1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef MEMORY_H 15 #define MEMORY_H 16 17 #ifndef CONFIG_USER_ONLY 18 19 #include "exec/cpu-common.h" 20 #include "exec/hwaddr.h" 21 #include "exec/memattrs.h" 22 #include "exec/memop.h" 23 #include "exec/ramlist.h" 24 #include "qemu/bswap.h" 25 #include "qemu/queue.h" 26 #include "qemu/int128.h" 27 #include "qemu/notify.h" 28 #include "qom/object.h" 29 #include "qemu/rcu.h" 30 31 #define RAM_ADDR_INVALID (~(ram_addr_t)0) 32 33 #define MAX_PHYS_ADDR_SPACE_BITS 62 34 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 35 36 #define TYPE_MEMORY_REGION "memory-region" 37 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION, 38 TYPE_MEMORY_REGION) 39 40 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region" 41 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass; 42 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass, 43 IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION) 44 45 #define TYPE_RAM_DISCARD_MANAGER "qemu:ram-discard-manager" 46 typedef struct RamDiscardManagerClass RamDiscardManagerClass; 47 typedef struct RamDiscardManager RamDiscardManager; 48 DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass, 49 RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER); 50 51 #ifdef CONFIG_FUZZ 52 void fuzz_dma_read_cb(size_t addr, 53 size_t len, 54 MemoryRegion *mr); 55 #else 56 static inline void fuzz_dma_read_cb(size_t addr, 57 size_t len, 58 MemoryRegion *mr) 59 { 60 /* Do Nothing */ 61 } 62 #endif 63 64 /* Possible bits for global_dirty_log_{start|stop} */ 65 66 /* Dirty tracking enabled because migration is running */ 67 #define GLOBAL_DIRTY_MIGRATION (1U << 0) 68 69 /* Dirty tracking enabled because measuring dirty rate */ 70 #define GLOBAL_DIRTY_DIRTY_RATE (1U << 1) 71 72 /* Dirty tracking enabled because dirty limit */ 73 #define GLOBAL_DIRTY_LIMIT (1U << 2) 74 75 #define GLOBAL_DIRTY_MASK (0x7) 76 77 extern unsigned int global_dirty_tracking; 78 79 typedef struct MemoryRegionOps MemoryRegionOps; 80 81 struct ReservedRegion { 82 hwaddr low; 83 hwaddr high; 84 unsigned type; 85 }; 86 87 /** 88 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion 89 * 90 * @mr: the region, or %NULL if empty 91 * @fv: the flat view of the address space the region is mapped in 92 * @offset_within_region: the beginning of the section, relative to @mr's start 93 * @size: the size of the section; will not exceed @mr's boundaries 94 * @offset_within_address_space: the address of the first byte of the section 95 * relative to the region's address space 96 * @readonly: writes to this section are ignored 97 * @nonvolatile: this section is non-volatile 98 */ 99 struct MemoryRegionSection { 100 Int128 size; 101 MemoryRegion *mr; 102 FlatView *fv; 103 hwaddr offset_within_region; 104 hwaddr offset_within_address_space; 105 bool readonly; 106 bool nonvolatile; 107 }; 108 109 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 110 111 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 112 typedef enum { 113 IOMMU_NONE = 0, 114 IOMMU_RO = 1, 115 IOMMU_WO = 2, 116 IOMMU_RW = 3, 117 } IOMMUAccessFlags; 118 119 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0)) 120 121 struct IOMMUTLBEntry { 122 AddressSpace *target_as; 123 hwaddr iova; 124 hwaddr translated_addr; 125 hwaddr addr_mask; /* 0xfff = 4k translation */ 126 IOMMUAccessFlags perm; 127 }; 128 129 /* 130 * Bitmap for different IOMMUNotifier capabilities. Each notifier can 131 * register with one or multiple IOMMU Notifier capability bit(s). 132 * 133 * Normally there're two use cases for the notifiers: 134 * 135 * (1) When the device needs accurate synchronizations of the vIOMMU page 136 * tables, it needs to register with both MAP|UNMAP notifies (which 137 * is defined as IOMMU_NOTIFIER_IOTLB_EVENTS below). 138 * 139 * Regarding to accurate synchronization, it's when the notified 140 * device maintains a shadow page table and must be notified on each 141 * guest MAP (page table entry creation) and UNMAP (invalidation) 142 * events (e.g. VFIO). Both notifications must be accurate so that 143 * the shadow page table is fully in sync with the guest view. 144 * 145 * (2) When the device doesn't need accurate synchronizations of the 146 * vIOMMU page tables, it needs to register only with UNMAP or 147 * DEVIOTLB_UNMAP notifies. 148 * 149 * It's when the device maintains a cache of IOMMU translations 150 * (IOTLB) and is able to fill that cache by requesting translations 151 * from the vIOMMU through a protocol similar to ATS (Address 152 * Translation Service). 153 * 154 * Note that in this mode the vIOMMU will not maintain a shadowed 155 * page table for the address space, and the UNMAP messages can cover 156 * more than the pages that used to get mapped. The IOMMU notifiee 157 * should be able to take care of over-sized invalidations. 158 */ 159 typedef enum { 160 IOMMU_NOTIFIER_NONE = 0, 161 /* Notify cache invalidations */ 162 IOMMU_NOTIFIER_UNMAP = 0x1, 163 /* Notify entry changes (newly created entries) */ 164 IOMMU_NOTIFIER_MAP = 0x2, 165 /* Notify changes on device IOTLB entries */ 166 IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04, 167 } IOMMUNotifierFlag; 168 169 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP) 170 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP 171 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \ 172 IOMMU_NOTIFIER_DEVIOTLB_EVENTS) 173 174 struct IOMMUNotifier; 175 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier, 176 IOMMUTLBEntry *data); 177 178 struct IOMMUNotifier { 179 IOMMUNotify notify; 180 IOMMUNotifierFlag notifier_flags; 181 /* Notify for address space range start <= addr <= end */ 182 hwaddr start; 183 hwaddr end; 184 int iommu_idx; 185 QLIST_ENTRY(IOMMUNotifier) node; 186 }; 187 typedef struct IOMMUNotifier IOMMUNotifier; 188 189 typedef struct IOMMUTLBEvent { 190 IOMMUNotifierFlag type; 191 IOMMUTLBEntry entry; 192 } IOMMUTLBEvent; 193 194 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ 195 #define RAM_PREALLOC (1 << 0) 196 197 /* RAM is mmap-ed with MAP_SHARED */ 198 #define RAM_SHARED (1 << 1) 199 200 /* Only a portion of RAM (used_length) is actually used, and migrated. 201 * Resizing RAM while migrating can result in the migration being canceled. 202 */ 203 #define RAM_RESIZEABLE (1 << 2) 204 205 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically 206 * zero the page and wake waiting processes. 207 * (Set during postcopy) 208 */ 209 #define RAM_UF_ZEROPAGE (1 << 3) 210 211 /* RAM can be migrated */ 212 #define RAM_MIGRATABLE (1 << 4) 213 214 /* RAM is a persistent kind memory */ 215 #define RAM_PMEM (1 << 5) 216 217 218 /* 219 * UFFDIO_WRITEPROTECT is used on this RAMBlock to 220 * support 'write-tracking' migration type. 221 * Implies ram_state->ram_wt_enabled. 222 */ 223 #define RAM_UF_WRITEPROTECT (1 << 6) 224 225 /* 226 * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge 227 * pages if applicable) is skipped: will bail out if not supported. When not 228 * set, the OS will do the reservation, if supported for the memory type. 229 */ 230 #define RAM_NORESERVE (1 << 7) 231 232 /* RAM that isn't accessible through normal means. */ 233 #define RAM_PROTECTED (1 << 8) 234 235 /* RAM is an mmap-ed named file */ 236 #define RAM_NAMED_FILE (1 << 9) 237 238 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn, 239 IOMMUNotifierFlag flags, 240 hwaddr start, hwaddr end, 241 int iommu_idx) 242 { 243 n->notify = fn; 244 n->notifier_flags = flags; 245 n->start = start; 246 n->end = end; 247 n->iommu_idx = iommu_idx; 248 } 249 250 /* 251 * Memory region callbacks 252 */ 253 struct MemoryRegionOps { 254 /* Read from the memory region. @addr is relative to @mr; @size is 255 * in bytes. */ 256 uint64_t (*read)(void *opaque, 257 hwaddr addr, 258 unsigned size); 259 /* Write to the memory region. @addr is relative to @mr; @size is 260 * in bytes. */ 261 void (*write)(void *opaque, 262 hwaddr addr, 263 uint64_t data, 264 unsigned size); 265 266 MemTxResult (*read_with_attrs)(void *opaque, 267 hwaddr addr, 268 uint64_t *data, 269 unsigned size, 270 MemTxAttrs attrs); 271 MemTxResult (*write_with_attrs)(void *opaque, 272 hwaddr addr, 273 uint64_t data, 274 unsigned size, 275 MemTxAttrs attrs); 276 277 enum device_endian endianness; 278 /* Guest-visible constraints: */ 279 struct { 280 /* If nonzero, specify bounds on access sizes beyond which a machine 281 * check is thrown. 282 */ 283 unsigned min_access_size; 284 unsigned max_access_size; 285 /* If true, unaligned accesses are supported. Otherwise unaligned 286 * accesses throw machine checks. 287 */ 288 bool unaligned; 289 /* 290 * If present, and returns #false, the transaction is not accepted 291 * by the device (and results in machine dependent behaviour such 292 * as a machine check exception). 293 */ 294 bool (*accepts)(void *opaque, hwaddr addr, 295 unsigned size, bool is_write, 296 MemTxAttrs attrs); 297 } valid; 298 /* Internal implementation constraints: */ 299 struct { 300 /* If nonzero, specifies the minimum size implemented. Smaller sizes 301 * will be rounded upwards and a partial result will be returned. 302 */ 303 unsigned min_access_size; 304 /* If nonzero, specifies the maximum size implemented. Larger sizes 305 * will be done as a series of accesses with smaller sizes. 306 */ 307 unsigned max_access_size; 308 /* If true, unaligned accesses are supported. Otherwise all accesses 309 * are converted to (possibly multiple) naturally aligned accesses. 310 */ 311 bool unaligned; 312 } impl; 313 }; 314 315 typedef struct MemoryRegionClass { 316 /* private */ 317 ObjectClass parent_class; 318 } MemoryRegionClass; 319 320 321 enum IOMMUMemoryRegionAttr { 322 IOMMU_ATTR_SPAPR_TCE_FD 323 }; 324 325 /* 326 * IOMMUMemoryRegionClass: 327 * 328 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION 329 * and provide an implementation of at least the @translate method here 330 * to handle requests to the memory region. Other methods are optional. 331 * 332 * The IOMMU implementation must use the IOMMU notifier infrastructure 333 * to report whenever mappings are changed, by calling 334 * memory_region_notify_iommu() (or, if necessary, by calling 335 * memory_region_notify_iommu_one() for each registered notifier). 336 * 337 * Conceptually an IOMMU provides a mapping from input address 338 * to an output TLB entry. If the IOMMU is aware of memory transaction 339 * attributes and the output TLB entry depends on the transaction 340 * attributes, we represent this using IOMMU indexes. Each index 341 * selects a particular translation table that the IOMMU has: 342 * 343 * @attrs_to_index returns the IOMMU index for a set of transaction attributes 344 * 345 * @translate takes an input address and an IOMMU index 346 * 347 * and the mapping returned can only depend on the input address and the 348 * IOMMU index. 349 * 350 * Most IOMMUs don't care about the transaction attributes and support 351 * only a single IOMMU index. A more complex IOMMU might have one index 352 * for secure transactions and one for non-secure transactions. 353 */ 354 struct IOMMUMemoryRegionClass { 355 /* private: */ 356 MemoryRegionClass parent_class; 357 358 /* public: */ 359 /** 360 * @translate: 361 * 362 * Return a TLB entry that contains a given address. 363 * 364 * The IOMMUAccessFlags indicated via @flag are optional and may 365 * be specified as IOMMU_NONE to indicate that the caller needs 366 * the full translation information for both reads and writes. If 367 * the access flags are specified then the IOMMU implementation 368 * may use this as an optimization, to stop doing a page table 369 * walk as soon as it knows that the requested permissions are not 370 * allowed. If IOMMU_NONE is passed then the IOMMU must do the 371 * full page table walk and report the permissions in the returned 372 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not 373 * return different mappings for reads and writes.) 374 * 375 * The returned information remains valid while the caller is 376 * holding the big QEMU lock or is inside an RCU critical section; 377 * if the caller wishes to cache the mapping beyond that it must 378 * register an IOMMU notifier so it can invalidate its cached 379 * information when the IOMMU mapping changes. 380 * 381 * @iommu: the IOMMUMemoryRegion 382 * 383 * @hwaddr: address to be translated within the memory region 384 * 385 * @flag: requested access permission 386 * 387 * @iommu_idx: IOMMU index for the translation 388 */ 389 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr, 390 IOMMUAccessFlags flag, int iommu_idx); 391 /** 392 * @get_min_page_size: 393 * 394 * Returns minimum supported page size in bytes. 395 * 396 * If this method is not provided then the minimum is assumed to 397 * be TARGET_PAGE_SIZE. 398 * 399 * @iommu: the IOMMUMemoryRegion 400 */ 401 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu); 402 /** 403 * @notify_flag_changed: 404 * 405 * Called when IOMMU Notifier flag changes (ie when the set of 406 * events which IOMMU users are requesting notification for changes). 407 * Optional method -- need not be provided if the IOMMU does not 408 * need to know exactly which events must be notified. 409 * 410 * @iommu: the IOMMUMemoryRegion 411 * 412 * @old_flags: events which previously needed to be notified 413 * 414 * @new_flags: events which now need to be notified 415 * 416 * Returns 0 on success, or a negative errno; in particular 417 * returns -EINVAL if the new flag bitmap is not supported by the 418 * IOMMU memory region. In case of failure, the error object 419 * must be created 420 */ 421 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu, 422 IOMMUNotifierFlag old_flags, 423 IOMMUNotifierFlag new_flags, 424 Error **errp); 425 /** 426 * @replay: 427 * 428 * Called to handle memory_region_iommu_replay(). 