigned memory or encountered an
976  * IOMMU fault.
977  *
978  * @as: #AddressSpace to be accessed
979  * @addr: address within that address space
980  * @buf: buffer with the data transferred
981  */
982 bool address_space_write(AddressSpace *as, hwaddr addr,
983                          const uint8_t *buf, int len);
984 
985 /**
986  * address_space_read: read from an address space.
987  *
988  * Return true if the operation hit any unassigned memory or encountered an
989  * IOMMU fault.
990  *
991  * @as: #AddressSpace to be accessed
992  * @addr: address within that address space
993  * @buf: buffer with the data transferred
994  */
995 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len);
996 
997 /* address_space_translate: translate an address range into an address space
998  * into a MemoryRegion and an address range into that section
999  *
1000  * @as: #AddressSpace to be accessed
1001  * @addr: address within that address space
1002  * @xlat: pointer to address within the returned memory region section's
1003  * #MemoryRegion.
1004  * @len: pointer to length
1005  * @is_write: indicates the transfer direction
1006  */
1007 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1008                                       hwaddr *xlat, hwaddr *len,
1009                                       bool is_write);
1010 
1011 /* address_space_access_valid: check for validity of accessing an address
1012  * space range
1013  *
1014  * Check whether memory is assigned to the given address space range, and
1015  * access is permitted by any IOMMU regions that are active for the address
1016  * space.
1017  *
1018  * For now, addr and len should be aligned to a page size.  This limitation
1019  * will be lifted in the future.
1020  *
1021  * @as: #AddressSpace to be accessed
1022  * @addr: address within that address space
1023  * @len: length of the area to be checked
1024  * @is_write: indicates the transfer direction
1025  */
1026 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1027 
1028 /* address_space_map: map a physical memory region into a host virtual address
1029  *
1030  * May map a subset of the requested range, given by and returned in @plen.
1031  * May return %NULL if resources needed to perform the mapping are exhausted.
1032  * Use only for reads OR writes - not for read-modify-write operations.
1033  * Use cpu_register_map_client() to know when retrying the map operation is
1034  * likely to succeed.
1035  *
1036  * @as: #AddressSpace to be accessed
1037  * @addr: address within that address space
1038  * @plen: pointer to length of buffer; updated on return
1039  * @is_write: indicates the transfer direction
1040  */
1041 void *address_space_map(AddressSpace *as, hwaddr addr,
1042                         hwaddr *plen, bool is_write);
1043 
1044 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1045  *
1046  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
1047  * the amount of memory that was actually read or written by the caller.
1048  *
1049  * @as: #AddressSpace used
1050  * @addr: address within that address space
1051  * @len: buffer length as returned by address_space_map()
1052  * @access_len: amount of data actually transferred
1053  * @is_write: indicates the transfer direction
1054  */
1055 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1056                          int is_write, hwaddr access_len);
1057 
1058 
1059 #endif
1060 
1061 #endif
1062