xref: /openbmc/qemu/include/exec/memory.h (revision 1141159c)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/memop.h"
23 #include "exec/ramlist.h"
24 #include "qemu/bswap.h"
25 #include "qemu/queue.h"
26 #include "qemu/int128.h"
27 #include "qemu/notify.h"
28 #include "qom/object.h"
29 #include "qemu/rcu.h"
30 
31 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
32 
33 #define MAX_PHYS_ADDR_SPACE_BITS 62
34 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
35 
36 #define TYPE_MEMORY_REGION "memory-region"
37 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION,
38                          TYPE_MEMORY_REGION)
39 
40 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region"
41 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass;
42 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass,
43                      IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION)
44 
45 #define TYPE_RAM_DISCARD_MANAGER "qemu:ram-discard-manager"
46 typedef struct RamDiscardManagerClass RamDiscardManagerClass;
47 typedef struct RamDiscardManager RamDiscardManager;
48 DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass,
49                      RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER);
50 
51 #ifdef CONFIG_FUZZ
52 void fuzz_dma_read_cb(size_t addr,
53                       size_t len,
54                       MemoryRegion *mr);
55 #else
56 static inline void fuzz_dma_read_cb(size_t addr,
57                                     size_t len,
58                                     MemoryRegion *mr)
59 {
60     /* Do Nothing */
61 }
62 #endif
63 
64 /* Possible bits for global_dirty_log_{start|stop} */
65 
66 /* Dirty tracking enabled because migration is running */
67 #define GLOBAL_DIRTY_MIGRATION  (1U << 0)
68 
69 /* Dirty tracking enabled because measuring dirty rate */
70 #define GLOBAL_DIRTY_DIRTY_RATE (1U << 1)
71 
72 /* Dirty tracking enabled because dirty limit */
73 #define GLOBAL_DIRTY_LIMIT      (1U << 2)
74 
75 #define GLOBAL_DIRTY_MASK  (0x7)
76 
77 extern unsigned int global_dirty_tracking;
78 
79 typedef struct MemoryRegionOps MemoryRegionOps;
80 
81 struct ReservedRegion {
82     hwaddr low;
83     hwaddr high;
84     unsigned type;
85 };
86 
87 /**
88  * struct MemoryRegionSection: describes a fragment of a #MemoryRegion
89  *
90  * @mr: the region, or %NULL if empty
91  * @fv: the flat view of the address space the region is mapped in
92  * @offset_within_region: the beginning of the section, relative to @mr's start
93  * @size: the size of the section; will not exceed @mr's boundaries
94  * @offset_within_address_space: the address of the first byte of the section
95  *     relative to the region's address space
96  * @readonly: writes to this section are ignored
97  * @nonvolatile: this section is non-volatile
98  */
99 struct MemoryRegionSection {
100     Int128 size;
101     MemoryRegion *mr;
102     FlatView *fv;
103     hwaddr offset_within_region;
104     hwaddr offset_within_address_space;
105     bool readonly;
106     bool nonvolatile;
107 };
108 
109 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
110 
111 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
112 typedef enum {
113     IOMMU_NONE = 0,
114     IOMMU_RO   = 1,
115     IOMMU_WO   = 2,
116     IOMMU_RW   = 3,
117 } IOMMUAccessFlags;
118 
119 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
120 
121 struct IOMMUTLBEntry {
122     AddressSpace    *target_as;
123     hwaddr           iova;
124     hwaddr           translated_addr;
125     hwaddr           addr_mask;  /* 0xfff = 4k translation */
126     IOMMUAccessFlags perm;
127 };
128 
129 /*
130  * Bitmap for different IOMMUNotifier capabilities. Each notifier can
131  * register with one or multiple IOMMU Notifier capability bit(s).
132  *
133  * Normally there're two use cases for the notifiers:
134  *
135  *   (1) When the device needs accurate synchronizations of the vIOMMU page
136  *       tables, it needs to register with both MAP|UNMAP notifies (which
137  *       is defined as IOMMU_NOTIFIER_IOTLB_EVENTS below).
138  *
139  *       Regarding to accurate synchronization, it's when the notified
140  *       device maintains a shadow page table and must be notified on each
141  *       guest MAP (page table entry creation) and UNMAP (invalidation)
142  *       events (e.g. VFIO). Both notifications must be accurate so that
143  *       the shadow page table is fully in sync with the guest view.
144  *
145  *   (2) When the device doesn't need accurate synchronizations of the
146  *       vIOMMU page tables, it needs to register only with UNMAP or
147  *       DEVIOTLB_UNMAP notifies.
148  *
149  *       It's when the device maintains a cache of IOMMU translations
150  *       (IOTLB) and is able to fill that cache by requesting translations
151  *       from the vIOMMU through a protocol similar to ATS (Address
152  *       Translation Service).
153  *
154  *       Note that in this mode the vIOMMU will not maintain a shadowed
155  *       page table for the address space, and the UNMAP messages can cover
156  *       more than the pages that used to get mapped.  The IOMMU notifiee
157  *       should be able to take care of over-sized invalidations.
158  */
159 typedef enum {
160     IOMMU_NOTIFIER_NONE = 0,
161     /* Notify cache invalidations */
162     IOMMU_NOTIFIER_UNMAP = 0x1,
163     /* Notify entry changes (newly created entries) */
164     IOMMU_NOTIFIER_MAP = 0x2,
165     /* Notify changes on device IOTLB entries */
166     IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04,
167 } IOMMUNotifierFlag;
168 
169 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
170 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP
171 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \
172                             IOMMU_NOTIFIER_DEVIOTLB_EVENTS)
173 
174 struct IOMMUNotifier;
175 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
176                             IOMMUTLBEntry *data);
177 
178 struct IOMMUNotifier {
179     IOMMUNotify notify;
180     IOMMUNotifierFlag notifier_flags;
181     /* Notify for address space range start <= addr <= end */
182     hwaddr start;
183     hwaddr end;
184     int iommu_idx;
185     QLIST_ENTRY(IOMMUNotifier) node;
186 };
187 typedef struct IOMMUNotifier IOMMUNotifier;
188 
189 typedef struct IOMMUTLBEvent {
190     IOMMUNotifierFlag type;
191     IOMMUTLBEntry entry;
192 } IOMMUTLBEvent;
193 
194 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
195 #define RAM_PREALLOC   (1 << 0)
196 
197 /* RAM is mmap-ed with MAP_SHARED */
198 #define RAM_SHARED     (1 << 1)
199 
200 /* Only a portion of RAM (used_length) is actually used, and migrated.
201  * Resizing RAM while migrating can result in the migration being canceled.
202  */
203 #define RAM_RESIZEABLE (1 << 2)
204 
205 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
206  * zero the page and wake waiting processes.
207  * (Set during postcopy)
208  */
209 #define RAM_UF_ZEROPAGE (1 << 3)
210 
211 /* RAM can be migrated */
212 #define RAM_MIGRATABLE (1 << 4)
213 
214 /* RAM is a persistent kind memory */
215 #define RAM_PMEM (1 << 5)
216 
217 
218 /*
219  * UFFDIO_WRITEPROTECT is used on this RAMBlock to
220  * support 'write-tracking' migration type.
221  * Implies ram_state->ram_wt_enabled.
222  */
223 #define RAM_UF_WRITEPROTECT (1 << 6)
224 
225 /*
226  * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge
227  * pages if applicable) is skipped: will bail out if not supported. When not
228  * set, the OS will do the reservation, if supported for the memory type.
229  */
230 #define RAM_NORESERVE (1 << 7)
231 
232 /* RAM that isn't accessible through normal means. */
233 #define RAM_PROTECTED (1 << 8)
234 
235 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
236                                        IOMMUNotifierFlag flags,
237                                        hwaddr start, hwaddr end,
238                                        int iommu_idx)
239 {
240     n->notify = fn;
241     n->notifier_flags = flags;
242     n->start = start;
243     n->end = end;
244     n->iommu_idx = iommu_idx;
245 }
246 
247 /*
248  * Memory region callbacks
249  */
250 struct MemoryRegionOps {
251     /* Read from the memory region. @addr is relative to @mr; @size is
252      * in bytes. */
253     uint64_t (*read)(void *opaque,
254                      hwaddr addr,
255                      unsigned size);
256     /* Write to the memory region. @addr is relative to @mr; @size is
257      * in bytes. */
258     void (*write)(void *opaque,
259                   hwaddr addr,
260                   uint64_t data,
261                   unsigned size);
262 
263     MemTxResult (*read_with_attrs)(void *opaque,
264                                    hwaddr addr,
265                                    uint64_t *data,
266                                    unsigned size,
267                                    MemTxAttrs attrs);
268     MemTxResult (*write_with_attrs)(void *opaque,
269                                     hwaddr addr,
270                                     uint64_t data,
271                                     unsigned size,
272                                     MemTxAttrs attrs);
273 
274     enum device_endian endianness;
275     /* Guest-visible constraints: */
276     struct {
277         /* If nonzero, specify bounds on access sizes beyond which a machine
278          * check is thrown.
279          */
280         unsigned min_access_size;
281         unsigned max_access_size;
282         /* If true, unaligned accesses are supported.  Otherwise unaligned
283          * accesses throw machine checks.