429 * 430 * The default implementation of memory_region_iommu_replay() is to 431 * call the IOMMU translate method for every page in the address space 432 * with flag == IOMMU_NONE and then call the notifier if translate 433 * returns a valid mapping. If this method is implemented then it 434 * overrides the default behaviour, and must provide the full semantics 435 * of memory_region_iommu_replay(), by calling @notifier for every 436 * translation present in the IOMMU. 437 * 438 * Optional method -- an IOMMU only needs to provide this method 439 * if the default is inefficient or produces undesirable side effects. 440 * 441 * Note: this is not related to record-and-replay functionality. 442 */ 443 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier); 444 445 /** 446 * @get_attr: 447 * 448 * Get IOMMU misc attributes. This is an optional method that 449 * can be used to allow users of the IOMMU to get implementation-specific 450 * information. The IOMMU implements this method to handle calls 451 * by IOMMU users to memory_region_iommu_get_attr() by filling in 452 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that 453 * the IOMMU supports. If the method is unimplemented then 454 * memory_region_iommu_get_attr() will always return -EINVAL. 455 * 456 * @iommu: the IOMMUMemoryRegion 457 * 458 * @attr: attribute being queried 459 * 460 * @data: memory to fill in with the attribute data 461 * 462 * Returns 0 on success, or a negative errno; in particular 463 * returns -EINVAL for unrecognized or unimplemented attribute types. 464 */ 465 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr, 466 void *data); 467 468 /** 469 * @attrs_to_index: 470 * 471 * Return the IOMMU index to use for a given set of transaction attributes. 472 * 473 * Optional method: if an IOMMU only supports a single IOMMU index then 474 * the default implementation of memory_region_iommu_attrs_to_index() 475 * will return 0. 476 * 477 * The indexes supported by an IOMMU must be contiguous, starting at 0. 478 * 479 * @iommu: the IOMMUMemoryRegion 480 * @attrs: memory transaction attributes 481 */ 482 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs); 483 484 /** 485 * @num_indexes: 486 * 487 * Return the number of IOMMU indexes this IOMMU supports. 488 * 489 * Optional method: if this method is not provided, then 490 * memory_region_iommu_num_indexes() will return 1, indicating that 491 * only a single IOMMU index is supported. 492 * 493 * @iommu: the IOMMUMemoryRegion 494 */ 495 int (*num_indexes)(IOMMUMemoryRegion *iommu); 496 497 /** 498 * @iommu_set_page_size_mask: 499 * 500 * Restrict the page size mask that can be supported with a given IOMMU 501 * memory region. Used for example to propagate host physical IOMMU page 502 * size mask limitations to the virtual IOMMU. 503 * 504 * Optional method: if this method is not provided, then the default global 505 * page mask is used. 506 * 507 * @iommu: the IOMMUMemoryRegion 508 * 509 * @page_size_mask: a bitmask of supported page sizes. At least one bit, 510 * representing the smallest page size, must be set. Additional set bits 511 * represent supported block sizes. For example a host physical IOMMU that 512 * uses page tables with a page size of 4kB, and supports 2MB and 4GB 513 * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate 514 * block sizes is specified with mask 0xfffffffffffff000. 515 * 516 * Returns 0 on success, or a negative error. In case of failure, the error 517 * object must be created. 518 */ 519 int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu, 520 uint64_t page_size_mask, 521 Error **errp); 522 }; 523 524 typedef struct RamDiscardListener RamDiscardListener; 525 typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl, 526 MemoryRegionSection *section); 527 typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl, 528 MemoryRegionSection *section); 529 530 struct RamDiscardListener { 531 /* 532 * @notify_populate: 533 * 534 * Notification that previously discarded memory is about to get populated. 535 * Listeners are able to object. If any listener objects, already 536 * successfully notified listeners are notified about a discard again. 537 * 538 * @rdl: the #RamDiscardListener getting notified 539 * @section: the #MemoryRegionSection to get populated. The section 540 * is aligned within the memory region to the minimum granularity 541 * unless it would exceed the registered section. 542 * 543 * Returns 0 on success. If the notification is rejected by the listener, 544 * an error is returned. 545 */ 546 NotifyRamPopulate notify_populate; 547 548 /* 549 * @notify_discard: 550 * 551 * Notification that previously populated memory was discarded successfully 552 * and listeners should drop all references to such memory and prevent 553 * new population (e.g., unmap). 554 * 555 * @rdl: the #RamDiscardListener getting notified 556 * @section: the #MemoryRegionSection to get populated. The section 557 * is aligned within the memory region to the minimum granularity 558 * unless it would exceed the registered section. 559 */ 560 NotifyRamDiscard notify_discard; 561 562 /* 563 * @double_discard_supported: 564 * 565 * The listener suppors getting @notify_discard notifications that span 566 * already discarded parts. 567 */ 568 bool double_discard_supported; 569 570 MemoryRegionSection *section; 571 QLIST_ENTRY(RamDiscardListener) next; 572 }; 573 574 static inline void ram_discard_listener_init(RamDiscardListener *rdl, 575 NotifyRamPopulate populate_fn, 576 NotifyRamDiscard discard_fn, 577 bool double_discard_supported) 578 { 579 rdl->notify_populate = populate_fn; 580 rdl->notify_discard = discard_fn; 581 rdl->double_discard_supported = double_discard_supported; 582 } 583 584 typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque); 585 typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque); 586 587 /* 588 * RamDiscardManagerClass: 589 * 590 * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion 591 * regions are currently populated to be used/accessed by the VM, notifying 592 * after parts were discarded (freeing up memory) and before parts will be 593 * populated (consuming memory), to be used/accessed by the VM. 594 * 595 * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the 596 * #MemoryRegion isn't mapped yet; it cannot change while the #MemoryRegion is 597 * mapped. 598 * 599 * The #RamDiscardManager is intended to be used by technologies that are 600 * incompatible with discarding of RAM (e.g., VFIO, which may pin all 601 * memory inside a #MemoryRegion), and require proper coordination to only 602 * map the currently populated parts, to hinder parts that are expected to 603 * remain discarded from silently getting populated and consuming memory. 604 * Technologies that support discarding of RAM don't have to bother and can 605 * simply map the whole #MemoryRegion. 606 * 607 * An example #RamDiscardManager is virtio-mem, which logically (un)plugs 608 * memory within an assigned RAM #MemoryRegion, coordinated with the VM. 609 * Logically unplugging memory consists of discarding RAM. The VM agreed to not 610 * access unplugged (discarded) memory - especially via DMA. virtio-mem will 611 * properly coordinate with listeners before memory is plugged (populated), 612 * and after memory is unplugged (discarded). 613 * 614 * Listeners are called in multiples of the minimum granularity (unless it 615 * would exceed the registered range) and changes are aligned to the minimum 616 * granularity within the #MemoryRegion. Listeners have to prepare for memory 617 * becoming discarded in a different granularity than it was populated and the 618 * other way around. 619 */ 620 struct RamDiscardManagerClass { 621 /* private */ 622 InterfaceClass parent_class; 623 624 /* public */ 625 626 /** 627 * @get_min_granularity: 628 * 629 * Get the minimum granularity in which listeners will get notified 630 * about changes within the #MemoryRegion via the #RamDiscardManager. 631 * 632 * @rdm: the #RamDiscardManager 633 * @mr: the #MemoryRegion 634 * 635 * Returns the minimum granularity. 636 */ 637 uint64_t (*get_min_granularity)(const RamDiscardManager *rdm, 638 const MemoryRegion *mr); 639 640 /** 641 * @is_populated: 642 * 643 * Check whether the given #MemoryRegionSection is completely populated 644 * (i.e., no parts are currently discarded) via the #RamDiscardManager. 645 * There are no alignment requirements. 646 * 647 * @rdm: the #RamDiscardManager 648 * @section: the #MemoryRegionSection 649 * 650 * Returns whether the given range is completely populated. 651 */ 652 bool (*is_populated)(const RamDiscardManager *rdm, 653 const MemoryRegionSection *section); 654 655 /** 656 * @replay_populated: 657 * 658 * Call the #ReplayRamPopulate callback for all populated parts within the 659 * #MemoryRegionSection via the #RamDiscardManager. 660 * 661 * In case any call fails, no further calls are made. 662 * 663 * @rdm: the #RamDiscardManager 664 * @section: the #MemoryRegionSection 665 * @replay_fn: the #ReplayRamPopulate callback 666 * @opaque: pointer to forward to the callback 667 * 668 * Returns 0 on success, or a negative error if any notification failed. 669 */ 670 int (*replay_populated)(const RamDiscardManager *rdm, 671 MemoryRegionSection *section, 672 ReplayRamPopulate replay_fn, void *opaque); 673 674 /** 675 * @replay_discarded: 676 * 677 * Call the #ReplayRamDiscard callback for all discarded parts within the 678 * #MemoryRegionSection via the #RamDiscardManager. 679 * 680 * @rdm: the #RamDiscardManager 681 * @section: the #MemoryRegionSection 682 * @replay_fn: the #ReplayRamDiscard callback 683 * @opaque: pointer to forward to the callback 684 */ 685 void (*replay_discarded)(const RamDiscardManager *rdm, 686 MemoryRegionSection *section, 687 ReplayRamDiscard replay_fn, void *opaque); 688 689 /** 690 * @register_listener: 691 * 692 * Register a #RamDiscardListener for the given #MemoryRegionSection and 693 * immediately notify the #RamDiscardListener about all populated parts 694 * within the #MemoryRegionSection via the #RamDiscardManager. 695 * 696 * In case any notification fails, no further notifications are triggered 697 * and an error is logged. 698 * 699 * @rdm: the #RamDiscardManager 700 * @rdl: the #RamDiscardListener 701 * @section: the #MemoryRegionSection 702 */ 703 void (*register_listener)(RamDiscardManager *rdm, 704 RamDiscardListener *rdl, 705 MemoryRegionSection *section); 706 707 /** 708 * @unregister_listener: 709 * 710 * Unregister a previously registered #RamDiscardListener via the 711 * #RamDiscardManager after notifying the #RamDiscardListener about all 712 * populated parts becoming unpopulated within the registered 713 * #MemoryRegionSection. 714 * 715 * @rdm: the #RamDiscardManager 716 * @rdl: the #RamDiscardListener 717 */ 718 void (*unregister_listener)(RamDiscardManager *rdm, 719 RamDiscardListener *rdl); 720 }; 721 722 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm, 723 const MemoryRegion *mr); 724 725 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm, 726 const MemoryRegionSection *section); 727 728 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm, 729 MemoryRegionSection *section, 730 ReplayRamPopulate replay_fn, 731 void *opaque); 732 733 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm, 734 MemoryRegionSection *section, 735 ReplayRamDiscard replay_fn, 736 void *opaque); 737 738 void ram_discard_manager_register_listener(RamDiscardManager *rdm, 739 RamDiscardListener *rdl, 740 MemoryRegionSection *section); 741 742 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm, 743 RamDiscardListener *rdl); 744 745 bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr, 746 ram_addr_t *ram_addr, bool *read_only, 747 bool *mr_has_discard_manager); 748 749 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 750 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 751 752 /** MemoryRegion: 753 * 754 * A struct representing a memory region. 755 */ 756 struct MemoryRegion { 757 Object parent_obj; 758 759 /* private: */ 760 761 /* The following fields should fit in a cache line */ 762 bool romd_mode; 763 bool ram; 764 bool subpage; 765 bool readonly; /* For RAM regions */ 766 bool nonvolatile; 767 bool rom_device; 768 bool flush_coalesced_mmio; 769 uint8_t dirty_log_mask; 770 bool is_iommu; 771 RAMBlock *ram_block; 772 Object *owner; 773 /* owner as TYPE_DEVICE. Used for re-entrancy checks in MR access hotpath */ 774 DeviceState *dev; 775 776 const MemoryRegionOps *ops; 777 void *opaque; 778 MemoryRegion *container; 779 int mapped_via_alias; /* Mapped via an alias, container might be NULL */ 780 Int128 size; 781 hwaddr addr; 782 void (*destructor)(MemoryRegion *mr); 783 uint64_t align; 784 bool terminates; 785 bool ram_device; 786 bool enabled; 787 bool warning_printed; /* For reservations */ 788 uint8_t vga_logging_count; 789 MemoryRegion *alias; 790 hwaddr alias_offset; 791 int32_t priority; 792 QTAILQ_HEAD(, MemoryRegion) subregions; 793 QTAILQ_ENTRY(MemoryRegion) subregions_link; 794 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced; 795 const char *name; 796 unsigned ioeventfd_nb; 797 MemoryRegionIoeventfd *ioeventfds; 798 RamDiscardManager *rdm; /* Only for RAM */ 799 800 /* For devices designed to perform re-entrant IO into their own IO MRs */ 801 bool disable_reentrancy_guard; 802 }; 803 804 struct IOMMUMemoryRegion { 805 MemoryRegion parent_obj; 806 807 QLIST_HEAD(, IOMMUNotifier) iommu_notify; 808 IOMMUNotifierFlag iommu_notify_flags; 809 }; 810 811 #define IOMMU_NOTIFIER_FOREACH(n, mr) \ 812 QLIST_FOREACH((n), &(mr)->iommu_notify, node) 813 814 #define MEMORY_LISTENER_PRIORITY_MIN 0 815 #define MEMORY_LISTENER_PRIORITY_ACCEL 10 816 #define MEMORY_LISTENER_PRIORITY_DEV_BACKEND 10 817 818 /** 819 * struct MemoryListener: callbacks structure for updates to the physical memory map 820 * 821 * Allows a component to adjust to changes in the guest-visible memory map. 822 * Use with memory_listener_register() and memory_listener_unregister(). 