284          */
285          bool unaligned;
286         /*
287          * If present, and returns #false, the transaction is not accepted
288          * by the device (and results in machine dependent behaviour such
289          * as a machine check exception).
290          */
291         bool (*accepts)(void *opaque, hwaddr addr,
292                         unsigned size, bool is_write,
293                         MemTxAttrs attrs);
294     } valid;
295     /* Internal implementation constraints: */
296     struct {
297         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
298          * will be rounded upwards and a partial result will be returned.
299          */
300         unsigned min_access_size;
301         /* If nonzero, specifies the maximum size implemented.  Larger sizes
302          * will be done as a series of accesses with smaller sizes.
303          */
304         unsigned max_access_size;
305         /* If true, unaligned accesses are supported.  Otherwise all accesses
306          * are converted to (possibly multiple) naturally aligned accesses.
307          */
308         bool unaligned;
309     } impl;
310 };
311 
312 typedef struct MemoryRegionClass {
313     /* private */
314     ObjectClass parent_class;
315 } MemoryRegionClass;
316 
317 
318 enum IOMMUMemoryRegionAttr {
319     IOMMU_ATTR_SPAPR_TCE_FD
320 };
321 
322 /*
323  * IOMMUMemoryRegionClass:
324  *
325  * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
326  * and provide an implementation of at least the @translate method here
327  * to handle requests to the memory region. Other methods are optional.
328  *
329  * The IOMMU implementation must use the IOMMU notifier infrastructure
330  * to report whenever mappings are changed, by calling
331  * memory_region_notify_iommu() (or, if necessary, by calling
332  * memory_region_notify_iommu_one() for each registered notifier).
333  *
334  * Conceptually an IOMMU provides a mapping from input address
335  * to an output TLB entry. If the IOMMU is aware of memory transaction
336  * attributes and the output TLB entry depends on the transaction
337  * attributes, we represent this using IOMMU indexes. Each index
338  * selects a particular translation table that the IOMMU has:
339  *
340  *   @attrs_to_index returns the IOMMU index for a set of transaction attributes
341  *
342  *   @translate takes an input address and an IOMMU index
343  *
344  * and the mapping returned can only depend on the input address and the
345  * IOMMU index.
346  *
347  * Most IOMMUs don't care about the transaction attributes and support
348  * only a single IOMMU index. A more complex IOMMU might have one index
349  * for secure transactions and one for non-secure transactions.
350  */
351 struct IOMMUMemoryRegionClass {
352     /* private: */
353     MemoryRegionClass parent_class;
354 
355     /* public: */
356     /**
357      * @translate:
358      *
359      * Return a TLB entry that contains a given address.
360      *
361      * The IOMMUAccessFlags indicated via @flag are optional and may
362      * be specified as IOMMU_NONE to indicate that the caller needs
363      * the full translation information for both reads and writes. If
364      * the access flags are specified then the IOMMU implementation
365      * may use this as an optimization, to stop doing a page table
366      * walk as soon as it knows that the requested permissions are not
367      * allowed. If IOMMU_NONE is passed then the IOMMU must do the
368      * full page table walk and report the permissions in the returned
369      * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
370      * return different mappings for reads and writes.)
371      *
372      * The returned information remains valid while the caller is
373      * holding the big QEMU lock or is inside an RCU critical section;
374      * if the caller wishes to cache the mapping beyond that it must
375      * register an IOMMU notifier so it can invalidate its cached
376      * information when the IOMMU mapping changes.
377      *
378      * @iommu: the IOMMUMemoryRegion
379      *
380      * @hwaddr: address to be translated within the memory region
381      *
382      * @flag: requested access permission
383      *
384      * @iommu_idx: IOMMU index for the translation
385      */
386     IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
387                                IOMMUAccessFlags flag, int iommu_idx);
388     /**
389      * @get_min_page_size:
390      *
391      * Returns minimum supported page size in bytes.
392      *
393      * If this method is not provided then the minimum is assumed to
394      * be TARGET_PAGE_SIZE.
395      *
396      * @iommu: the IOMMUMemoryRegion
397      */
398     uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
399     /**
400      * @notify_flag_changed:
401      *
402      * Called when IOMMU Notifier flag changes (ie when the set of
403      * events which IOMMU users are requesting notification for changes).
404      * Optional method -- need not be provided if the IOMMU does not
405      * need to know exactly which events must be notified.
406      *
407      * @iommu: the IOMMUMemoryRegion
408      *
409      * @old_flags: events which previously needed to be notified
410      *
411      * @new_flags: events which now need to be notified
412      *
413      * Returns 0 on success, or a negative errno; in particular
414      * returns -EINVAL if the new flag bitmap is not supported by the
415      * IOMMU memory region. In case of failure, the error object
416      * must be created
417      */
418     int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
419                                IOMMUNotifierFlag old_flags,
420                                IOMMUNotifierFlag new_flags,
421                                Error **errp);
422     /**
423      * @replay:
424      *
425      * Called to handle memory_region_iommu_replay().
426      *
427      * The default implementation of memory_region_iommu_replay() is to
428      * call the IOMMU translate method for every page in the address space
429      * with flag == IOMMU_NONE and then call the notifier if translate
430      * returns a valid mapping. If this method is implemented then it
431      * overrides the default behaviour, and must provide the full semantics
432      * of memory_region_iommu_replay(), by calling @notifier for every
433      * translation present in the IOMMU.
434      *
435      * Optional method -- an IOMMU only needs to provide this method
436      * if the default is inefficient or produces undesirable side effects.
437      *
438      * Note: this is not related to record-and-replay functionality.
439      */
440     void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
441 
442     /**
443      * @get_attr:
444      *
445      * Get IOMMU misc attributes. This is an optional method that
446      * can be used to allow users of the IOMMU to get implementation-specific
447      * information. The IOMMU implements this method to handle calls
448      * by IOMMU users to memory_region_iommu_get_attr() by filling in
449      * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
450      * the IOMMU supports. If the method is unimplemented then
451      * memory_region_iommu_get_attr() will always return -EINVAL.
452      *
453      * @iommu: the IOMMUMemoryRegion
454      *
455      * @attr: attribute being queried
456      *
457      * @data: memory to fill in with the attribute data
458      *
459      * Returns 0 on success, or a negative errno; in particular
460      * returns -EINVAL for unrecognized or unimplemented attribute types.
461      */
462     int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
463                     void *data);
464 
465     /**
466      * @attrs_to_index:
467      *
468      * Return the IOMMU index to use for a given set of transaction attributes.
469      *
470      * Optional method: if an IOMMU only supports a single IOMMU index then
471      * the default implementation of memory_region_iommu_attrs_to_index()
472      * will return 0.
473      *
474      * The indexes supported by an IOMMU must be contiguous, starting at 0.
475      *
476      * @iommu: the IOMMUMemoryRegion
477      * @attrs: memory transaction attributes
478      */
479     int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
480 
481     /**
482      * @num_indexes:
483      *
484      * Return the number of IOMMU indexes this IOMMU supports.
485      *
486      * Optional method: if this method is not provided, then
487      * memory_region_iommu_num_indexes() will return 1, indicating that
488      * only a single IOMMU index is supported.
489      *
490      * @iommu: the IOMMUMemoryRegion
491      */
492     int (*num_indexes)(IOMMUMemoryRegion *iommu);
493 
494     /**
495      * @iommu_set_page_size_mask:
496      *
497      * Restrict the page size mask that can be supported with a given IOMMU
498      * memory region. Used for example to propagate host physical IOMMU page
499      * size mask limitations to the virtual IOMMU.
500      *
501      * Optional method: if this method is not provided, then the default global
502      * page mask is used.
503      *
504      * @iommu: the IOMMUMemoryRegion
505      *
506      * @page_size_mask: a bitmask of supported page sizes. At least one bit,
507      * representing the smallest page size, must be set. Additional set bits
508      * represent supported block sizes. For example a host physical IOMMU that
509      * uses page tables with a page size of 4kB, and supports 2MB and 4GB
510      * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate
511      * block sizes is specified with mask 0xfffffffffffff000.
512      *
513      * Returns 0 on success, or a negative error. In case of failure, the error
514      * object must be created.
515      */
516      int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu,
517                                      uint64_t page_size_mask,
518                                      Error **errp);
519 };
520 
521 typedef struct RamDiscardListener RamDiscardListener;
522 typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl,
523                                  MemoryRegionSection *section);
524 typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl,
525                                  MemoryRegionSection *section);
526 
527 struct RamDiscardListener {
528     /*
529      * @notify_populate:
530      *
531      * Notification that previously discarded memory is about to get populated.
532      * Listeners are able to object. If any listener objects, already
533      * successfully notified listeners are notified about a discard again.
534      *
535      * @rdl: the #RamDiscardListener getting notified
536      * @section: the #MemoryRegionSection to get populated. The section
537      *           is aligned within the memory region to the minimum granularity
538      *           unless it would exceed the registered section.
539      *
540      * Returns 0 on success. If the notification is rejected by the listener,
541      * an error is returned.
542      */
543     NotifyRamPopulate notify_populate;
544 
545     /*
546      * @notify_discard:
547      *
548      * Notification that previously populated memory was discarded successfully
549      * and listeners should drop all references to such memory and prevent
550      * new population (e.g., unmap).