823 */ 824 struct MemoryListener { 825 /** 826 * @begin: 827 * 828 * Called at the beginning of an address space update transaction. 829 * Followed by calls to #MemoryListener.region_add(), 830 * #MemoryListener.region_del(), #MemoryListener.region_nop(), 831 * #MemoryListener.log_start() and #MemoryListener.log_stop() in 832 * increasing address order. 833 * 834 * @listener: The #MemoryListener. 835 */ 836 void (*begin)(MemoryListener *listener); 837 838 /** 839 * @commit: 840 * 841 * Called at the end of an address space update transaction, 842 * after the last call to #MemoryListener.region_add(), 843 * #MemoryListener.region_del() or #MemoryListener.region_nop(), 844 * #MemoryListener.log_start() and #MemoryListener.log_stop(). 845 * 846 * @listener: The #MemoryListener. 847 */ 848 void (*commit)(MemoryListener *listener); 849 850 /** 851 * @region_add: 852 * 853 * Called during an address space update transaction, 854 * for a section of the address space that is new in this address space 855 * space since the last transaction. 856 * 857 * @listener: The #MemoryListener. 858 * @section: The new #MemoryRegionSection. 859 */ 860 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 861 862 /** 863 * @region_del: 864 * 865 * Called during an address space update transaction, 866 * for a section of the address space that has disappeared in the address 867 * space since the last transaction. 868 * 869 * @listener: The #MemoryListener. 870 * @section: The old #MemoryRegionSection. 871 */ 872 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 873 874 /** 875 * @region_nop: 876 * 877 * Called during an address space update transaction, 878 * for a section of the address space that is in the same place in the address 879 * space as in the last transaction. 880 * 881 * @listener: The #MemoryListener. 882 * @section: The #MemoryRegionSection. 883 */ 884 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 885 886 /** 887 * @log_start: 888 * 889 * Called during an address space update transaction, after 890 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or 891 * #MemoryListener.region_nop(), if dirty memory logging clients have 892 * become active since the last transaction. 893 * 894 * @listener: The #MemoryListener. 895 * @section: The #MemoryRegionSection. 896 * @old: A bitmap of dirty memory logging clients that were active in 897 * the previous transaction. 898 * @new: A bitmap of dirty memory logging clients that are active in 899 * the current transaction. 900 */ 901 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 902 int old, int new); 903 904 /** 905 * @log_stop: 906 * 907 * Called during an address space update transaction, after 908 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or 909 * #MemoryListener.region_nop() and possibly after 910 * #MemoryListener.log_start(), if dirty memory logging clients have 911 * become inactive since the last transaction. 912 * 913 * @listener: The #MemoryListener. 914 * @section: The #MemoryRegionSection. 915 * @old: A bitmap of dirty memory logging clients that were active in 916 * the previous transaction. 917 * @new: A bitmap of dirty memory logging clients that are active in 918 * the current transaction. 919 */ 920 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 921 int old, int new); 922 923 /** 924 * @log_sync: 925 * 926 * Called by memory_region_snapshot_and_clear_dirty() and 927 * memory_global_dirty_log_sync(), before accessing QEMU's "official" 928 * copy of the dirty memory bitmap for a #MemoryRegionSection. 929 * 930 * @listener: The #MemoryListener. 931 * @section: The #MemoryRegionSection. 932 */ 933 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 934 935 /** 936 * @log_sync_global: 937 * 938 * This is the global version of @log_sync when the listener does 939 * not have a way to synchronize the log with finer granularity. 940 * When the listener registers with @log_sync_global defined, then 941 * its @log_sync must be NULL. Vice versa. 942 * 943 * @listener: The #MemoryListener. 944 * @last_stage: The last stage to synchronize the log during migration. 945 * The caller should guarantee that the synchronization with true for 946 * @last_stage is triggered for once after all VCPUs have been stopped. 947 */ 948 void (*log_sync_global)(MemoryListener *listener, bool last_stage); 949 950 /** 951 * @log_clear: 952 * 953 * Called before reading the dirty memory bitmap for a 954 * #MemoryRegionSection. 955 * 956 * @listener: The #MemoryListener. 957 * @section: The #MemoryRegionSection. 958 */ 959 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section); 960 961 /** 962 * @log_global_start: 963 * 964 * Called by memory_global_dirty_log_start(), which 965 * enables the %DIRTY_LOG_MIGRATION client on all memory regions in 966 * the address space. #MemoryListener.log_global_start() is also 967 * called when a #MemoryListener is added, if global dirty logging is 968 * active at that time. 969 * 970 * @listener: The #MemoryListener. 971 */ 972 void (*log_global_start)(MemoryListener *listener); 973 974 /** 975 * @log_global_stop: 976 * 977 * Called by memory_global_dirty_log_stop(), which 978 * disables the %DIRTY_LOG_MIGRATION client on all memory regions in 979 * the address space. 980 * 981 * @listener: The #MemoryListener. 982 */ 983 void (*log_global_stop)(MemoryListener *listener); 984 985 /** 986 * @log_global_after_sync: 987 * 988 * Called after reading the dirty memory bitmap 989 * for any #MemoryRegionSection. 990 * 991 * @listener: The #MemoryListener. 992 */ 993 void (*log_global_after_sync)(MemoryListener *listener); 994 995 /** 996 * @eventfd_add: 997 * 998 * Called during an address space update transaction, 999 * for a section of the address space that has had a new ioeventfd 1000 * registration since the last transaction. 1001 * 1002 * @listener: The #MemoryListener. 1003 * @section: The new #MemoryRegionSection. 1004 * @match_data: The @match_data parameter for the new ioeventfd. 1005 * @data: The @data parameter for the new ioeventfd. 1006 * @e: The #EventNotifier parameter for the new ioeventfd. 1007 */ 1008 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 1009 bool match_data, uint64_t data, EventNotifier *e); 1010 1011 /** 1012 * @eventfd_del: 1013 * 1014 * Called during an address space update transaction, 1015 * for a section of the address space that has dropped an ioeventfd 1016 * registration since the last transaction. 1017 * 1018 * @listener: The #MemoryListener. 1019 * @section: The new #MemoryRegionSection. 1020 * @match_data: The @match_data parameter for the dropped ioeventfd. 1021 * @data: The @data parameter for the dropped ioeventfd. 1022 * @e: The #EventNotifier parameter for the dropped ioeventfd. 1023 */ 1024 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 1025 bool match_data, uint64_t data, EventNotifier *e); 1026 1027 /** 1028 * @coalesced_io_add: 1029 * 1030 * Called during an address space update transaction, 1031 * for a section of the address space that has had a new coalesced 1032 * MMIO range registration since the last transaction. 1033 * 1034 * @listener: The #MemoryListener. 1035 * @section: The new #MemoryRegionSection. 1036 * @addr: The starting address for the coalesced MMIO range. 1037 * @len: The length of the coalesced MMIO range. 1038 */ 1039 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section, 1040 hwaddr addr, hwaddr len); 1041 1042 /** 1043 * @coalesced_io_del: 1044 * 1045 * Called during an address space update transaction, 1046 * for a section of the address space that has dropped a coalesced 1047 * MMIO range since the last transaction. 1048 * 1049 * @listener: The #MemoryListener. 1050 * @section: The new #MemoryRegionSection. 1051 * @addr: The starting address for the coalesced MMIO range. 1052 * @len: The length of the coalesced MMIO range. 1053 */ 1054 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section, 1055 hwaddr addr, hwaddr len); 1056 /** 1057 * @priority: 1058 * 1059 * Govern the order in which memory listeners are invoked. Lower priorities 1060 * are invoked earlier for "add" or "start" callbacks, and later for "delete" 1061 * or "stop" callbacks. 1062 */ 1063 unsigned priority; 1064 1065 /** 1066 * @name: 1067 * 1068 * Name of the listener. It can be used in contexts where we'd like to 1069 * identify one memory listener with the rest. 1070 */ 1071 const char *name; 1072 1073 /* private: */ 1074 AddressSpace *address_space; 1075 QTAILQ_ENTRY(MemoryListener) link; 1076 QTAILQ_ENTRY(MemoryListener) link_as; 1077 }; 1078 1079 /** 1080 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects 1081 */ 1082 struct AddressSpace { 1083 /* private: */ 1084 struct rcu_head rcu; 1085 char *name; 1086 MemoryRegion *root; 1087 1088 /* Accessed via RCU. */ 1089 struct FlatView *current_map; 1090 1091 int ioeventfd_nb; 1092 struct MemoryRegionIoeventfd *ioeventfds; 1093 QTAILQ_HEAD(, MemoryListener) listeners; 1094 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 1095 }; 1096 1097 typedef struct AddressSpaceDispatch AddressSpaceDispatch; 1098 typedef struct FlatRange FlatRange; 1099 1100 /* Flattened global view of current active memory hierarchy. Kept in sorted 1101 * order. 1102 */ 1103 struct FlatView { 1104 struct rcu_head rcu; 1105 unsigned ref; 1106 FlatRange *ranges; 1107 unsigned nr; 1108 unsigned nr_allocated; 1109 struct AddressSpaceDispatch *dispatch; 1110 MemoryRegion *root; 1111 }; 1112 1113 static inline FlatView *address_space_to_flatview(AddressSpace *as) 1114 { 1115 return qatomic_rcu_read(&as->current_map); 1116 } 1117 1118 /** 1119 * typedef flatview_cb: callback for flatview_for_each_range() 1120 * 1121 * @start: start address of the range within the FlatView 1122 * @len: length of the range in bytes 1123 * @mr: MemoryRegion covering this range 1124 * @offset_in_region: offset of the first byte of the range within @mr 1125 * @opaque: data pointer passed to flatview_for_each_range() 1126 * 1127 * Returns: true to stop the iteration, false to keep going. 1128 */ 1129 typedef bool (*flatview_cb)(Int128 start, 1130 Int128 len, 1131 const MemoryRegion *mr, 1132 hwaddr offset_in_region, 1133 void *opaque); 1134 1135 /** 1136 * flatview_for_each_range: Iterate through a FlatView 1137 * @fv: the FlatView to iterate through 1138 * @cb: function to call for each range 1139 * @opaque: opaque data pointer to pass to @cb 1140 * 1141 * A FlatView is made up of a list of non-overlapping ranges, each of 1142 * which is a slice of a MemoryRegion. This function iterates through 1143 * each range in @fv, calling @cb. The callback function can terminate 1144 * iteration early by returning 'true'. 1145 */ 1146 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque); 1147 1148 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a, 1149 MemoryRegionSection *b) 1150 { 1151 return a->mr == b->mr && 1152 a->fv == b->fv && 1153 a->offset_within_region == b->offset_within_region && 1154 a->offset_within_address_space == b->offset_within_address_space && 1155 int128_eq(a->size, b->size) && 1156 a->readonly == b->readonly && 1157 a->nonvolatile == b->nonvolatile; 1158 } 1159 1160 /** 1161 * memory_region_section_new_copy: Copy a memory region section 1162 * 1163 * Allocate memory for a new copy, copy the memory region section, and 1164 * properly take a reference on all relevant members. 1165 * 1166 * @s: the #MemoryRegionSection to copy 1167 */ 1168 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s); 1169 1170 /** 1171 * memory_region_section_new_copy: Free a copied memory region section 1172 * 1173 * Free a copy of a memory section created via memory_region_section_new_copy(). 1174 * properly dropping references on all relevant members. 1175 * 1176 * @s: the #MemoryRegionSection to copy 1177 */ 1178 void memory_region_section_free_copy(MemoryRegionSection *s); 1179 1180 /** 1181 * memory_region_init: Initialize a memory region 1182 * 1183 * The region typically acts as a container for other memory regions. Use 1184 * memory_region_add_subregion() to add subregions. 1185 * 1186 * @mr: the #MemoryRegion to be initialized 1187 * @owner: the object that tracks the region's reference count 1188 * @name: used for debugging; not visible to the user or ABI 1189 * @size: size of the region; any subregions beyond this size will be clipped 1190 */ 1191 void memory_region_init(MemoryRegion *mr, 1192 Object *owner, 1193 const char *name, 1194 uint64_t size); 1195 1196 /** 1197 * memory_region_ref: Add 1 to a memory region's reference count 1198 * 1199 * Whenever memory regions are accessed outside the BQL, they need to be 1200 * preserved against hot-unplug. MemoryRegions actually do not have their 1201 * own reference count; they piggyback on a QOM object, their "owner". 1202 * This function adds a reference to the owner. 1203 * 1204 * All MemoryRegions must have an owner if they can disappear, even if the 1205 * device they belong to operates exclusively under the BQL. This is because 1206 * the region could be returned at any time by memory_region_find, and this 1207 * is usually under guest control. 1208 * 1209 * @mr: the #MemoryRegion 1210 */ 1211 void memory_region_ref(MemoryRegion *mr); 1212 1213 /** 1214 * memory_region_unref: Remove 1 to a memory region's reference count 1215 * 1216 * Whenever memory regions are accessed outside the BQL, they need to be 1217 * preserved against hot-unplug. MemoryRegions actually do not have their 1218 * own reference count; they piggyback on a QOM object, their "owner". 1219 * This function removes a reference to the owner and possibly destroys it. 1220 * 1221 * @mr: the #MemoryRegion 1222 */ 1223 void memory_region_unref(MemoryRegion *mr); 1224 1225 /** 1226 * memory_region_init_io: Initialize an I/O memory region. 1227 * 1228 * Accesses into the region will cause the callbacks in @ops to be called. 1229 * if @size is nonzero, subregions will be clipped to @size. 1230 * 1231 * @mr: the #MemoryRegion to be initialized. 1232 * @owner: the object that tracks the region's reference count 1233 * @ops: a structure containing read and write callbacks to be used when 1234 * I/O is performed on the region. 1235 * @opaque: passed to the read and write callbacks of the @ops structure. 1236 * @name: used for debugging; not visible to the user or ABI 1237 * @size: size of the region. 1238 */ 1239 void memory_region_init_io(MemoryRegion *mr, 1240 Object *owner, 1241 const MemoryRegionOps *ops, 1242 void *opaque, 1243 const char *name, 1244 uint64_t size); 1245 1246 /** 1247 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses 1248 * into the region will modify memory 1249 * directly. 1250 * 1251 * @mr: the #MemoryRegion to be initialized. 1252 * @owner: the object that tracks the region's reference count 1253 * @name: Region name, becomes part of RAMBlock name used in migration stream 1254 * must be unique within any device 1255 * @size: size of the region. 1256 * @errp: pointer to Error*, to store an error if it happens. 1257 * 1258 * Note that this function does not do anything to cause the data in the 1259 * RAM memory region to be migrated; that is the responsibility of the caller. 1260 */ 1261 void memory_region_init_ram_nomigrate(MemoryRegion *mr, 1262 Object *owner, 1263 const char *name, 1264 uint64_t size, 1265 Error **errp); 1266 1267 /** 1268 * memory_region_init_ram_flags_nomigrate: Initialize RAM memory region. 1269 * Accesses into the region will 1270 * modify memory directly. 1271 * 1272 * @mr: the #MemoryRegion to be initialized. 1273 * @owner: the object that tracks the region's reference count 1274 * @name: Region name, becomes part of RAMBlock name used in migration stream 1275 * must be unique within any device 1276 * @size: size of the region. 1277 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE. 1278 * @errp: pointer to Error*, to store an error if it happens. 1279 * 1280 * Note that this function does not do anything to cause the data in the 1281 * RAM memory region to be migrated; that is the responsibility of the caller. 1282 */ 1283 void memory_region_init_ram_flags_nomigrate(MemoryRegion *mr, 1284 Object *owner, 1285 const char *name, 1286 uint64_t size, 1287 uint32_t ram_flags, 1288 Error **errp); 1289 1290 /** 1291 * memory_region_init_resizeable_ram: Initialize memory region with resizable 1292 * RAM. Accesses into the region will 1293 * modify memory directly. Only an initial 1294 * portion of this RAM is actually used. 1295 * Changing the size while migrating 1296 * can result in the migration being 1297 * canceled. 1298 * 1299 * @mr: the #MemoryRegion to be initialized. 1300 * @owner: the object that tracks the region's reference count 1301 * @name: Region name, becomes part of RAMBlock name used in migration stream 1302 * must be unique within any device 1303 * @size: used size of the region. 1304 * @max_size: max size of the region. 1305 * @resized: callback to notify owner about used size change. 1306 * @errp: pointer to Error*, to store an error if it happens. 1307 * 1308 * Note that this function does not do anything to cause the data in the 1309 * RAM memory region to be migrated; that is the responsibility of the caller. 1310 */ 1311 void memory_region_init_resizeable_ram(MemoryRegion *mr, 1312 Object *owner, 1313 const char *name, 1314 uint64_t size, 1315 uint64_t max_size, 1316 void (*resized)(const char*, 1317 uint64_t length, 1318 void *host), 1319 Error **errp); 1320 #ifdef CONFIG_POSIX 1321 1322 /** 1323 * memory_region_init_ram_from_file: Initialize RAM memory region with a 1324 * mmap-ed backend. 1325 * 1326 * @mr: the #MemoryRegion to be initialized. 1327 * @owner: the object that tracks the region's reference count 1328 * @name: Region name, becomes part of RAMBlock name used in migration stream 1329 * must be unique within any device 1330 * @size: size of the region. 1331 * @align: alignment of the region base address; if 0, the default alignment 1332 * (getpagesize()) will be used. 1333 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM, 1334 * RAM_NORESERVE, 1335 * @path: the path in which to allocate the RAM. 1336 * @offset: offset within the file referenced by path 1337 * @readonly: true to open @path for reading, false for read/write. 1338 * @errp: pointer to Error*, to store an error if it happens. 1339 * 1340 * Note that this function does not do anything to cause the data in the 1341 * RAM memory region to be migrated; that is the responsibility of the caller. 1342 */ 1343 void memory_region_init_ram_from_file(MemoryRegion *mr, 1344 Object *owner, 1345 const char *name, 1346 uint64_t size, 1347 uint64_t align, 1348 uint32_t ram_flags, 1349 const char *path, 1350 ram_addr_t offset, 1351 bool readonly, 1352 Error **errp); 1353 1354 /** 1355 * memory_region_init_ram_from_fd: Initialize RAM memory region with a 1356 * mmap-ed backend. 1357 * 1358 * @mr: the #MemoryRegion to be initialized. 1359 * @owner: the object that tracks the region's reference count 1360 * @name: the name of the region. 1361 * @size: size of the region. 1362 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM, 1363 * RAM_NORESERVE, RAM_PROTECTED. 1364 * @fd: the fd to mmap. 1365 * @offset: offset within the file referenced by fd 1366 * @errp: pointer to Error*, to store an error if it happens. 1367 * 1368 * Note that this function does not do anything to cause the data in the 1369 * RAM memory region to be migrated; that is the responsibility of the caller. 1370 */ 1371 void memory_region_init_ram_from_fd(MemoryRegion *mr, 1372 Object *owner, 1373 const char *name, 1374 uint64_t size, 1375 uint32_t ram_flags, 1376 int fd, 1377 ram_addr_t offset, 1378 Error **errp); 1379 #endif 1380 1381 /** 1382 * memory_region_init_ram_ptr: Initialize RAM memory region from a 1383 * user-provided pointer. Accesses into the 1384 * region will modify memory directly. 1385 * 1386 * @mr: the #MemoryRegion to be initialized. 1387 * @owner: the object that tracks the region's reference count 1388 * @name: Region name, becomes part of RAMBlock name used in migration stream 1389 * must be unique within any device 1390 * @size: size of the region. 1391 * @ptr: memory to be mapped; must contain at least @size bytes. 1392 * 1393 * Note that this function does not do anything to cause the data in the 1394 * RAM memory region to be migrated; that is the responsibility of the caller. 1395 */ 1396 void memory_region_init_ram_ptr(MemoryRegion *mr, 1397 Object *owner, 1398 const char *name, 1399 uint64_t size, 1400 void *ptr); 1401 1402 /** 1403 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from 1404 * a user-provided pointer. 1405 * 1406 * A RAM device represents a mapping to a physical device, such as to a PCI 1407 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped 1408 * into the VM address space and access to the region will modify memory 1409 * directly. However, the memory region should not be included in a memory 1410 * dump (device may not be enabled/mapped at the time of the dump), and 1411 * operations incompatible with manipulating MMIO should be avoided. Replaces 1412 * skip_dump flag. 1413 * 1414 * @mr: the #MemoryRegion to be initialized. 1415 * @owner: the object that tracks the region's reference count 1416 * @name: the name of the region. 1417 * @size: size of the region. 1418 * @ptr: memory to be mapped; must contain at least @size bytes. 1419 * 1420 * Note that this function does not do anything to cause the data in the 1421 * RAM memory region to be migrated; that is the responsibility of the caller. 1422 * (For RAM device memory regions, migrating the contents rarely makes sense.) 1423 */ 1424 void memory_region_init_ram_device_ptr(MemoryRegion *mr, 1425 Object *owner, 1426 const char *name, 1427 uint64_t size, 1428 void *ptr); 1429 1430 /** 1431 * memory_region_init_alias: Initialize a memory region that aliases all or a 1432 * part of another memory region. 1433 * 1434 * @mr: the #MemoryRegion to be initialized. 1435 * @owner: the object that tracks the region's reference count 1436 * @name: used for debugging; not visible to the user or ABI 1437 * @orig: the region to be referenced; @mr will be equivalent to 1438 * @orig between @offset and @offset + @size - 1. 1439 * @offset: start of the section in @orig to be referenced. 1440 * @size: size of the region. 1441 */ 1442 void memory_region_init_alias(MemoryRegion *mr, 1443 Object *owner, 1444 const char *name, 1445 MemoryRegion *orig, 1446 hwaddr offset, 1447 uint64_t size); 1448 1449 /** 1450 * memory_region_init_rom_nomigrate: Initialize a ROM memory region. 1451 * 1452 * This has the same effect as calling memory_region_init_ram_nomigrate() 1453 * and then marking the resulting region read-only with 1454 * memory_region_set_readonly(). 1455 * 1456 * Note that this function does not do anything to cause the data in the 1457 * RAM side of the memory region to be migrated; that is the responsibility 1458 * of the caller. 1459 * 1460 * @mr: the #MemoryRegion to be initialized. 1461 * @owner: the object that tracks the region's reference count 1462 * @name: Region name, becomes part of RAMBlock name used in migration stream 1463 * must be unique within any device 1464 * @size: size of the region. 1465 * @errp: pointer to Error*, to store an error if it happens. 1466 */ 1467 void memory_region_init_rom_nomigrate(MemoryRegion *mr, 1468 Object *owner, 1469 const char *name, 1470 uint64_t size, 1471 Error **errp); 1472 1473 /** 1474 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region. 1475 * Writes are handled via callbacks. 1476 * 1477 * Note that this function does not do anything to cause the data in the 1478 * RAM side of the memory region to be migrated; that is the responsibility 1479 * of the caller. 1480 * 1481 * @mr: the #MemoryRegion to be initialized. 1482 * @owner: the object that tracks the region's reference count 1483 * @ops: callbacks for write access handling (must not be NULL). 1484 * @opaque: passed to the read and write callbacks of the @ops structure. 1485 * @name: Region name, becomes part of RAMBlock name used in migration stream 1486 * must be unique within any device 1487 * @size: size of the region. 1488 * @errp: pointer to Error*, to store an error if it happens. 1489 */ 1490 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr, 1491 Object *owner, 1492 const MemoryRegionOps *ops, 1493 void *opaque, 1494 const char *name, 1495 uint64_t size, 1496 Error **errp); 1497 1498 /** 1499 * memory_region_init_iommu: Initialize a memory region of a custom type 1500 * that translates addresses 1501 * 1502 * An IOMMU region translates addresses and forwards accesses to a target 1503 * memory region. 1504 * 1505 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION. 1506 * @_iommu_mr should be a pointer to enough memory for an instance of 1507 * that subclass, @instance_size is the size of that subclass, and 1508 * @mrtypename is its name. This function will initialize @_iommu_mr as an 1509 * instance of the subclass, and its methods will then be called to handle 1510 * accesses to the memory region. See the documentation of 1511 * #IOMMUMemoryRegionClass for further details. 1512 * 1513 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized 1514 * @instance_size: the IOMMUMemoryRegion subclass instance size 1515 * @mrtypename: the type name of the #IOMMUMemoryRegion 1516 * @owner: the object that tracks the region's reference count 1517 * @name: used for debugging; not visible to the user or ABI 1518 * @size: size of the region. 1519 */ 1520 void memory_region_init_iommu(void *_iommu_mr, 1521 size_t instance_size, 1522 const char *mrtypename, 1523 Object *owner, 1524 const char *name, 1525 uint64_t size); 1526 1527 /** 1528 * memory_region_init_ram - Initialize RAM memory region. Accesses into the 1529 * region will modify memory directly. 1530 * 1531 * @mr: the #MemoryRegion to be initialized 1532 * @owner: the object that tracks the region's reference count (must be 1533 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL) 1534 * @name: name of the memory region 1535 * @size: size of the region in bytes 1536 * @errp: pointer to Error*, to store an error if it happens. 1537 * 1538 * This function allocates RAM for a board model or device, and 1539 * arranges for it to be migrated (by calling vmstate_register_ram() 1540 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1541 * @owner is NULL). 1542 * 1543 * TODO: Currently we restrict @owner to being either NULL (for 1544 * global RAM regions with no owner) or devices, so that we can 1545 * give the RAM block a unique name for migration purposes. 1546 * We should lift this restriction and allow arbitrary Objects. 1547 * If you pass a non-NULL non-device @owner then we will assert. 1548 */ 1549 void memory_region_init_ram(MemoryRegion *mr, 1550 Object *owner, 1551 const char *name, 1552 uint64_t size, 1553 Error **errp); 1554 1555 /** 1556 * memory_region_init_rom: Initialize a ROM memory region. 1557 * 1558 * This has the same effect as calling memory_region_init_ram() 1559 * and then marking the resulting region read-only with 1560 * memory_region_set_readonly(). This includes arranging for the 1561 * contents to be migrated. 