551      *
552      * @rdl: the #RamDiscardListener getting notified
553      * @section: the #MemoryRegionSection to get populated. The section
554      *           is aligned within the memory region to the minimum granularity
555      *           unless it would exceed the registered section.
556      */
557     NotifyRamDiscard notify_discard;
558 
559     /*
560      * @double_discard_supported:
561      *
562      * The listener suppors getting @notify_discard notifications that span
563      * already discarded parts.
564      */
565     bool double_discard_supported;
566 
567     MemoryRegionSection *section;
568     QLIST_ENTRY(RamDiscardListener) next;
569 };
570 
571 static inline void ram_discard_listener_init(RamDiscardListener *rdl,
572                                              NotifyRamPopulate populate_fn,
573                                              NotifyRamDiscard discard_fn,
574                                              bool double_discard_supported)
575 {
576     rdl->notify_populate = populate_fn;
577     rdl->notify_discard = discard_fn;
578     rdl->double_discard_supported = double_discard_supported;
579 }
580 
581 typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque);
582 typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque);
583 
584 /*
585  * RamDiscardManagerClass:
586  *
587  * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion
588  * regions are currently populated to be used/accessed by the VM, notifying
589  * after parts were discarded (freeing up memory) and before parts will be
590  * populated (consuming memory), to be used/accessed by the VM.
591  *
592  * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the
593  * #MemoryRegion isn't mapped yet; it cannot change while the #MemoryRegion is
594  * mapped.
595  *
596  * The #RamDiscardManager is intended to be used by technologies that are
597  * incompatible with discarding of RAM (e.g., VFIO, which may pin all
598  * memory inside a #MemoryRegion), and require proper coordination to only
599  * map the currently populated parts, to hinder parts that are expected to
600  * remain discarded from silently getting populated and consuming memory.
601  * Technologies that support discarding of RAM don't have to bother and can
602  * simply map the whole #MemoryRegion.
603  *
604  * An example #RamDiscardManager is virtio-mem, which logically (un)plugs
605  * memory within an assigned RAM #MemoryRegion, coordinated with the VM.
606  * Logically unplugging memory consists of discarding RAM. The VM agreed to not
607  * access unplugged (discarded) memory - especially via DMA. virtio-mem will
608  * properly coordinate with listeners before memory is plugged (populated),
609  * and after memory is unplugged (discarded).
610  *
611  * Listeners are called in multiples of the minimum granularity (unless it
612  * would exceed the registered range) and changes are aligned to the minimum
613  * granularity within the #MemoryRegion. Listeners have to prepare for memory
614  * becoming discarded in a different granularity than it was populated and the
615  * other way around.
616  */
617 struct RamDiscardManagerClass {
618     /* private */
619     InterfaceClass parent_class;
620 
621     /* public */
622 
623     /**
624      * @get_min_granularity:
625      *
626      * Get the minimum granularity in which listeners will get notified
627      * about changes within the #MemoryRegion via the #RamDiscardManager.
628      *
629      * @rdm: the #RamDiscardManager
630      * @mr: the #MemoryRegion
631      *
632      * Returns the minimum granularity.
633      */
634     uint64_t (*get_min_granularity)(const RamDiscardManager *rdm,
635                                     const MemoryRegion *mr);
636 
637     /**
638      * @is_populated:
639      *
640      * Check whether the given #MemoryRegionSection is completely populated
641      * (i.e., no parts are currently discarded) via the #RamDiscardManager.
642      * There are no alignment requirements.
643      *
644      * @rdm: the #RamDiscardManager
645      * @section: the #MemoryRegionSection
646      *
647      * Returns whether the given range is completely populated.
648      */
649     bool (*is_populated)(const RamDiscardManager *rdm,
650                          const MemoryRegionSection *section);
651 
652     /**
653      * @replay_populated:
654      *
655      * Call the #ReplayRamPopulate callback for all populated parts within the
656      * #MemoryRegionSection via the #RamDiscardManager.
657      *
658      * In case any call fails, no further calls are made.
659      *
660      * @rdm: the #RamDiscardManager
661      * @section: the #MemoryRegionSection
662      * @replay_fn: the #ReplayRamPopulate callback
663      * @opaque: pointer to forward to the callback
664      *
665      * Returns 0 on success, or a negative error if any notification failed.
666      */
667     int (*replay_populated)(const RamDiscardManager *rdm,
668                             MemoryRegionSection *section,
669                             ReplayRamPopulate replay_fn, void *opaque);
670 
671     /**
672      * @replay_discarded:
673      *
674      * Call the #ReplayRamDiscard callback for all discarded parts within the
675      * #MemoryRegionSection via the #RamDiscardManager.
676      *
677      * @rdm: the #RamDiscardManager
678      * @section: the #MemoryRegionSection
679      * @replay_fn: the #ReplayRamDiscard callback
680      * @opaque: pointer to forward to the callback
681      */
682     void (*replay_discarded)(const RamDiscardManager *rdm,
683                              MemoryRegionSection *section,
684                              ReplayRamDiscard replay_fn, void *opaque);
685 
686     /**
687      * @register_listener:
688      *
689      * Register a #RamDiscardListener for the given #MemoryRegionSection and
690      * immediately notify the #RamDiscardListener about all populated parts
691      * within the #MemoryRegionSection via the #RamDiscardManager.
692      *
693      * In case any notification fails, no further notifications are triggered
694      * and an error is logged.
695      *
696      * @rdm: the #RamDiscardManager
697      * @rdl: the #RamDiscardListener
698      * @section: the #MemoryRegionSection
699      */
700     void (*register_listener)(RamDiscardManager *rdm,
701                               RamDiscardListener *rdl,
702                               MemoryRegionSection *section);
703 
704     /**
705      * @unregister_listener:
706      *
707      * Unregister a previously registered #RamDiscardListener via the
708      * #RamDiscardManager after notifying the #RamDiscardListener about all
709      * populated parts becoming unpopulated within the registered
710      * #MemoryRegionSection.
711      *
712      * @rdm: the #RamDiscardManager
713      * @rdl: the #RamDiscardListener
714      */
715     void (*unregister_listener)(RamDiscardManager *rdm,
716                                 RamDiscardListener *rdl);
717 };
718 
719 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
720                                                  const MemoryRegion *mr);
721 
722 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
723                                       const MemoryRegionSection *section);
724 
725 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
726                                          MemoryRegionSection *section,
727                                          ReplayRamPopulate replay_fn,
728                                          void *opaque);
729 
730 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
731                                           MemoryRegionSection *section,
732                                           ReplayRamDiscard replay_fn,
733                                           void *opaque);
734 
735 void ram_discard_manager_register_listener(RamDiscardManager *rdm,
736                                            RamDiscardListener *rdl,
737                                            MemoryRegionSection *section);
738 
739 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
740                                              RamDiscardListener *rdl);
741 
742 bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr,
743                           ram_addr_t *ram_addr, bool *read_only,
744                           bool *mr_has_discard_manager);
745 
746 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
747 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
748 
749 /** MemoryRegion:
750  *
751  * A struct representing a memory region.
752  */
753 struct MemoryRegion {
754     Object parent_obj;
755 
756     /* private: */
757 
758     /* The following fields should fit in a cache line */
759     bool romd_mode;
760     bool ram;
761     bool subpage;
762     bool readonly; /* For RAM regions */
763     bool nonvolatile;
764     bool rom_device;
765     bool flush_coalesced_mmio;
766     uint8_t dirty_log_mask;
767     bool is_iommu;
768     RAMBlock *ram_block;
769     Object *owner;
770     /* owner as TYPE_DEVICE. Used for re-entrancy checks in MR access hotpath */
771     DeviceState *dev;
772 
773     const MemoryRegionOps *ops;
774     void *opaque;
775     MemoryRegion *container;
776     int mapped_via_alias; /* Mapped via an alias, container might be NULL */
777     Int128 size;
778     hwaddr addr;
779     void (*destructor)(MemoryRegion *mr);
780     uint64_t align;
781     bool terminates;
782     bool ram_device;
783     bool enabled;
784     bool warning_printed; /* For reservations */
785     uint8_t vga_logging_count;
786     MemoryRegion *alias;
787     hwaddr alias_offset;
788     int32_t priority;
789     QTAILQ_HEAD(, MemoryRegion) subregions;
790     QTAILQ_ENTRY(MemoryRegion) subregions_link;
791     QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
792     const char *name;
793     unsigned ioeventfd_nb;
794     MemoryRegionIoeventfd *ioeventfds;
795     RamDiscardManager *rdm; /* Only for RAM */
796 
797     /* For devices designed to perform re-entrant IO into their own IO MRs */
798     bool disable_reentrancy_guard;
799 };
800 
801 struct IOMMUMemoryRegion {
802     MemoryRegion parent_obj;
803 
804     QLIST_HEAD(, IOMMUNotifier) iommu_notify;
805     IOMMUNotifierFlag iommu_notify_flags;
806 };
807 
808 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
809     QLIST_FOREACH((n), &(mr)->iommu_notify, node)
810 
811 /**
812  * struct MemoryListener: callbacks structure for updates to the physical memory map
813  *
814  * Allows a component to adjust to changes in the guest-visible memory map.
815  * Use with memory_listener_register() and memory_listener_unregister().
816  */
817 struct MemoryListener {
818     /**
819      * @begin:
820      *
821      * Called at the beginning of an address space update transaction.