1562 * 1563 * TODO: Currently we restrict @owner to being either NULL (for 1564 * global RAM regions with no owner) or devices, so that we can 1565 * give the RAM block a unique name for migration purposes. 1566 * We should lift this restriction and allow arbitrary Objects. 1567 * If you pass a non-NULL non-device @owner then we will assert. 1568 * 1569 * @mr: the #MemoryRegion to be initialized. 1570 * @owner: the object that tracks the region's reference count 1571 * @name: Region name, becomes part of RAMBlock name used in migration stream 1572 * must be unique within any device 1573 * @size: size of the region. 1574 * @errp: pointer to Error*, to store an error if it happens. 1575 */ 1576 void memory_region_init_rom(MemoryRegion *mr, 1577 Object *owner, 1578 const char *name, 1579 uint64_t size, 1580 Error **errp); 1581 1582 /** 1583 * memory_region_init_rom_device: Initialize a ROM memory region. 1584 * Writes are handled via callbacks. 1585 * 1586 * This function initializes a memory region backed by RAM for reads 1587 * and callbacks for writes, and arranges for the RAM backing to 1588 * be migrated (by calling vmstate_register_ram() 1589 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1590 * @owner is NULL). 1591 * 1592 * TODO: Currently we restrict @owner to being either NULL (for 1593 * global RAM regions with no owner) or devices, so that we can 1594 * give the RAM block a unique name for migration purposes. 1595 * We should lift this restriction and allow arbitrary Objects. 1596 * If you pass a non-NULL non-device @owner then we will assert. 1597 * 1598 * @mr: the #MemoryRegion to be initialized. 1599 * @owner: the object that tracks the region's reference count 1600 * @ops: callbacks for write access handling (must not be NULL). 1601 * @opaque: passed to the read and write callbacks of the @ops structure. 1602 * @name: Region name, becomes part of RAMBlock name used in migration stream 1603 * must be unique within any device 1604 * @size: size of the region. 1605 * @errp: pointer to Error*, to store an error if it happens. 1606 */ 1607 void memory_region_init_rom_device(MemoryRegion *mr, 1608 Object *owner, 1609 const MemoryRegionOps *ops, 1610 void *opaque, 1611 const char *name, 1612 uint64_t size, 1613 Error **errp); 1614 1615 1616 /** 1617 * memory_region_owner: get a memory region's owner. 1618 * 1619 * @mr: the memory region being queried. 1620 */ 1621 Object *memory_region_owner(MemoryRegion *mr); 1622 1623 /** 1624 * memory_region_size: get a memory region's size. 1625 * 1626 * @mr: the memory region being queried. 1627 */ 1628 uint64_t memory_region_size(MemoryRegion *mr); 1629 1630 /** 1631 * memory_region_is_ram: check whether a memory region is random access 1632 * 1633 * Returns %true if a memory region is random access. 1634 * 1635 * @mr: the memory region being queried 1636 */ 1637 static inline bool memory_region_is_ram(MemoryRegion *mr) 1638 { 1639 return mr->ram; 1640 } 1641 1642 /** 1643 * memory_region_is_ram_device: check whether a memory region is a ram device 1644 * 1645 * Returns %true if a memory region is a device backed ram region 1646 * 1647 * @mr: the memory region being queried 1648 */ 1649 bool memory_region_is_ram_device(MemoryRegion *mr); 1650 1651 /** 1652 * memory_region_is_romd: check whether a memory region is in ROMD mode 1653 * 1654 * Returns %true if a memory region is a ROM device and currently set to allow 1655 * direct reads. 1656 * 1657 * @mr: the memory region being queried 1658 */ 1659 static inline bool memory_region_is_romd(MemoryRegion *mr) 1660 { 1661 return mr->rom_device && mr->romd_mode; 1662 } 1663 1664 /** 1665 * memory_region_is_protected: check whether a memory region is protected 1666 * 1667 * Returns %true if a memory region is protected RAM and cannot be accessed 1668 * via standard mechanisms, e.g. DMA. 1669 * 1670 * @mr: the memory region being queried 1671 */ 1672 bool memory_region_is_protected(MemoryRegion *mr); 1673 1674 /** 1675 * memory_region_get_iommu: check whether a memory region is an iommu 1676 * 1677 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu, 1678 * otherwise NULL. 1679 * 1680 * @mr: the memory region being queried 1681 */ 1682 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr) 1683 { 1684 if (mr->alias) { 1685 return memory_region_get_iommu(mr->alias); 1686 } 1687 if (mr->is_iommu) { 1688 return (IOMMUMemoryRegion *) mr; 1689 } 1690 return NULL; 1691 } 1692 1693 /** 1694 * memory_region_get_iommu_class_nocheck: returns iommu memory region class 1695 * if an iommu or NULL if not 1696 * 1697 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu, 1698 * otherwise NULL. This is fast path avoiding QOM checking, use with caution. 1699 * 1700 * @iommu_mr: the memory region being queried 1701 */ 1702 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck( 1703 IOMMUMemoryRegion *iommu_mr) 1704 { 1705 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class); 1706 } 1707 1708 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL) 1709 1710 /** 1711 * memory_region_iommu_get_min_page_size: get minimum supported page size 1712 * for an iommu 1713 * 1714 * Returns minimum supported page size for an iommu. 1715 * 1716 * @iommu_mr: the memory region being queried 1717 */ 1718 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr); 1719 1720 /** 1721 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 1722 * 1723 * Note: for any IOMMU implementation, an in-place mapping change 1724 * should be notified with an UNMAP followed by a MAP. 1725 * 1726 * @iommu_mr: the memory region that was changed 1727 * @iommu_idx: the IOMMU index for the translation table which has changed 1728 * @event: TLB event with the new entry in the IOMMU translation table. 1729 * The entry replaces all old entries for the same virtual I/O address 1730 * range. 1731 */ 1732 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr, 1733 int iommu_idx, 1734 IOMMUTLBEvent event); 1735 1736 /** 1737 * memory_region_notify_iommu_one: notify a change in an IOMMU translation 1738 * entry to a single notifier 1739 * 1740 * This works just like memory_region_notify_iommu(), but it only 1741 * notifies a specific notifier, not all of them. 1742 * 1743 * @notifier: the notifier to be notified 1744 * @event: TLB event with the new entry in the IOMMU translation table. 1745 * The entry replaces all old entries for the same virtual I/O address 1746 * range. 1747 */ 1748 void memory_region_notify_iommu_one(IOMMUNotifier *notifier, 1749 IOMMUTLBEvent *event); 1750 1751 /** 1752 * memory_region_unmap_iommu_notifier_range: notify a unmap for an IOMMU 1753 * translation that covers the 1754 * range of a notifier 1755 * 1756 * @notifier: the notifier to be notified 1757 */ 1758 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier); 1759 1760 1761 /** 1762 * memory_region_register_iommu_notifier: register a notifier for changes to 1763 * IOMMU translation entries. 1764 * 1765 * Returns 0 on success, or a negative errno otherwise. In particular, 1766 * -EINVAL indicates that at least one of the attributes of the notifier 1767 * is not supported (flag/range) by the IOMMU memory region. In case of error 1768 * the error object must be created. 1769 * 1770 * @mr: the memory region to observe 1771 * @n: the IOMMUNotifier to be added; the notify callback receives a 1772 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer 1773 * ceases to be valid on exit from the notifier. 1774 * @errp: pointer to Error*, to store an error if it happens. 1775 */ 1776 int memory_region_register_iommu_notifier(MemoryRegion *mr, 1777 IOMMUNotifier *n, Error **errp); 1778 1779 /** 1780 * memory_region_iommu_replay: replay existing IOMMU translations to 1781 * a notifier with the minimum page granularity returned by 1782 * mr->iommu_ops->get_page_size(). 1783 * 1784 * Note: this is not related to record-and-replay functionality. 1785 * 1786 * @iommu_mr: the memory region to observe 1787 * @n: the notifier to which to replay iommu mappings 1788 */ 1789 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n); 1790 1791 /** 1792 * memory_region_unregister_iommu_notifier: unregister a notifier for 1793 * changes to IOMMU translation entries. 1794 * 1795 * @mr: the memory region which was observed and for which notity_stopped() 1796 * needs to be called 1797 * @n: the notifier to be removed. 1798 */ 1799 void memory_region_unregister_iommu_notifier(MemoryRegion *mr, 1800 IOMMUNotifier *n); 1801 1802 /** 1803 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is 1804 * defined on the IOMMU. 1805 * 1806 * Returns 0 on success, or a negative errno otherwise. In particular, 1807 * -EINVAL indicates that the IOMMU does not support the requested 1808 * attribute. 1809 * 1810 * @iommu_mr: the memory region 1811 * @attr: the requested attribute 1812 * @data: a pointer to the requested attribute data 1813 */ 1814 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr, 1815 enum IOMMUMemoryRegionAttr attr, 1816 void *data); 1817 1818 /** 1819 * memory_region_iommu_attrs_to_index: return the IOMMU index to 1820 * use for translations with the given memory transaction attributes. 1821 * 1822 * @iommu_mr: the memory region 1823 * @attrs: the memory transaction attributes 1824 */ 1825 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr, 1826 MemTxAttrs attrs); 1827 1828 /** 1829 * memory_region_iommu_num_indexes: return the total number of IOMMU 1830 * indexes that this IOMMU supports. 1831 * 1832 * @iommu_mr: the memory region 1833 */ 1834 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr); 1835 1836 /** 1837 * memory_region_iommu_set_page_size_mask: set the supported page 1838 * sizes for a given IOMMU memory region 1839 * 1840 * @iommu_mr: IOMMU memory region 1841 * @page_size_mask: supported page size mask 1842 * @errp: pointer to Error*, to store an error if it happens. 1843 */ 1844 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr, 1845 uint64_t page_size_mask, 1846 Error **errp); 1847 1848 /** 1849 * memory_region_name: get a memory region's name 1850 * 1851 * Returns the string that was used to initialize the memory region. 1852 * 1853 * @mr: the memory region being queried 1854 */ 1855 const char *memory_region_name(const MemoryRegion *mr); 1856 1857 /** 1858 * memory_region_is_logging: return whether a memory region is logging writes 1859 * 1860 * Returns %true if the memory region is logging writes for the given client 1861 * 1862 * @mr: the memory region being queried 1863 * @client: the client being queried 1864 */ 1865 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 1866 1867 /** 1868 * memory_region_get_dirty_log_mask: return the clients for which a 1869 * memory region is logging writes. 1870 * 1871 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 1872 * are the bit indices. 1873 * 1874 * @mr: the memory region being queried 1875 */ 1876 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 1877 1878 /** 1879 * memory_region_is_rom: check whether a memory region is ROM 1880 * 1881 * Returns %true if a memory region is read-only memory. 1882 * 1883 * @mr: the memory region being queried 1884 */ 1885 static inline bool memory_region_is_rom(MemoryRegion *mr) 1886 { 1887 return mr->ram && mr->readonly; 1888 } 1889 1890 /** 1891 * memory_region_is_nonvolatile: check whether a memory region is non-volatile 1892 * 1893 * Returns %true is a memory region is non-volatile memory. 1894 * 1895 * @mr: the memory region being queried 1896 */ 1897 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr) 1898 { 1899 return mr->nonvolatile; 1900 } 1901 1902 /** 1903 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 1904 * 1905 * Returns a file descriptor backing a file-based RAM memory region, 1906 * or -1 if the region is not a file-based RAM memory region. 1907 * 1908 * @mr: the RAM or alias memory region being queried. 1909 */ 1910 int memory_region_get_fd(MemoryRegion *mr); 1911 1912 /** 1913 * memory_region_from_host: Convert a pointer into a RAM memory region 1914 * and an offset within it. 1915 * 1916 * Given a host pointer inside a RAM memory region (created with 1917 * memory_region_init_ram() or memory_region_init_ram_ptr()), return 1918 * the MemoryRegion and the offset within it. 1919 * 1920 * Use with care; by the time this function returns, the returned pointer is 1921 * not protected by RCU anymore. If the caller is not within an RCU critical 1922 * section and does not hold the iothread lock, it must have other means of 1923 * protecting the pointer, such as a reference to the region that includes 1924 * the incoming ram_addr_t. 1925 * 1926 * @ptr: the host pointer to be converted 1927 * @offset: the offset within memory region 1928 */ 1929 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset); 1930 1931 /** 1932 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 1933 * 1934 * Returns a host pointer to a RAM memory region (created with 1935 * memory_region_init_ram() or memory_region_init_ram_ptr()). 1936 * 1937 * Use with care; by the time this function returns, the returned pointer is 1938 * not protected by RCU anymore. If the caller is not within an RCU critical 1939 * section and does not hold the iothread lock, it must have other means of 1940 * protecting the pointer, such as a reference to the region that includes 1941 * the incoming ram_addr_t. 1942 * 1943 * @mr: the memory region being queried. 1944 */ 1945 void *memory_region_get_ram_ptr(MemoryRegion *mr); 1946 1947 /* memory_region_ram_resize: Resize a RAM region. 1948 * 1949 * Resizing RAM while migrating can result in the migration being canceled. 1950 * Care has to be taken if the guest might have already detected the memory. 1951 * 1952 * @mr: a memory region created with @memory_region_init_resizeable_ram. 1953 * @newsize: the new size the region 1954 * @errp: pointer to Error*, to store an error if it happens. 