822      * Followed by calls to #MemoryListener.region_add(),
823      * #MemoryListener.region_del(), #MemoryListener.region_nop(),
824      * #MemoryListener.log_start() and #MemoryListener.log_stop() in
825      * increasing address order.
826      *
827      * @listener: The #MemoryListener.
828      */
829     void (*begin)(MemoryListener *listener);
830 
831     /**
832      * @commit:
833      *
834      * Called at the end of an address space update transaction,
835      * after the last call to #MemoryListener.region_add(),
836      * #MemoryListener.region_del() or #MemoryListener.region_nop(),
837      * #MemoryListener.log_start() and #MemoryListener.log_stop().
838      *
839      * @listener: The #MemoryListener.
840      */
841     void (*commit)(MemoryListener *listener);
842 
843     /**
844      * @region_add:
845      *
846      * Called during an address space update transaction,
847      * for a section of the address space that is new in this address space
848      * space since the last transaction.
849      *
850      * @listener: The #MemoryListener.
851      * @section: The new #MemoryRegionSection.
852      */
853     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
854 
855     /**
856      * @region_del:
857      *
858      * Called during an address space update transaction,
859      * for a section of the address space that has disappeared in the address
860      * space since the last transaction.
861      *
862      * @listener: The #MemoryListener.
863      * @section: The old #MemoryRegionSection.
864      */
865     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
866 
867     /**
868      * @region_nop:
869      *
870      * Called during an address space update transaction,
871      * for a section of the address space that is in the same place in the address
872      * space as in the last transaction.
873      *
874      * @listener: The #MemoryListener.
875      * @section: The #MemoryRegionSection.
876      */
877     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
878 
879     /**
880      * @log_start:
881      *
882      * Called during an address space update transaction, after
883      * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
884      * #MemoryListener.region_nop(), if dirty memory logging clients have
885      * become active since the last transaction.
886      *
887      * @listener: The #MemoryListener.
888      * @section: The #MemoryRegionSection.
889      * @old: A bitmap of dirty memory logging clients that were active in
890      * the previous transaction.
891      * @new: A bitmap of dirty memory logging clients that are active in
892      * the current transaction.
893      */
894     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
895                       int old, int new);
896 
897     /**
898      * @log_stop:
899      *
900      * Called during an address space update transaction, after
901      * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
902      * #MemoryListener.region_nop() and possibly after
903      * #MemoryListener.log_start(), if dirty memory logging clients have
904      * become inactive since the last transaction.
905      *
906      * @listener: The #MemoryListener.
907      * @section: The #MemoryRegionSection.
908      * @old: A bitmap of dirty memory logging clients that were active in
909      * the previous transaction.
910      * @new: A bitmap of dirty memory logging clients that are active in
911      * the current transaction.
912      */
913     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
914                      int old, int new);
915 
916     /**
917      * @log_sync:
918      *
919      * Called by memory_region_snapshot_and_clear_dirty() and
920      * memory_global_dirty_log_sync(), before accessing QEMU's "official"
921      * copy of the dirty memory bitmap for a #MemoryRegionSection.
922      *
923      * @listener: The #MemoryListener.
924      * @section: The #MemoryRegionSection.
925      */
926     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
927 
928     /**
929      * @log_sync_global:
930      *
931      * This is the global version of @log_sync when the listener does
932      * not have a way to synchronize the log with finer granularity.
933      * When the listener registers with @log_sync_global defined, then
934      * its @log_sync must be NULL.  Vice versa.
935      *
936      * @listener: The #MemoryListener.
937      * @last_stage: The last stage to synchronize the log during migration.
938      * The caller should gurantee that the synchronization with true for
939      * @last_stage is triggered for once after all VCPUs have been stopped.
940      */
941     void (*log_sync_global)(MemoryListener *listener, bool last_stage);
942 
943     /**
944      * @log_clear:
945      *
946      * Called before reading the dirty memory bitmap for a
947      * #MemoryRegionSection.
948      *
949      * @listener: The #MemoryListener.
950      * @section: The #MemoryRegionSection.
951      */
952     void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
953 
954     /**
955      * @log_global_start:
956      *
957      * Called by memory_global_dirty_log_start(), which
958      * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
959      * the address space.  #MemoryListener.log_global_start() is also
960      * called when a #MemoryListener is added, if global dirty logging is
961      * active at that time.
962      *
963      * @listener: The #MemoryListener.
964      */
965     void (*log_global_start)(MemoryListener *listener);
966 
967     /**
968      * @log_global_stop:
969      *
970      * Called by memory_global_dirty_log_stop(), which
971      * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
972      * the address space.
973      *
974      * @listener: The #MemoryListener.
975      */
976     void (*log_global_stop)(MemoryListener *listener);
977 
978     /**
979      * @log_global_after_sync:
980      *
981      * Called after reading the dirty memory bitmap
982      * for any #MemoryRegionSection.
983      *
984      * @listener: The #MemoryListener.
985      */
986     void (*log_global_after_sync)(MemoryListener *listener);
987 
988     /**
989      * @eventfd_add:
990      *
991      * Called during an address space update transaction,
992      * for a section of the address space that has had a new ioeventfd
993      * registration since the last transaction.
994      *
995      * @listener: The #MemoryListener.
996      * @section: The new #MemoryRegionSection.
997      * @match_data: The @match_data parameter for the new ioeventfd.
998      * @data: The @data parameter for the new ioeventfd.
999      * @e: The #EventNotifier parameter for the new ioeventfd.
1000      */
1001     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
1002                         bool match_data, uint64_t data, EventNotifier *e);
1003 
1004     /**
1005      * @eventfd_del:
1006      *
1007      * Called during an address space update transaction,
1008      * for a section of the address space that has dropped an ioeventfd
1009      * registration since the last transaction.
1010      *
1011      * @listener: The #MemoryListener.
1012      * @section: The new #MemoryRegionSection.
1013      * @match_data: The @match_data parameter for the dropped ioeventfd.
1014      * @data: The @data parameter for the dropped ioeventfd.
1015      * @e: The #EventNotifier parameter for the dropped ioeventfd.
1016      */
1017     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
1018                         bool match_data, uint64_t data, EventNotifier *e);
1019 
1020     /**
1021      * @coalesced_io_add:
1022      *
1023      * Called during an address space update transaction,
1024      * for a section of the address space that has had a new coalesced
1025      * MMIO range registration since the last transaction.
1026      *
1027      * @listener: The #MemoryListener.
1028      * @section: The new #MemoryRegionSection.
1029      * @addr: The starting address for the coalesced MMIO range.
1030      * @len: The length of the coalesced MMIO range.
1031      */
1032     void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
1033                                hwaddr addr, hwaddr len);
1034 
1035     /**
1036      * @coalesced_io_del:
1037      *
1038      * Called during an address space update transaction,
1039      * for a section of the address space that has dropped a coalesced
1040      * MMIO range since the last transaction.
1041      *
1042      * @listener: The #MemoryListener.
1043      * @section: The new #MemoryRegionSection.
1044      * @addr: The starting address for the coalesced MMIO range.
1045      * @len: The length of the coalesced MMIO range.
1046      */
1047     void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
1048                                hwaddr addr, hwaddr len);
1049     /**
1050      * @priority:
1051      *
1052      * Govern the order in which memory listeners are invoked. Lower priorities
1053      * are invoked earlier for "add" or "start" callbacks, and later for "delete"
1054      * or "stop" callbacks.
1055      */
1056     unsigned priority;
1057 
1058     /**
1059      * @name:
1060      *
1061      * Name of the listener.  It can be used in contexts where we'd like to
1062      * identify one memory listener with the rest.
1063      */
1064     const char *name;
1065 
1066     /* private: */
1067     AddressSpace *address_space;
1068     QTAILQ_ENTRY(MemoryListener) link;
1069     QTAILQ_ENTRY(MemoryListener) link_as;
1070 };
1071 
1072 /**
1073  * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects
1074  */
1075 struct AddressSpace {
1076     /* private: */
1077     struct rcu_head rcu;
1078     char *name;
1079     MemoryRegion *root;
1080 
1081     /* Accessed via RCU.  */
1082     struct FlatView *current_map;
1083 
1084     int ioeventfd_nb;
1085     struct MemoryRegionIoeventfd *ioeventfds;
1086     QTAILQ_HEAD(, MemoryListener) listeners;
1087     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
1088 };
1089 
1090 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
1091 typedef struct FlatRange FlatRange;
1092 
1093 /* Flattened global view of current active memory hierarchy.  Kept in sorted
1094  * order.
1095  */
1096 struct FlatView {
1097     struct rcu_head rcu;
1098     unsigned ref;
1099     FlatRange *ranges;
1100     unsigned nr;
1101     unsigned nr_allocated;
1102     struct AddressSpaceDispatch *dispatch;
1103     MemoryRegion *root;
1104 };
1105 
1106 static inline FlatView *address_space_to_flatview(AddressSpace *as)
1107 {
1108     return qatomic_rcu_read(&as->current_map);
1109 }
1110 
1111 /**
1112  * typedef flatview_cb: callback for flatview_for_each_range()
1113  *
1114  * @start: start address of the range within the FlatView
1115  * @len: length of the range in bytes
1116  * @mr: MemoryRegion covering this range
1117  * @offset_in_region: offset of the first byte of the range within @mr
1118  * @opaque: data pointer passed to flatview_for_each_range()
1119  *
1120  * Returns: true to stop the iteration, false to keep going.