1955 */ 1956 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 1957 Error **errp); 1958 1959 /** 1960 * memory_region_msync: Synchronize selected address range of 1961 * a memory mapped region 1962 * 1963 * @mr: the memory region to be msync 1964 * @addr: the initial address of the range to be sync 1965 * @size: the size of the range to be sync 1966 */ 1967 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size); 1968 1969 /** 1970 * memory_region_writeback: Trigger cache writeback for 1971 * selected address range 1972 * 1973 * @mr: the memory region to be updated 1974 * @addr: the initial address of the range to be written back 1975 * @size: the size of the range to be written back 1976 */ 1977 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size); 1978 1979 /** 1980 * memory_region_set_log: Turn dirty logging on or off for a region. 1981 * 1982 * Turns dirty logging on or off for a specified client (display, migration). 1983 * Only meaningful for RAM regions. 1984 * 1985 * @mr: the memory region being updated. 1986 * @log: whether dirty logging is to be enabled or disabled. 1987 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 1988 */ 1989 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 1990 1991 /** 1992 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 1993 * 1994 * Marks a range of bytes as dirty, after it has been dirtied outside 1995 * guest code. 1996 * 1997 * @mr: the memory region being dirtied. 1998 * @addr: the address (relative to the start of the region) being dirtied. 1999 * @size: size of the range being dirtied. 2000 */ 2001 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 2002 hwaddr size); 2003 2004 /** 2005 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range 2006 * 2007 * This function is called when the caller wants to clear the remote 2008 * dirty bitmap of a memory range within the memory region. This can 2009 * be used by e.g. KVM to manually clear dirty log when 2010 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host 2011 * kernel. 2012 * 2013 * @mr: the memory region to clear the dirty log upon 2014 * @start: start address offset within the memory region 2015 * @len: length of the memory region to clear dirty bitmap 2016 */ 2017 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start, 2018 hwaddr len); 2019 2020 /** 2021 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty 2022 * bitmap and clear it. 2023 * 2024 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and 2025 * returns the snapshot. The snapshot can then be used to query dirty 2026 * status, using memory_region_snapshot_get_dirty. Snapshotting allows 2027 * querying the same page multiple times, which is especially useful for 2028 * display updates where the scanlines often are not page aligned. 2029 * 2030 * The dirty bitmap region which gets copied into the snapshot (and 2031 * cleared afterwards) can be larger than requested. The boundaries 2032 * are rounded up/down so complete bitmap longs (covering 64 pages on 2033 * 64bit hosts) can be copied over into the bitmap snapshot. Which 2034 * isn't a problem for display updates as the extra pages are outside 2035 * the visible area, and in case the visible area changes a full 2036 * display redraw is due anyway. Should other use cases for this 2037 * function emerge we might have to revisit this implementation 2038 * detail. 2039 * 2040 * Use g_free to release DirtyBitmapSnapshot. 2041 * 2042 * @mr: the memory region being queried. 2043 * @addr: the address (relative to the start of the region) being queried. 2044 * @size: the size of the range being queried. 2045 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA. 2046 */ 2047 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr, 2048 hwaddr addr, 2049 hwaddr size, 2050 unsigned client); 2051 2052 /** 2053 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty 2054 * in the specified dirty bitmap snapshot. 2055 * 2056 * @mr: the memory region being queried. 2057 * @snap: the dirty bitmap snapshot 2058 * @addr: the address (relative to the start of the region) being queried. 2059 * @size: the size of the range being queried. 2060 */ 2061 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, 2062 DirtyBitmapSnapshot *snap, 2063 hwaddr addr, hwaddr size); 2064 2065 /** 2066 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 2067 * client. 2068 * 2069 * Marks a range of pages as no longer dirty. 2070 * 2071 * @mr: the region being updated. 2072 * @addr: the start of the subrange being cleaned. 2073 * @size: the size of the subrange being cleaned. 2074 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 2075 * %DIRTY_MEMORY_VGA. 2076 */ 2077 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 2078 hwaddr size, unsigned client); 2079 2080 /** 2081 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate 2082 * TBs (for self-modifying code). 2083 * 2084 * The MemoryRegionOps->write() callback of a ROM device must use this function 2085 * to mark byte ranges that have been modified internally, such as by directly 2086 * accessing the memory returned by memory_region_get_ram_ptr(). 2087 * 2088 * This function marks the range dirty and invalidates TBs so that TCG can 2089 * detect self-modifying code. 2090 * 2091 * @mr: the region being flushed. 2092 * @addr: the start, relative to the start of the region, of the range being 2093 * flushed. 2094 * @size: the size, in bytes, of the range being flushed. 2095 */ 2096 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size); 2097 2098 /** 2099 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 2100 * 2101 * Allows a memory region to be marked as read-only (turning it into a ROM). 2102 * only useful on RAM regions. 2103 * 2104 * @mr: the region being updated. 2105 * @readonly: whether rhe region is to be ROM or RAM. 2106 */ 2107 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 2108 2109 /** 2110 * memory_region_set_nonvolatile: Turn a memory region non-volatile 2111 * 2112 * Allows a memory region to be marked as non-volatile. 2113 * only useful on RAM regions. 2114 * 2115 * @mr: the region being updated. 2116 * @nonvolatile: whether rhe region is to be non-volatile. 2117 */ 2118 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile); 2119 2120 /** 2121 * memory_region_rom_device_set_romd: enable/disable ROMD mode 2122 * 2123 * Allows a ROM device (initialized with memory_region_init_rom_device() to 2124 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 2125 * device is mapped to guest memory and satisfies read access directly. 2126 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 2127 * Writes are always handled by the #MemoryRegion.write function. 2128 * 2129 * @mr: the memory region to be updated 2130 * @romd_mode: %true to put the region into ROMD mode 2131 */ 2132 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 2133 2134 /** 2135 * memory_region_set_coalescing: Enable memory coalescing for the region. 2136 * 2137 * Enabled writes to a region to be queued for later processing. MMIO ->write 2138 * callbacks may be delayed until a non-coalesced MMIO is issued. 2139 * Only useful for IO regions. Roughly similar to write-combining hardware. 2140 * 2141 * @mr: the memory region to be write coalesced 2142 */ 2143 void memory_region_set_coalescing(MemoryRegion *mr); 2144 2145 /** 2146 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 2147 * a region. 2148 * 2149 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 2150 * Multiple calls can be issued coalesced disjoint ranges. 2151 * 2152 * @mr: the memory region to be updated. 2153 * @offset: the start of the range within the region to be coalesced. 2154 * @size: the size of the subrange to be coalesced. 2155 */ 2156 void memory_region_add_coalescing(MemoryRegion *mr, 2157 hwaddr offset, 2158 uint64_t size); 2159 2160 /** 2161 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 2162 * 2163 * Disables any coalescing caused by memory_region_set_coalescing() or 2164 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 2165 * hardware. 2166 * 2167 * @mr: the memory region to be updated. 2168 */ 2169 void memory_region_clear_coalescing(MemoryRegion *mr); 2170 2171 /** 2172 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 2173 * accesses. 2174 * 2175 * Ensure that pending coalesced MMIO request are flushed before the memory 2176 * region is accessed. This property is automatically enabled for all regions 2177 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 2178 * 2179 * @mr: the memory region to be updated. 2180 */ 2181 void memory_region_set_flush_coalesced(MemoryRegion *mr); 2182 2183 /** 2184 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 2185 * accesses. 2186 * 2187 * Clear the automatic coalesced MMIO flushing enabled via 2188 * memory_region_set_flush_coalesced. Note that this service has no effect on 2189 * memory regions that have MMIO coalescing enabled for themselves. For them, 2190 * automatic flushing will stop once coalescing is disabled. 2191 * 2192 * @mr: the memory region to be updated. 2193 */ 2194 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 2195 2196 /** 2197 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 2198 * is written to a location. 2199 * 2200 * Marks a word in an IO region (initialized with memory_region_init_io()) 2201 * as a trigger for an eventfd event. The I/O callback will not be called. 2202 * The caller must be prepared to handle failure (that is, take the required 2203 * action if the callback _is_ called). 2204 * 2205 * @mr: the memory region being updated. 2206 * @addr: the address within @mr that is to be monitored 2207 * @size: the size of the access to trigger the eventfd 2208 * @match_data: whether to match against @data, instead of just @addr 2209 * @data: the data to match against the guest write 2210 * @e: event notifier to be triggered when @addr, @size, and @data all match. 2211 **/ 2212 void memory_region_add_eventfd(MemoryRegion *mr, 2213 hwaddr addr, 2214 unsigned size, 2215 bool match_data, 2216 uint64_t data, 2217 EventNotifier *e); 2218 2219 /** 2220 * memory_region_del_eventfd: Cancel an eventfd. 2221 * 2222 * Cancels an eventfd trigger requested by a previous 2223 * memory_region_add_eventfd() call. 2224 * 2225 * @mr: the memory region being updated. 2226 * @addr: the address within @mr that is to be monitored 2227 * @size: the size of the access to trigger the eventfd 2228 * @match_data: whether to match against @data, instead of just @addr 2229 * @data: the data to match against the guest write 2230 * @e: event notifier to be triggered when @addr, @size, and @data all match. 2231 */ 2232 void memory_region_del_eventfd(MemoryRegion *mr, 2233 hwaddr addr, 2234 unsigned size, 2235 bool match_data, 2236 uint64_t data, 2237 EventNotifier *e); 2238 2239 /** 2240 * memory_region_add_subregion: Add a subregion to a container. 2241 * 2242 * Adds a subregion at @offset. The subregion may not overlap with other 2243 * subregions (except for those explicitly marked as overlapping). A region 2244 * may only be added once as a subregion (unless removed with 2245 * memory_region_del_subregion()); use memory_region_init_alias() if you 2246 * want a region to be a subregion in multiple locations. 2247 * 2248 * @mr: the region to contain the new subregion; must be a container 2249 * initialized with memory_region_init(). 2250 * @offset: the offset relative to @mr where @subregion is added. 2251 * @subregion: the subregion to be added. 2252 */ 2253 void memory_region_add_subregion(MemoryRegion *mr, 2254 hwaddr offset, 2255 MemoryRegion *subregion); 2256 /** 2257 * memory_region_add_subregion_overlap: Add a subregion to a container 2258 * with overlap. 2259 * 2260 * Adds a subregion at @offset. The subregion may overlap with other 2261 * subregions. Conflicts are resolved by having a higher @priority hide a 2262 * lower @priority. Subregions without priority are taken as @priority 0. 2263 * A region may only be added once as a subregion (unless removed with 2264 * memory_region_del_subregion()); use memory_region_init_alias() if you 2265 * want a region to be a subregion in multiple locations. 2266 * 2267 * @mr: the region to contain the new subregion; must be a container 2268 * initialized with memory_region_init(). 2269 * @offset: the offset relative to @mr where @subregion is added. 2270 * @subregion: the subregion to be added. 2271 * @priority: used for resolving overlaps; highest priority wins. 2272 */ 2273 void memory_region_add_subregion_overlap(MemoryRegion *mr, 2274 hwaddr offset, 2275 MemoryRegion *subregion, 2276 int priority); 2277 2278 /** 2279 * memory_region_get_ram_addr: Get the ram address associated with a memory 2280 * region 2281 * 2282 * @mr: the region to be queried 2283 */ 2284 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 2285 2286 uint64_t memory_region_get_alignment(const MemoryRegion *mr); 2287 /** 2288 * memory_region_del_subregion: Remove a subregion. 2289 * 2290 * Removes a subregion from its container. 2291 * 2292 * @mr: the container to be updated. 2293 * @subregion: the region being removed; must be a current subregion of @mr. 2294 */ 2295 void memory_region_del_subregion(MemoryRegion *mr, 2296 MemoryRegion *subregion); 2297 2298 /* 2299 * memory_region_set_enabled: dynamically enable or disable a region 2300 * 2301 * Enables or disables a memory region. A disabled memory region 2302 * ignores all accesses to itself and its subregions. It does not 2303 * obscure sibling subregions with lower priority - it simply behaves as 2304 * if it was removed from the hierarchy. 2305 * 2306 * Regions default to being enabled. 