1121  */
1122 typedef bool (*flatview_cb)(Int128 start,
1123                             Int128 len,
1124                             const MemoryRegion *mr,
1125                             hwaddr offset_in_region,
1126                             void *opaque);
1127 
1128 /**
1129  * flatview_for_each_range: Iterate through a FlatView
1130  * @fv: the FlatView to iterate through
1131  * @cb: function to call for each range
1132  * @opaque: opaque data pointer to pass to @cb
1133  *
1134  * A FlatView is made up of a list of non-overlapping ranges, each of
1135  * which is a slice of a MemoryRegion. This function iterates through
1136  * each range in @fv, calling @cb. The callback function can terminate
1137  * iteration early by returning 'true'.
1138  */
1139 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque);
1140 
1141 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
1142                                           MemoryRegionSection *b)
1143 {
1144     return a->mr == b->mr &&
1145            a->fv == b->fv &&
1146            a->offset_within_region == b->offset_within_region &&
1147            a->offset_within_address_space == b->offset_within_address_space &&
1148            int128_eq(a->size, b->size) &&
1149            a->readonly == b->readonly &&
1150            a->nonvolatile == b->nonvolatile;
1151 }
1152 
1153 /**
1154  * memory_region_section_new_copy: Copy a memory region section
1155  *
1156  * Allocate memory for a new copy, copy the memory region section, and
1157  * properly take a reference on all relevant members.
1158  *
1159  * @s: the #MemoryRegionSection to copy
1160  */
1161 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s);
1162 
1163 /**
1164  * memory_region_section_new_copy: Free a copied memory region section
1165  *
1166  * Free a copy of a memory section created via memory_region_section_new_copy().
1167  * properly dropping references on all relevant members.
1168  *
1169  * @s: the #MemoryRegionSection to copy
1170  */
1171 void memory_region_section_free_copy(MemoryRegionSection *s);
1172 
1173 /**
1174  * memory_region_init: Initialize a memory region
1175  *
1176  * The region typically acts as a container for other memory regions.  Use
1177  * memory_region_add_subregion() to add subregions.
1178  *
1179  * @mr: the #MemoryRegion to be initialized
1180  * @owner: the object that tracks the region's reference count
1181  * @name: used for debugging; not visible to the user or ABI
1182  * @size: size of the region; any subregions beyond this size will be clipped
1183  */
1184 void memory_region_init(MemoryRegion *mr,
1185                         Object *owner,
1186                         const char *name,
1187                         uint64_t size);
1188 
1189 /**
1190  * memory_region_ref: Add 1 to a memory region's reference count
1191  *
1192  * Whenever memory regions are accessed outside the BQL, they need to be
1193  * preserved against hot-unplug.  MemoryRegions actually do not have their
1194  * own reference count; they piggyback on a QOM object, their "owner".
1195  * This function adds a reference to the owner.
1196  *
1197  * All MemoryRegions must have an owner if they can disappear, even if the
1198  * device they belong to operates exclusively under the BQL.  This is because
1199  * the region could be returned at any time by memory_region_find, and this
1200  * is usually under guest control.
1201  *
1202  * @mr: the #MemoryRegion
1203  */
1204 void memory_region_ref(MemoryRegion *mr);
1205 
1206 /**
1207  * memory_region_unref: Remove 1 to a memory region's reference count
1208  *
1209  * Whenever memory regions are accessed outside the BQL, they need to be
1210  * preserved against hot-unplug.  MemoryRegions actually do not have their
1211  * own reference count; they piggyback on a QOM object, their "owner".
1212  * This function removes a reference to the owner and possibly destroys it.
1213  *
1214  * @mr: the #MemoryRegion
1215  */
1216 void memory_region_unref(MemoryRegion *mr);
1217 
1218 /**
1219  * memory_region_init_io: Initialize an I/O memory region.
1220  *
1221  * Accesses into the region will cause the callbacks in @ops to be called.
1222  * if @size is nonzero, subregions will be clipped to @size.
1223  *
1224  * @mr: the #MemoryRegion to be initialized.
1225  * @owner: the object that tracks the region's reference count
1226  * @ops: a structure containing read and write callbacks to be used when
1227  *       I/O is performed on the region.
1228  * @opaque: passed to the read and write callbacks of the @ops structure.
1229  * @name: used for debugging; not visible to the user or ABI
1230  * @size: size of the region.
1231  */
1232 void memory_region_init_io(MemoryRegion *mr,
1233                            Object *owner,
1234                            const MemoryRegionOps *ops,
1235                            void *opaque,
1236                            const char *name,
1237                            uint64_t size);
1238 
1239 /**
1240  * memory_region_init_ram_nomigrate:  Initialize RAM memory region.  Accesses
1241  *                                    into the region will modify memory
1242  *                                    directly.
1243  *
1244  * @mr: the #MemoryRegion to be initialized.
1245  * @owner: the object that tracks the region's reference count
1246  * @name: Region name, becomes part of RAMBlock name used in migration stream
1247  *        must be unique within any device
1248  * @size: size of the region.
1249  * @errp: pointer to Error*, to store an error if it happens.
1250  *
1251  * Note that this function does not do anything to cause the data in the
1252  * RAM memory region to be migrated; that is the responsibility of the caller.
1253  */
1254 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1255                                       Object *owner,
1256                                       const char *name,
1257                                       uint64_t size,
1258                                       Error **errp);
1259 
1260 /**
1261  * memory_region_init_ram_flags_nomigrate:  Initialize RAM memory region.
1262  *                                          Accesses into the region will
1263  *                                          modify memory directly.
1264  *
1265  * @mr: the #MemoryRegion to be initialized.
1266  * @owner: the object that tracks the region's reference count
1267  * @name: Region name, becomes part of RAMBlock name used in migration stream
1268  *        must be unique within any device
1269  * @size: size of the region.
1270  * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE.
1271  * @errp: pointer to Error*, to store an error if it happens.
1272  *
1273  * Note that this function does not do anything to cause the data in the
1274  * RAM memory region to be migrated; that is the responsibility of the caller.
1275  */
1276 void memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1277                                             Object *owner,
1278                                             const char *name,
1279                                             uint64_t size,
1280                                             uint32_t ram_flags,
1281                                             Error **errp);
1282 
1283 /**
1284  * memory_region_init_resizeable_ram:  Initialize memory region with resizable
1285  *                                     RAM.  Accesses into the region will
1286  *                                     modify memory directly.  Only an initial
1287  *                                     portion of this RAM is actually used.
1288  *                                     Changing the size while migrating
1289  *                                     can result in the migration being
1290  *                                     canceled.
1291  *
1292  * @mr: the #MemoryRegion to be initialized.
1293  * @owner: the object that tracks the region's reference count
1294  * @name: Region name, becomes part of RAMBlock name used in migration stream
1295  *        must be unique within any device
1296  * @size: used size of the region.
1297  * @max_size: max size of the region.
1298  * @resized: callback to notify owner about used size change.
1299  * @errp: pointer to Error*, to store an error if it happens.
1300  *
1301  * Note that this function does not do anything to cause the data in the
1302  * RAM memory region to be migrated; that is the responsibility of the caller.
1303  */
1304 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1305                                        Object *owner,
1306                                        const char *name,
1307                                        uint64_t size,
1308                                        uint64_t max_size,
1309                                        void (*resized)(const char*,
1310                                                        uint64_t length,
1311                                                        void *host),
1312                                        Error **errp);
1313 #ifdef CONFIG_POSIX
1314 
1315 /**
1316  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
1317  *                                    mmap-ed backend.
1318  *
1319  * @mr: the #MemoryRegion to be initialized.
1320  * @owner: the object that tracks the region's reference count
1321  * @name: Region name, becomes part of RAMBlock name used in migration stream
1322  *        must be unique within any device
1323  * @size: size of the region.
1324  * @align: alignment of the region base address; if 0, the default alignment
1325  *         (getpagesize()) will be used.
1326  * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1327  *             RAM_NORESERVE,
1328  * @path: the path in which to allocate the RAM.
1329  * @readonly: true to open @path for reading, false for read/write.
1330  * @errp: pointer to Error*, to store an error if it happens.
1331  *
1332  * Note that this function does not do anything to cause the data in the
1333  * RAM memory region to be migrated; that is the responsibility of the caller.
1334  */
1335 void memory_region_init_ram_from_file(MemoryRegion *mr,
1336                                       Object *owner,
1337                                       const char *name,
1338                                       uint64_t size,
1339                                       uint64_t align,
1340                                       uint32_t ram_flags,
1341                                       const char *path,
1342                                       bool readonly,
1343                                       Error **errp);
1344 
1345 /**
1346  * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
1347  *                                  mmap-ed backend.
1348  *
1349  * @mr: the #MemoryRegion to be initialized.
1350  * @owner: the object that tracks the region's reference count
1351  * @name: the name of the region.
1352  * @size: size of the region.
1353  * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1354  *             RAM_NORESERVE, RAM_PROTECTED.
1355  * @fd: the fd to mmap.
1356  * @offset: offset within the file referenced by fd
1357  * @errp: pointer to Error*, to store an error if it happens.
1358  *
1359  * Note that this function does not do anything to cause the data in the
1360  * RAM memory region to be migrated; that is the responsibility of the caller.
1361  */
1362 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1363                                     Object *owner,
1364                                     const char *name,
1365                                     uint64_t size,
1366                                     uint32_t ram_flags,
1367                                     int fd,
1368                                     ram_addr_t offset,
1369                                     Error **errp);
1370 #endif
1371 
1372 /**
1373  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
1374  *                              user-provided pointer.  Accesses into the
1375  *                              region will modify memory directly.
1376  *
1377  * @mr: the #MemoryRegion to be initialized.
1378  * @owner: the object that tracks the region's reference count
1379  * @name: Region name, becomes part of RAMBlock name used in migration stream
1380  *        must be unique within any device
1381  * @size: size of the region.
1382  * @ptr: memory to be mapped; must contain at least @size bytes.
1383  *
1384  * Note that this function does not do anything to cause the data in the
1385  * RAM memory region to be migrated; that is the responsibility of the caller.
1386  */
1387 void memory_region_init_ram_ptr(MemoryRegion *mr,
1388                                 Object *owner,
1389                                 const char *name,
1390                                 uint64_t size,
1391                                 void *ptr);
1392 
1393 /**
1394  * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
1395  *                                     a user-provided pointer.
1396  *
1397  * A RAM device represents a mapping to a physical device, such as to a PCI
1398  * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
1399  * into the VM address space and access to the region will modify memory
1400  * directly.  However, the memory region should not be included in a memory
1401  * dump (device may not be enabled/mapped at the time of the dump), and
1402  * operations incompatible with manipulating MMIO should be avoided.  Replaces
1403  * skip_dump flag.
1404  *
1405  * @mr: the #MemoryRegion to be initialized.
1406  * @owner: the object that tracks the region's reference count
1407  * @name: the name of the region.
1408  * @size: size of the region.
1409  * @ptr: memory to be mapped; must contain at least @size bytes.
1410  *
1411  * Note that this function does not do anything to cause the data in the
1412  * RAM memory region to be migrated; that is the responsibility of the caller.
1413  * (For RAM device memory regions, migrating the contents rarely makes sense.)
1414  */
1415 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1416                                        Object *owner,
1417                                        const char *name,
1418                                        uint64_t size,
1419                                        void *ptr);
1420 
1421 /**
1422  * memory_region_init_alias: Initialize a memory region that aliases all or a
1423  *                           part of another memory region.
1424  *
1425  * @mr: the #MemoryRegion to be initialized.
1426  * @owner: the object that tracks the region's reference count
1427  * @name: used for debugging; not visible to the user or ABI
1428  * @orig: the region to be referenced; @mr will be equivalent to
1429  *        @orig between @offset and @offset + @size - 1.
1430  * @offset: start of the section in @orig to be referenced.
1431  * @size: size of the region.
1432  */
1433 void memory_region_init_alias(MemoryRegion *mr,
1434                               Object *owner,
1435                               const char *name,
1436                               MemoryRegion *orig,
1437                               hwaddr offset,
1438                               uint64_t size);
1439 
1440 /**
1441  * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
1442  *
1443  * This has the same effect as calling memory_region_init_ram_nomigrate()
1444  * and then marking the resulting region read-only with
1445  * memory_region_set_readonly().
1446  *
1447  * Note that this function does not do anything to cause the data in the
1448  * RAM side of the memory region to be migrated; that is the responsibility
1449  * of the caller.
1450  *
1451  * @mr: the #MemoryRegion to be initialized.
1452  * @owner: the object that tracks the region's reference count
1453  * @name: Region name, becomes part of RAMBlock name used in migration stream
1454  *        must be unique within any device
1455  * @size: size of the region.
1456  * @errp: pointer to Error*, to store an error if it happens.
1457  */
1458 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1459                                       Object *owner,
1460                                       const char *name,
1461                                       uint64_t size,
1462                                       Error **errp);
1463 
1464 /**
1465  * memory_region_init_rom_device_nomigrate:  Initialize a ROM memory region.
1466  *                                 Writes are handled via callbacks.
1467  *
1468  * Note that this function does not do anything to cause the data in the
1469  * RAM side of the memory region to be migrated; that is the responsibility
1470  * of the caller.
1471  *
1472  * @mr: the #MemoryRegion to be initialized.
1473  * @owner: the object that tracks the region's reference count
1474  * @ops: callbacks for write access handling (must not be NULL).
1475  * @opaque: passed to the read and write callbacks of the @ops structure.
1476  * @name: Region name, becomes part of RAMBlock name used in migration stream
1477  *        must be unique within any device
1478  * @size: size of the region.
1479  * @errp: pointer to Error*, to store an error if it happens.
1480  */
1481 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1482                                              Object *owner,
1483                                              const MemoryRegionOps *ops,
1484                                              void *opaque,
1485                                              const char *name,
1486                                              uint64_t size,
1487                                              Error **errp);
1488 
1489 /**
1490  * memory_region_init_iommu: Initialize a memory region of a custom type
1491  * that translates addresses
1492  *
1493  * An IOMMU region translates addresses and forwards accesses to a target
1494  * memory region.
1495  *
1496  * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
1497  * @_iommu_mr should be a pointer to enough memory for an instance of
1498  * that subclass, @instance_size is the size of that subclass, and
1499  * @mrtypename is its name. This function will initialize @_iommu_mr as an
1500  * instance of the subclass, and its methods will then be called to handle
1501  * accesses to the memory region. See the documentation of
1502  * #IOMMUMemoryRegionClass for further details.
1503  *
1504  * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
1505  * @instance_size: the IOMMUMemoryRegion subclass instance size
1506  * @mrtypename: the type name of the #IOMMUMemoryRegion
1507  * @owner: the object that tracks the region's reference count
1508  * @name: used for debugging; not visible to the user or ABI
1509  * @size: size of the region.
1510  */
1511 void memory_region_init_iommu(void *_iommu_mr,
1512                               size_t instance_size,
1513                               const char *mrtypename,
1514                               Object *owner,
1515                               const char *name,
1516                               uint64_t size);
1517 
1518 /**
1519  * memory_region_init_ram - Initialize RAM memory region.  Accesses into the
1520  *                          region will modify memory directly.
1521  *
1522  * @mr: the #MemoryRegion to be initialized
1523  * @owner: the object that tracks the region's reference count (must be
1524  *         TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
1525  * @name: name of the memory region
1526  * @size: size of the region in bytes
1527  * @errp: pointer to Error*, to store an error if it happens.
1528  *
1529  * This function allocates RAM for a board model or device, and
1530  * arranges for it to be migrated (by calling vmstate_register_ram()
1531  * if @owner is a DeviceState, or vmstate_register_ram_global() if
1532  * @owner is NULL).
1533  *
1534  * TODO: Currently we restrict @owner to being either NULL (for
1535  * global RAM regions with no owner) or devices, so that we can
1536  * give the RAM block a unique name for migration purposes.
1537  * We should lift this restriction and allow arbitrary Objects.
1538  * If you pass a non-NULL non-device @owner then we will assert.
1539  */
1540 void memory_region_init_ram(MemoryRegion *mr,
1541                             Object *owner,
1542                             const char *name,
1543                             uint64_t size,
1544                             Error **errp);
1545 
1546 /**
1547  * memory_region_init_rom: Initialize a ROM memory region.
1548  *
1549  * This has the same effect as calling memory_region_init_ram()
1550  * and then marking the resulting region read-only with
1551  * memory_region_set_readonly(). This includes arranging for the
1552  * contents to be migrated.
1553  *
1554  * TODO: Currently we restrict @owner to being either NULL (for
1555  * global RAM regions with no owner) or devices, so that we can
1556  * give the RAM block a unique name for migration purposes.
1557  * We should lift this restriction and allow arbitrary Objects.
1558  * If you pass a non-NULL non-device @owner then we will assert.
1559  *
1560  * @mr: the #MemoryRegion to be initialized.
1561  * @owner: the object that tracks the region's reference count
1562  * @name: Region name, becomes part of RAMBlock name used in migration stream
1563  *        must be unique within any device
1564  * @size: size of the region.
1565  * @errp: pointer to Error*, to store an error if it happens.
1566  */
1567 void memory_region_init_rom(MemoryRegion *mr,
1568                             Object *owner,
1569                             const char *name,
1570                             uint64_t size,
1571                             Error **errp);
1572 
1573 /**
1574  * memory_region_init_rom_device:  Initialize a ROM memory region.
1575  *                                 Writes are handled via callbacks.
1576  *
1577  * This function initializes a memory region backed by RAM for reads
1578  * and callbacks for writes, and arranges for the RAM backing to
1579  * be migrated (by calling vmstate_register_ram()
1580  * if @owner is a DeviceState, or vmstate_register_ram_global() if
1581  * @owner is NULL).
1582  *
1583  * TODO: Currently we restrict @owner to being either NULL (for
1584  * global RAM regions with no owner) or devices, so that we can
1585  * give the RAM block a unique name for migration purposes.
1586  * We should lift this restriction and allow arbitrary Objects.
1587  * If you pass a non-NULL non-device @owner then we will assert.
1588  *
1589  * @mr: the #MemoryRegion to be initialized.