2307 * 2308 * @mr: the region to be updated 2309 * @enabled: whether to enable or disable the region 2310 */ 2311 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 2312 2313 /* 2314 * memory_region_set_address: dynamically update the address of a region 2315 * 2316 * Dynamically updates the address of a region, relative to its container. 2317 * May be used on regions are currently part of a memory hierarchy. 2318 * 2319 * @mr: the region to be updated 2320 * @addr: new address, relative to container region 2321 */ 2322 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 2323 2324 /* 2325 * memory_region_set_size: dynamically update the size of a region. 2326 * 2327 * Dynamically updates the size of a region. 2328 * 2329 * @mr: the region to be updated 2330 * @size: used size of the region. 2331 */ 2332 void memory_region_set_size(MemoryRegion *mr, uint64_t size); 2333 2334 /* 2335 * memory_region_set_alias_offset: dynamically update a memory alias's offset 2336 * 2337 * Dynamically updates the offset into the target region that an alias points 2338 * to, as if the fourth argument to memory_region_init_alias() has changed. 2339 * 2340 * @mr: the #MemoryRegion to be updated; should be an alias. 2341 * @offset: the new offset into the target memory region 2342 */ 2343 void memory_region_set_alias_offset(MemoryRegion *mr, 2344 hwaddr offset); 2345 2346 /** 2347 * memory_region_present: checks if an address relative to a @container 2348 * translates into #MemoryRegion within @container 2349 * 2350 * Answer whether a #MemoryRegion within @container covers the address 2351 * @addr. 2352 * 2353 * @container: a #MemoryRegion within which @addr is a relative address 2354 * @addr: the area within @container to be searched 2355 */ 2356 bool memory_region_present(MemoryRegion *container, hwaddr addr); 2357 2358 /** 2359 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 2360 * into another memory region, which does not necessarily imply that it is 2361 * mapped into an address space. 2362 * 2363 * @mr: a #MemoryRegion which should be checked if it's mapped 2364 */ 2365 bool memory_region_is_mapped(MemoryRegion *mr); 2366 2367 /** 2368 * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a 2369 * #MemoryRegion 2370 * 2371 * The #RamDiscardManager cannot change while a memory region is mapped. 2372 * 2373 * @mr: the #MemoryRegion 2374 */ 2375 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr); 2376 2377 /** 2378 * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a 2379 * #RamDiscardManager assigned 2380 * 2381 * @mr: the #MemoryRegion 2382 */ 2383 static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr) 2384 { 2385 return !!memory_region_get_ram_discard_manager(mr); 2386 } 2387 2388 /** 2389 * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a 2390 * #MemoryRegion 2391 * 2392 * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion 2393 * that does not cover RAM, or a #MemoryRegion that already has a 2394 * #RamDiscardManager assigned. 2395 * 2396 * @mr: the #MemoryRegion 2397 * @rdm: #RamDiscardManager to set 2398 */ 2399 void memory_region_set_ram_discard_manager(MemoryRegion *mr, 2400 RamDiscardManager *rdm); 2401 2402 /** 2403 * memory_region_find: translate an address/size relative to a 2404 * MemoryRegion into a #MemoryRegionSection. 2405 * 2406 * Locates the first #MemoryRegion within @mr that overlaps the range 2407 * given by @addr and @size. 2408 * 2409 * Returns a #MemoryRegionSection that describes a contiguous overlap. 2410 * It will have the following characteristics: 2411 * - @size = 0 iff no overlap was found 2412 * - @mr is non-%NULL iff an overlap was found 2413 * 2414 * Remember that in the return value the @offset_within_region is 2415 * relative to the returned region (in the .@mr field), not to the 2416 * @mr argument. 2417 * 2418 * Similarly, the .@offset_within_address_space is relative to the 2419 * address space that contains both regions, the passed and the 2420 * returned one. However, in the special case where the @mr argument 2421 * has no container (and thus is the root of the address space), the 2422 * following will hold: 2423 * - @offset_within_address_space >= @addr 2424 * - @offset_within_address_space + .@size <= @addr + @size 2425 * 2426 * @mr: a MemoryRegion within which @addr is a relative address 2427 * @addr: start of the area within @as to be searched 2428 * @size: size of the area to be searched 2429 */ 2430 MemoryRegionSection memory_region_find(MemoryRegion *mr, 2431 hwaddr addr, uint64_t size); 2432 2433 /** 2434 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 2435 * 2436 * Synchronizes the dirty page log for all address spaces. 2437 * 2438 * @last_stage: whether this is the last stage of live migration 2439 */ 2440 void memory_global_dirty_log_sync(bool last_stage); 2441 2442 /** 2443 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 2444 * 2445 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap. 2446 * This function must be called after the dirty log bitmap is cleared, and 2447 * before dirty guest memory pages are read. If you are using 2448 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes 2449 * care of doing this. 2450 */ 2451 void memory_global_after_dirty_log_sync(void); 2452 2453 /** 2454 * memory_region_transaction_begin: Start a transaction. 2455 * 2456 * During a transaction, changes will be accumulated and made visible 2457 * only when the transaction ends (is committed). 2458 */ 2459 void memory_region_transaction_begin(void); 2460 2461 /** 2462 * memory_region_transaction_commit: Commit a transaction and make changes 2463 * visible to the guest. 2464 */ 2465 void memory_region_transaction_commit(void); 2466 2467 /** 2468 * memory_listener_register: register callbacks to be called when memory 2469 * sections are mapped or unmapped into an address 2470 * space 2471 * 2472 * @listener: an object containing the callbacks to be called 2473 * @filter: if non-%NULL, only regions in this address space will be observed 2474 */ 2475 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 2476 2477 /** 2478 * memory_listener_unregister: undo the effect of memory_listener_register() 2479 * 2480 * @listener: an object containing the callbacks to be removed 2481 */ 2482 void memory_listener_unregister(MemoryListener *listener); 2483 2484 /** 2485 * memory_global_dirty_log_start: begin dirty logging for all regions 2486 * 2487 * @flags: purpose of starting dirty log, migration or dirty rate 2488 */ 2489 void memory_global_dirty_log_start(unsigned int flags); 2490 2491 /** 2492 * memory_global_dirty_log_stop: end dirty logging for all regions 2493 * 2494 * @flags: purpose of stopping dirty log, migration or dirty rate 2495 */ 2496 void memory_global_dirty_log_stop(unsigned int flags); 2497 2498 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled); 2499 2500 bool memory_region_access_valid(MemoryRegion *mr, hwaddr addr, 2501 unsigned size, bool is_write, 2502 MemTxAttrs attrs); 2503 2504 /** 2505 * memory_region_dispatch_read: perform a read directly to the specified 2506 * MemoryRegion. 2507 * 2508 * @mr: #MemoryRegion to access 2509 * @addr: address within that region 2510 * @pval: pointer to uint64_t which the data is written to 2511 * @op: size, sign, and endianness of the memory operation 2512 * @attrs: memory transaction attributes to use for the access 2513 */ 2514 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 2515 hwaddr addr, 2516 uint64_t *pval, 2517 MemOp op, 2518 MemTxAttrs attrs); 2519 /** 2520 * memory_region_dispatch_write: perform a write directly to the specified 2521 * MemoryRegion. 2522 * 2523 * @mr: #MemoryRegion to access 2524 * @addr: address within that region 2525 * @data: data to write 2526 * @op: size, sign, and endianness of the memory operation 2527 * @attrs: memory transaction attributes to use for the access 2528 */ 2529 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 2530 hwaddr addr, 2531 uint64_t data, 2532 MemOp op, 2533 MemTxAttrs attrs); 2534 2535 /** 2536 * address_space_init: initializes an address space 2537 * 2538 * @as: an uninitialized #AddressSpace 2539 * @root: a #MemoryRegion that routes addresses for the address space 2540 * @name: an address space name. The name is only used for debugging 2541 * output. 2542 */ 2543 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 2544 2545 /** 2546 * address_space_destroy: destroy an address space 2547 * 2548 * Releases all resources associated with an address space. After an address space 2549 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 2550 * as well. 2551 * 2552 * @as: address space to be destroyed 2553 */ 2554 void address_space_destroy(AddressSpace *as); 2555 2556 /** 2557 * address_space_remove_listeners: unregister all listeners of an address space 2558 * 2559 * Removes all callbacks previously registered with memory_listener_register() 2560 * for @as. 2561 * 2562 * @as: an initialized #AddressSpace 2563 */ 2564 void address_space_remove_listeners(AddressSpace *as); 2565 2566 /** 2567 * address_space_rw: read from or write to an address space. 2568 * 2569 * Return a MemTxResult indicating whether the operation succeeded 2570 * or failed (eg unassigned memory, device rejected the transaction, 2571 * IOMMU fault). 2572 * 2573 * @as: #AddressSpace to be accessed 2574 * @addr: address within that address space 2575 * @attrs: memory transaction attributes 2576 * @buf: buffer with the data transferred 2577 * @len: the number of bytes to read or write 2578 * @is_write: indicates the transfer direction 2579 */ 2580 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 2581 MemTxAttrs attrs, void *buf, 2582 hwaddr len, bool is_write); 2583 2584 /** 2585 * address_space_write: write to address space. 2586 * 2587 * Return a MemTxResult indicating whether the operation succeeded 2588 * or failed (eg unassigned memory, device rejected the transaction, 2589 * IOMMU fault). 2590 * 2591 * @as: #AddressSpace to be accessed 2592 * @addr: address within that address space 2593 * @attrs: memory transaction attributes 2594 * @buf: buffer with the data transferred 2595 * @len: the number of bytes to write 2596 */ 2597 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 2598 MemTxAttrs attrs, 2599 const void *buf, hwaddr len); 2600 2601 /** 2602 * address_space_write_rom: write to address space, including ROM. 2603 * 2604 * This function writes to the specified address space, but will 2605 * write data to both ROM and RAM. This is used for non-guest 2606 * writes like writes from the gdb debug stub or initial loading 2607 * of ROM contents. 2608 * 2609 * Note that portions of the write which attempt to write data to 2610 * a device will be silently ignored -- only real RAM and ROM will 2611 * be written to. 2612 * 2613 * Return a MemTxResult indicating whether the operation succeeded 2614 * or failed (eg unassigned memory, device rejected the transaction, 2615 * IOMMU fault). 2616 * 2617 * @as: #AddressSpace to be accessed 2618 * @addr: address within that address space 2619 * @attrs: memory transaction attributes 2620 * @buf: buffer with the data transferred 2621 * @len: the number of bytes to write 2622 */ 2623 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 2624 MemTxAttrs attrs, 2625 const void *buf, hwaddr len); 2626 2627 /* address_space_ld*: load from an address space 2628 * address_space_st*: store to an address space 2629 * 2630 * These functions perform a load or store of the byte, word, 2631 * longword or quad to the specified address within the AddressSpace. 2632 * The _le suffixed functions treat the data as little endian; 2633 * _be indicates big endian; no suffix indicates "same endianness 2634 * as guest CPU". 2635 * 2636 * The "guest CPU endianness" accessors are deprecated for use outside 2637 * target-* code; devices should be CPU-agnostic and use either the LE 2638 * or the BE accessors. 2639 * 2640 * @as #AddressSpace to be accessed 2641 * @addr: address within that address space 2642 * @val: data value, for stores 2643 * @attrs: memory transaction attributes 2644 * @result: location to write the success/failure of the transaction; 2645 * if NULL, this information is discarded 2646 */ 2647 2648 #define SUFFIX 2649 #define ARG1 as 2650 #define ARG1_DECL AddressSpace *as 2651 #include "exec/memory_ldst.h.inc" 2652 2653 #define SUFFIX 2654 #define ARG1 as 2655 #define ARG1_DECL AddressSpace *as 2656 #include "exec/memory_ldst_phys.h.inc" 2657 2658 struct MemoryRegionCache { 2659 void *ptr; 2660 hwaddr xlat; 2661 hwaddr len; 2662 FlatView *fv; 2663 MemoryRegionSection mrs; 2664 bool is_write; 2665 }; 2666 2667 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL }) 2668 2669 2670 /* address_space_ld*_cached: load from a cached #MemoryRegion 2671 * address_space_st*_cached: store into a cached #MemoryRegion 2672 * 2673 * These functions perform a load or store of the byte, word, 2674 * longword or quad to the specified address. The address is 2675 * a physical address in the AddressSpace, but it must lie within 2676 * a #MemoryRegion that was mapped with address_space_cache_init. 2677 * 2678 * The _le suffixed functions treat the data as little endian; 2679 * _be indicates big endian; no suffix indicates "same endianness 2680 * as guest CPU". 2681 * 2682 * The "guest CPU endianness" accessors are deprecated for use outside 2683 * target-* code; devices should be CPU-agnostic and use either the LE 2684 * or the BE accessors. 