1590  * @owner: the object that tracks the region's reference count
1591  * @ops: callbacks for write access handling (must not be NULL).
1592  * @opaque: passed to the read and write callbacks of the @ops structure.
1593  * @name: Region name, becomes part of RAMBlock name used in migration stream
1594  *        must be unique within any device
1595  * @size: size of the region.
1596  * @errp: pointer to Error*, to store an error if it happens.
1597  */
1598 void memory_region_init_rom_device(MemoryRegion *mr,
1599                                    Object *owner,
1600                                    const MemoryRegionOps *ops,
1601                                    void *opaque,
1602                                    const char *name,
1603                                    uint64_t size,
1604                                    Error **errp);
1605 
1606 
1607 /**
1608  * memory_region_owner: get a memory region's owner.
1609  *
1610  * @mr: the memory region being queried.
1611  */
1612 Object *memory_region_owner(MemoryRegion *mr);
1613 
1614 /**
1615  * memory_region_size: get a memory region's size.
1616  *
1617  * @mr: the memory region being queried.
1618  */
1619 uint64_t memory_region_size(MemoryRegion *mr);
1620 
1621 /**
1622  * memory_region_is_ram: check whether a memory region is random access
1623  *
1624  * Returns %true if a memory region is random access.
1625  *
1626  * @mr: the memory region being queried
1627  */
1628 static inline bool memory_region_is_ram(MemoryRegion *mr)
1629 {
1630     return mr->ram;
1631 }
1632 
1633 /**
1634  * memory_region_is_ram_device: check whether a memory region is a ram device
1635  *
1636  * Returns %true if a memory region is a device backed ram region
1637  *
1638  * @mr: the memory region being queried
1639  */
1640 bool memory_region_is_ram_device(MemoryRegion *mr);
1641 
1642 /**
1643  * memory_region_is_romd: check whether a memory region is in ROMD mode
1644  *
1645  * Returns %true if a memory region is a ROM device and currently set to allow
1646  * direct reads.
1647  *
1648  * @mr: the memory region being queried
1649  */
1650 static inline bool memory_region_is_romd(MemoryRegion *mr)
1651 {
1652     return mr->rom_device && mr->romd_mode;
1653 }
1654 
1655 /**
1656  * memory_region_is_protected: check whether a memory region is protected
1657  *
1658  * Returns %true if a memory region is protected RAM and cannot be accessed
1659  * via standard mechanisms, e.g. DMA.
1660  *
1661  * @mr: the memory region being queried
1662  */
1663 bool memory_region_is_protected(MemoryRegion *mr);
1664 
1665 /**
1666  * memory_region_get_iommu: check whether a memory region is an iommu
1667  *
1668  * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1669  * otherwise NULL.
1670  *
1671  * @mr: the memory region being queried
1672  */
1673 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1674 {
1675     if (mr->alias) {
1676         return memory_region_get_iommu(mr->alias);
1677     }
1678     if (mr->is_iommu) {
1679         return (IOMMUMemoryRegion *) mr;
1680     }
1681     return NULL;
1682 }
1683 
1684 /**
1685  * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1686  *   if an iommu or NULL if not
1687  *
1688  * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1689  * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1690  *
1691  * @iommu_mr: the memory region being queried
1692  */
1693 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1694         IOMMUMemoryRegion *iommu_mr)
1695 {
1696     return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1697 }
1698 
1699 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1700 
1701 /**
1702  * memory_region_iommu_get_min_page_size: get minimum supported page size
1703  * for an iommu
1704  *
1705  * Returns minimum supported page size for an iommu.
1706  *
1707  * @iommu_mr: the memory region being queried
1708  */
1709 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1710 
1711 /**
1712  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1713  *
1714  * Note: for any IOMMU implementation, an in-place mapping change
1715  * should be notified with an UNMAP followed by a MAP.
1716  *
1717  * @iommu_mr: the memory region that was changed
1718  * @iommu_idx: the IOMMU index for the translation table which has changed
1719  * @event: TLB event with the new entry in the IOMMU translation table.
1720  *         The entry replaces all old entries for the same virtual I/O address
1721  *         range.
1722  */
1723 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1724                                 int iommu_idx,
1725                                 IOMMUTLBEvent event);
1726 
1727 /**
1728  * memory_region_notify_iommu_one: notify a change in an IOMMU translation
1729  *                           entry to a single notifier
1730  *
1731  * This works just like memory_region_notify_iommu(), but it only
1732  * notifies a specific notifier, not all of them.
1733  *
1734  * @notifier: the notifier to be notified
1735  * @event: TLB event with the new entry in the IOMMU translation table.
1736  *         The entry replaces all old entries for the same virtual I/O address
1737  *         range.
1738  */
1739 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1740                                     IOMMUTLBEvent *event);
1741 
1742 /**
1743  * memory_region_unmap_iommu_notifier_range: notify a unmap for an IOMMU
1744  *                                           translation that covers the
1745  *                                           range of a notifier
1746  *
1747  * @notifier: the notifier to be notified
1748  */
1749 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier);
1750 
1751 
1752 /**
1753  * memory_region_register_iommu_notifier: register a notifier for changes to
1754  * IOMMU translation entries.
1755  *
1756  * Returns 0 on success, or a negative errno otherwise. In particular,
1757  * -EINVAL indicates that at least one of the attributes of the notifier
1758  * is not supported (flag/range) by the IOMMU memory region. In case of error
1759  * the error object must be created.
1760  *
1761  * @mr: the memory region to observe
1762  * @n: the IOMMUNotifier to be added; the notify callback receives a
1763  *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1764  *     ceases to be valid on exit from the notifier.
1765  * @errp: pointer to Error*, to store an error if it happens.
1766  */
1767 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1768                                           IOMMUNotifier *n, Error **errp);
1769 
1770 /**
1771  * memory_region_iommu_replay: replay existing IOMMU translations to
1772  * a notifier with the minimum page granularity returned by
1773  * mr->iommu_ops->get_page_size().
1774  *
1775  * Note: this is not related to record-and-replay functionality.
1776  *
1777  * @iommu_mr: the memory region to observe
1778  * @n: the notifier to which to replay iommu mappings
1779  */
1780 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1781 
1782 /**
1783  * memory_region_unregister_iommu_notifier: unregister a notifier for
1784  * changes to IOMMU translation entries.
1785  *
1786  * @mr: the memory region which was observed and for which notity_stopped()
1787  *      needs to be called
1788  * @n: the notifier to be removed.
1789  */
1790 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1791                                              IOMMUNotifier *n);
1792 
1793 /**
1794  * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1795  * defined on the IOMMU.
1796  *
1797  * Returns 0 on success, or a negative errno otherwise. In particular,
1798  * -EINVAL indicates that the IOMMU does not support the requested
1799  * attribute.
1800  *
1801  * @iommu_mr: the memory region
1802  * @attr: the requested attribute
1803  * @data: a pointer to the requested attribute data
1804  */
1805 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1806                                  enum IOMMUMemoryRegionAttr attr,
1807                                  void *data);
1808 
1809 /**
1810  * memory_region_iommu_attrs_to_index: return the IOMMU index to
1811  * use for translations with the given memory transaction attributes.
1812  *
1813  * @iommu_mr: the memory region
1814  * @attrs: the memory transaction attributes
1815  */
1816 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1817                                        MemTxAttrs attrs);
1818 
1819 /**
1820  * memory_region_iommu_num_indexes: return the total number of IOMMU
1821  * indexes that this IOMMU supports.
1822  *
1823  * @iommu_mr: the memory region
1824  */
1825 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1826 
1827 /**
1828  * memory_region_iommu_set_page_size_mask: set the supported page
1829  * sizes for a given IOMMU memory region
1830  *
1831  * @iommu_mr: IOMMU memory region
1832  * @page_size_mask: supported page size mask
1833  * @errp: pointer to Error*, to store an error if it happens.
1834  */
1835 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1836                                            uint64_t page_size_mask,
1837                                            Error **errp);
1838 
1839 /**
1840  * memory_region_name: get a memory region's name
1841  *
1842  * Returns the string that was used to initialize the memory region.
1843  *
1844  * @mr: the memory region being queried
1845  */
1846 const char *memory_region_name(const MemoryRegion *mr);
1847 
1848 /**
1849  * memory_region_is_logging: return whether a memory region is logging writes
1850  *
1851  * Returns %true if the memory region is logging writes for the given client
1852  *
1853  * @mr: the memory region being queried
1854  * @client: the client being queried
1855  */
1856 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1857 
1858 /**
1859  * memory_region_get_dirty_log_mask: return the clients for which a
1860  * memory region is logging writes.
1861  *
1862  * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1863  * are the bit indices.
1864  *
1865  * @mr: the memory region being queried
1866  */
1867 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1868 
1869 /**
1870  * memory_region_is_rom: check whether a memory region is ROM
1871  *
1872  * Returns %true if a memory region is read-only memory.
1873  *
1874  * @mr: the memory region being queried
1875  */
1876 static inline bool memory_region_is_rom(MemoryRegion *mr)
1877 {
1878     return mr->ram && mr->readonly;
1879 }
1880 
1881 /**
1882  * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1883  *
1884  * Returns %true is a memory region is non-volatile memory.