2685 * 2686 * @cache: previously initialized #MemoryRegionCache to be accessed 2687 * @addr: address within the address space 2688 * @val: data value, for stores 2689 * @attrs: memory transaction attributes 2690 * @result: location to write the success/failure of the transaction; 2691 * if NULL, this information is discarded 2692 */ 2693 2694 #define SUFFIX _cached_slow 2695 #define ARG1 cache 2696 #define ARG1_DECL MemoryRegionCache *cache 2697 #include "exec/memory_ldst.h.inc" 2698 2699 /* Inline fast path for direct RAM access. */ 2700 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache, 2701 hwaddr addr, MemTxAttrs attrs, MemTxResult *result) 2702 { 2703 assert(addr < cache->len); 2704 if (likely(cache->ptr)) { 2705 return ldub_p(cache->ptr + addr); 2706 } else { 2707 return address_space_ldub_cached_slow(cache, addr, attrs, result); 2708 } 2709 } 2710 2711 static inline void address_space_stb_cached(MemoryRegionCache *cache, 2712 hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result) 2713 { 2714 assert(addr < cache->len); 2715 if (likely(cache->ptr)) { 2716 stb_p(cache->ptr + addr, val); 2717 } else { 2718 address_space_stb_cached_slow(cache, addr, val, attrs, result); 2719 } 2720 } 2721 2722 #define ENDIANNESS _le 2723 #include "exec/memory_ldst_cached.h.inc" 2724 2725 #define ENDIANNESS _be 2726 #include "exec/memory_ldst_cached.h.inc" 2727 2728 #define SUFFIX _cached 2729 #define ARG1 cache 2730 #define ARG1_DECL MemoryRegionCache *cache 2731 #include "exec/memory_ldst_phys.h.inc" 2732 2733 /* address_space_cache_init: prepare for repeated access to a physical 2734 * memory region 2735 * 2736 * @cache: #MemoryRegionCache to be filled 2737 * @as: #AddressSpace to be accessed 2738 * @addr: address within that address space 2739 * @len: length of buffer 2740 * @is_write: indicates the transfer direction 2741 * 2742 * Will only work with RAM, and may map a subset of the requested range by 2743 * returning a value that is less than @len. On failure, return a negative 2744 * errno value. 2745 * 2746 * Because it only works with RAM, this function can be used for 2747 * read-modify-write operations. In this case, is_write should be %true. 2748 * 2749 * Note that addresses passed to the address_space_*_cached functions 2750 * are relative to @addr. 2751 */ 2752 int64_t address_space_cache_init(MemoryRegionCache *cache, 2753 AddressSpace *as, 2754 hwaddr addr, 2755 hwaddr len, 2756 bool is_write); 2757 2758 /** 2759 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache 2760 * 2761 * @cache: The #MemoryRegionCache to operate on. 2762 * @addr: The first physical address that was written, relative to the 2763 * address that was passed to @address_space_cache_init. 2764 * @access_len: The number of bytes that were written starting at @addr. 2765 */ 2766 void address_space_cache_invalidate(MemoryRegionCache *cache, 2767 hwaddr addr, 2768 hwaddr access_len); 2769 2770 /** 2771 * address_space_cache_destroy: free a #MemoryRegionCache 2772 * 2773 * @cache: The #MemoryRegionCache whose memory should be released. 2774 */ 2775 void address_space_cache_destroy(MemoryRegionCache *cache); 2776 2777 /* address_space_get_iotlb_entry: translate an address into an IOTLB 2778 * entry. Should be called from an RCU critical section. 2779 */ 2780 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 2781 bool is_write, MemTxAttrs attrs); 2782 2783 /* address_space_translate: translate an address range into an address space 2784 * into a MemoryRegion and an address range into that section. Should be 2785 * called from an RCU critical section, to avoid that the last reference 2786 * to the returned region disappears after address_space_translate returns. 2787 * 2788 * @fv: #FlatView to be accessed 2789 * @addr: address within that address space 2790 * @xlat: pointer to address within the returned memory region section's 2791 * #MemoryRegion. 2792 * @len: pointer to length 2793 * @is_write: indicates the transfer direction 2794 * @attrs: memory attributes 2795 */ 2796 MemoryRegion *flatview_translate(FlatView *fv, 2797 hwaddr addr, hwaddr *xlat, 2798 hwaddr *len, bool is_write, 2799 MemTxAttrs attrs); 2800 2801 static inline MemoryRegion *address_space_translate(AddressSpace *as, 2802 hwaddr addr, hwaddr *xlat, 2803 hwaddr *len, bool is_write, 2804 MemTxAttrs attrs) 2805 { 2806 return flatview_translate(address_space_to_flatview(as), 2807 addr, xlat, len, is_write, attrs); 2808 } 2809 2810 /* address_space_access_valid: check for validity of accessing an address 2811 * space range 2812 * 2813 * Check whether memory is assigned to the given address space range, and 2814 * access is permitted by any IOMMU regions that are active for the address 2815 * space. 2816 * 2817 * For now, addr and len should be aligned to a page size. This limitation 2818 * will be lifted in the future. 2819 * 2820 * @as: #AddressSpace to be accessed 2821 * @addr: address within that address space 2822 * @len: length of the area to be checked 2823 * @is_write: indicates the transfer direction 2824 * @attrs: memory attributes 2825 */ 2826 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len, 2827 bool is_write, MemTxAttrs attrs); 2828 2829 /* address_space_map: map a physical memory region into a host virtual address 2830 * 2831 * May map a subset of the requested range, given by and returned in @plen. 2832 * May return %NULL and set *@plen to zero(0), if resources needed to perform 2833 * the mapping are exhausted. 2834 * Use only for reads OR writes - not for read-modify-write operations. 2835 * Use cpu_register_map_client() to know when retrying the map operation is 2836 * likely to succeed. 2837 * 2838 * @as: #AddressSpace to be accessed 2839 * @addr: address within that address space 2840 * @plen: pointer to length of buffer; updated on return 2841 * @is_write: indicates the transfer direction 2842 * @attrs: memory attributes 2843 */ 2844 void *address_space_map(AddressSpace *as, hwaddr addr, 2845 hwaddr *plen, bool is_write, MemTxAttrs attrs); 2846 2847 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 2848 * 2849 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 2850 * the amount of memory that was actually read or written by the caller. 2851 * 2852 * @as: #AddressSpace used 2853 * @buffer: host pointer as returned by address_space_map() 2854 * @len: buffer length as returned by address_space_map() 2855 * @access_len: amount of data actually transferred 2856 * @is_write: indicates the transfer direction 2857 */ 2858 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 2859 bool is_write, hwaddr access_len); 2860 2861 2862 /* Internal functions, part of the implementation of address_space_read. */ 2863 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2864 MemTxAttrs attrs, void *buf, hwaddr len); 2865 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2866 MemTxAttrs attrs, void *buf, 2867 hwaddr len, hwaddr addr1, hwaddr l, 2868 MemoryRegion *mr); 2869 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr); 2870 2871 /* Internal functions, part of the implementation of address_space_read_cached 2872 * and address_space_write_cached. */ 2873 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache, 2874 hwaddr addr, void *buf, hwaddr len); 2875 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache, 2876 hwaddr addr, const void *buf, 2877 hwaddr len); 2878 2879 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr); 2880 bool prepare_mmio_access(MemoryRegion *mr); 2881 2882 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) 2883 { 2884 if (is_write) { 2885 return memory_region_is_ram(mr) && !mr->readonly && 2886 !mr->rom_device && !memory_region_is_ram_device(mr); 2887 } else { 2888 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) || 2889 memory_region_is_romd(mr); 2890 } 2891 } 2892 2893 /** 2894 * address_space_read: read from an address space. 2895 * 2896 * Return a MemTxResult indicating whether the operation succeeded 2897 * or failed (eg unassigned memory, device rejected the transaction, 2898 * IOMMU fault). Called within RCU critical section. 2899 * 2900 * @as: #AddressSpace to be accessed 2901 * @addr: address within that address space 2902 * @attrs: memory transaction attributes 2903 * @buf: buffer with the data transferred 2904 * @len: length of the data transferred 2905 */ 2906 static inline __attribute__((__always_inline__)) 2907 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, 2908 MemTxAttrs attrs, void *buf, 2909 hwaddr len) 2910 { 2911 MemTxResult result = MEMTX_OK; 2912 hwaddr l, addr1; 2913 void *ptr; 2914 MemoryRegion *mr; 2915 FlatView *fv; 2916 2917 if (__builtin_constant_p(len)) { 2918 if (len) { 2919 RCU_READ_LOCK_GUARD(); 2920 fv = address_space_to_flatview(as); 2921 l = len; 2922 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2923 if (len == l && memory_access_is_direct(mr, false)) { 2924 ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 2925 memcpy(buf, ptr, len); 2926 } else { 2927 result = flatview_read_continue(fv, addr, attrs, buf, len, 2928 addr1, l, mr); 2929 } 2930 } 2931 } else { 2932 result = address_space_read_full(as, addr, attrs, buf, len); 2933 } 2934 return result; 2935 } 2936 2937 /** 2938 * address_space_read_cached: read from a cached RAM region 2939 * 2940 * @cache: Cached region to be addressed 2941 * @addr: address relative to the base of the RAM region 2942 * @buf: buffer with the data transferred 2943 * @len: length of the data transferred 2944 */ 2945 static inline MemTxResult 2946 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr, 2947 void *buf, hwaddr len) 2948 { 2949 assert(addr < cache->len && len <= cache->len - addr); 2950 fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr); 2951 if (likely(cache->ptr)) { 2952 memcpy(buf, cache->ptr + addr, len); 2953 return MEMTX_OK; 2954 } else { 2955 return address_space_read_cached_slow(cache, addr, buf, len); 2956 } 2957 } 2958 2959 /** 2960 * address_space_write_cached: write to a cached RAM region 2961 * 2962 * @cache: Cached region to be addressed 2963 * @addr: address relative to the base of the RAM region 2964 * @buf: buffer with the data transferred 2965 * @len: length of the data transferred 2966 */ 2967 static inline MemTxResult 2968 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr, 2969 const void *buf, hwaddr len) 2970 { 2971 assert(addr < cache->len && len <= cache->len - addr); 2972 if (likely(cache->ptr)) { 2973 memcpy(cache->ptr + addr, buf, len); 2974 return MEMTX_OK; 2975 } else { 2976 return address_space_write_cached_slow(cache, addr, buf, len); 2977 } 2978 } 2979 2980 /** 2981 * address_space_set: Fill address space with a constant byte. 2982 * 2983 * Return a MemTxResult indicating whether the operation succeeded 2984 * or failed (eg unassigned memory, device rejected the transaction, 2985 * IOMMU fault). 2986 * 2987 * @as: #AddressSpace to be accessed 2988 * @addr: address within that address space 2989 * @c: constant byte to fill the memory 2990 * @len: the number of bytes to fill with the constant byte 2991 * @attrs: memory transaction attributes 2992 */ 2993 MemTxResult address_space_set(AddressSpace *as, hwaddr addr, 2994 uint8_t c, hwaddr len, MemTxAttrs attrs); 2995 2996 #ifdef NEED_CPU_H 2997 /* enum device_endian to MemOp. */ 2998 static inline MemOp devend_memop(enum device_endian end) 2999 { 3000 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN && 3001 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN); 3002 3003 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 3004 /* Swap if non-host endianness or native (target) endianness */ 3005 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP; 3006 #else 3007 const int non_host_endianness = 3008 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN; 3009 3010 /* In this case, native (target) endianness needs no swap. */ 3011 return (end == non_host_endianness) ? MO_BSWAP : 0; 3012 #endif 3013 } 3014 #endif 3015 3016 /* 3017 * Inhibit technologies that require discarding of pages in RAM blocks, e.g., 3018 * to manage the actual amount of memory consumed by the VM (then, the memory 3019 * provided by RAM blocks might be bigger than the desired memory consumption). 3020 * This *must* be set if: 3021 * - Discarding parts of a RAM blocks does not result in the change being 3022 * reflected in the VM and the pages getting freed. 3023 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous 3024 * discards blindly. 3025 * - Discarding parts of a RAM blocks will result in integrity issues (e.g., 3026 * encrypted VMs). 3027 * Technologies that only temporarily pin the current working set of a 3028 * driver are fine, because we don't expect such pages to be discarded 3029 * (esp. based on guest action like balloon inflation). 3030 * 3031 * This is *not* to be used to protect from concurrent discards (esp., 3032 * postcopy). 3033 * 3034 * Returns 0 if successful. Returns -EBUSY if a technology that relies on 3035 * discards to work reliably is active. 3036 */ 3037 int ram_block_discard_disable(bool state); 3038 3039 /* 3040 * See ram_block_discard_disable(): only disable uncoordinated discards, 3041 * keeping coordinated discards (via the RamDiscardManager) enabled. 3042 */ 3043 int ram_block_uncoordinated_discard_disable(bool state); 3044 3045 /* 3046 * Inhibit technologies that disable discarding of pages in RAM blocks. 3047 * 3048 * Returns 0 if successful. Returns -EBUSY if discards are already set to 3049 * broken. 3050 */ 3051 int ram_block_discard_require(bool state); 3052 3053 /* 3054 * See ram_block_discard_require(): only inhibit technologies that disable 3055 * uncoordinated discarding of pages in RAM blocks, allowing co-existance with 3056 * technologies that only inhibit uncoordinated discards (via the 3057 * RamDiscardManager). 3058 */ 3059 int ram_block_coordinated_discard_require(bool state); 3060 3061 /* 3062 * Test if any discarding of memory in ram blocks is disabled. 3063 */ 3064 bool ram_block_discard_is_disabled(void); 3065 3066 /* 3067 * Test if any discarding of memory in ram blocks is required to work reliably. 3068 */ 3069 bool ram_block_discard_is_required(void); 3070 3071 #endif 3072 3073 #endif 3074