1885  *
1886  * @mr: the memory region being queried
1887  */
1888 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1889 {
1890     return mr->nonvolatile;
1891 }
1892 
1893 /**
1894  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1895  *
1896  * Returns a file descriptor backing a file-based RAM memory region,
1897  * or -1 if the region is not a file-based RAM memory region.
1898  *
1899  * @mr: the RAM or alias memory region being queried.
1900  */
1901 int memory_region_get_fd(MemoryRegion *mr);
1902 
1903 /**
1904  * memory_region_from_host: Convert a pointer into a RAM memory region
1905  * and an offset within it.
1906  *
1907  * Given a host pointer inside a RAM memory region (created with
1908  * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1909  * the MemoryRegion and the offset within it.
1910  *
1911  * Use with care; by the time this function returns, the returned pointer is
1912  * not protected by RCU anymore.  If the caller is not within an RCU critical
1913  * section and does not hold the iothread lock, it must have other means of
1914  * protecting the pointer, such as a reference to the region that includes
1915  * the incoming ram_addr_t.
1916  *
1917  * @ptr: the host pointer to be converted
1918  * @offset: the offset within memory region
1919  */
1920 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1921 
1922 /**
1923  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1924  *
1925  * Returns a host pointer to a RAM memory region (created with
1926  * memory_region_init_ram() or memory_region_init_ram_ptr()).
1927  *
1928  * Use with care; by the time this function returns, the returned pointer is
1929  * not protected by RCU anymore.  If the caller is not within an RCU critical
1930  * section and does not hold the iothread lock, it must have other means of
1931  * protecting the pointer, such as a reference to the region that includes
1932  * the incoming ram_addr_t.
1933  *
1934  * @mr: the memory region being queried.
1935  */
1936 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1937 
1938 /* memory_region_ram_resize: Resize a RAM region.
1939  *
1940  * Resizing RAM while migrating can result in the migration being canceled.
1941  * Care has to be taken if the guest might have already detected the memory.
1942  *
1943  * @mr: a memory region created with @memory_region_init_resizeable_ram.
1944  * @newsize: the new size the region
1945  * @errp: pointer to Error*, to store an error if it happens.
1946  */
1947 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1948                               Error **errp);
1949 
1950 /**
1951  * memory_region_msync: Synchronize selected address range of
1952  * a memory mapped region
1953  *
1954  * @mr: the memory region to be msync
1955  * @addr: the initial address of the range to be sync
1956  * @size: the size of the range to be sync
1957  */
1958 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
1959 
1960 /**
1961  * memory_region_writeback: Trigger cache writeback for
1962  * selected address range
1963  *
1964  * @mr: the memory region to be updated
1965  * @addr: the initial address of the range to be written back
1966  * @size: the size of the range to be written back
1967  */
1968 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
1969 
1970 /**
1971  * memory_region_set_log: Turn dirty logging on or off for a region.
1972  *
1973  * Turns dirty logging on or off for a specified client (display, migration).
1974  * Only meaningful for RAM regions.
1975  *
1976  * @mr: the memory region being updated.
1977  * @log: whether dirty logging is to be enabled or disabled.
1978  * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1979  */
1980 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1981 
1982 /**
1983  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1984  *
1985  * Marks a range of bytes as dirty, after it has been dirtied outside
1986  * guest code.
1987  *
1988  * @mr: the memory region being dirtied.
1989  * @addr: the address (relative to the start of the region) being dirtied.
1990  * @size: size of the range being dirtied.
1991  */
1992 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1993                              hwaddr size);
1994 
1995 /**
1996  * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
1997  *
1998  * This function is called when the caller wants to clear the remote
1999  * dirty bitmap of a memory range within the memory region.  This can
2000  * be used by e.g. KVM to manually clear dirty log when
2001  * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
2002  * kernel.
2003  *
2004  * @mr:     the memory region to clear the dirty log upon
2005  * @start:  start address offset within the memory region
2006  * @len:    length of the memory region to clear dirty bitmap
2007  */
2008 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2009                                       hwaddr len);
2010 
2011 /**
2012  * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
2013  *                                         bitmap and clear it.
2014  *
2015  * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
2016  * returns the snapshot.  The snapshot can then be used to query dirty
2017  * status, using memory_region_snapshot_get_dirty.  Snapshotting allows
2018  * querying the same page multiple times, which is especially useful for
2019  * display updates where the scanlines often are not page aligned.
2020  *
2021  * The dirty bitmap region which gets copied into the snapshot (and
2022  * cleared afterwards) can be larger than requested.  The boundaries
2023  * are rounded up/down so complete bitmap longs (covering 64 pages on
2024  * 64bit hosts) can be copied over into the bitmap snapshot.  Which
2025  * isn't a problem for display updates as the extra pages are outside
2026  * the visible area, and in case the visible area changes a full
2027  * display redraw is due anyway.  Should other use cases for this
2028  * function emerge we might have to revisit this implementation
2029  * detail.
2030  *
2031  * Use g_free to release DirtyBitmapSnapshot.
2032  *
2033  * @mr: the memory region being queried.
2034  * @addr: the address (relative to the start of the region) being queried.
2035  * @size: the size of the range being queried.
2036  * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
2037  */
2038 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2039                                                             hwaddr addr,
2040                                                             hwaddr size,
2041                                                             unsigned client);
2042 
2043 /**
2044  * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
2045  *                                   in the specified dirty bitmap snapshot.
2046  *
2047  * @mr: the memory region being queried.
2048  * @snap: the dirty bitmap snapshot
2049  * @addr: the address (relative to the start of the region) being queried.
2050  * @size: the size of the range being queried.
2051  */
2052 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
2053                                       DirtyBitmapSnapshot *snap,
2054                                       hwaddr addr, hwaddr size);
2055 
2056 /**
2057  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
2058  *                            client.
2059  *
2060  * Marks a range of pages as no longer dirty.
2061  *
2062  * @mr: the region being updated.
2063  * @addr: the start of the subrange being cleaned.
2064  * @size: the size of the subrange being cleaned.
2065  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
2066  *          %DIRTY_MEMORY_VGA.
2067  */
2068 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2069                                hwaddr size, unsigned client);
2070 
2071 /**
2072  * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
2073  *                                 TBs (for self-modifying code).
2074  *
2075  * The MemoryRegionOps->write() callback of a ROM device must use this function
2076  * to mark byte ranges that have been modified internally, such as by directly
2077  * accessing the memory returned by memory_region_get_ram_ptr().
2078  *
2079  * This function marks the range dirty and invalidates TBs so that TCG can
2080  * detect self-modifying code.
2081  *
2082  * @mr: the region being flushed.
2083  * @addr: the start, relative to the start of the region, of the range being
2084  *        flushed.
2085  * @size: the size, in bytes, of the range being flushed.
2086  */
2087 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
2088 
2089 /**
2090  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
2091  *
2092  * Allows a memory region to be marked as read-only (turning it into a ROM).
2093  * only useful on RAM regions.
2094  *
2095  * @mr: the region being updated.
2096  * @readonly: whether rhe region is to be ROM or RAM.
2097  */
2098 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
2099 
2100 /**
2101  * memory_region_set_nonvolatile: Turn a memory region non-volatile
2102  *
2103  * Allows a memory region to be marked as non-volatile.
2104  * only useful on RAM regions.
2105  *
2106  * @mr: the region being updated.
2107  * @nonvolatile: whether rhe region is to be non-volatile.
2108  */
2109 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
2110 
2111 /**
2112  * memory_region_rom_device_set_romd: enable/disable ROMD mode
2113  *
2114  * Allows a ROM device (initialized with memory_region_init_rom_device() to
2115  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
2116  * device is mapped to guest memory and satisfies read access directly.
2117  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
2118  * Writes are always handled by the #MemoryRegion.write function.
2119  *
2120  * @mr: the memory region to be updated
2121  * @romd_mode: %true to put the region into ROMD mode
2122  */
2123 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
2124 
2125 /**
2126  * memory_region_set_coalescing: Enable memory coalescing for the region.
2127  *
2128  * Enabled writes to a region to be queued for later processing. MMIO ->write
2129  * callbacks may be delayed until a non-coalesced MMIO is issued.
2130  * Only useful for IO regions.  Roughly similar to write-combining hardware.
2131  *
2132  * @mr: the memory region to be write coalesced
2133  */
2134 void memory_region_set_coalescing(MemoryRegion *mr);
2135 
2136 /**
2137  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
2138  *                               a region.
2139  *
2140  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
2141  * Multiple calls can be issued coalesced disjoint ranges.
2142  *
2143  * @mr: the memory region to be updated.
2144  * @offset: the start of the range within the region to be coalesced.
2145  * @size: the size of the subrange to be coalesced.
2146  */
2147 void memory_region_add_coalescing(MemoryRegion *mr,
2148                                   hwaddr offset,
2149                                   uint64_t size);
2150 
2151 /**
2152  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
2153  *
2154  * Disables any coalescing caused by memory_region_set_coalescing() or
2155  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
2156  * hardware.
2157  *
2158  * @mr: the memory region to be updated.
2159  */
2160 void memory_region_clear_coalescing(MemoryRegion *mr);
2161 
2162 /**
2163  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
2164  *                                    accesses.
2165  *
2166  * Ensure that pending coalesced MMIO request are flushed before the memory
2167  * region is accessed. This property is automatically enabled for all regions
2168  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
2169  *
2170  * @mr: the memory region to be updated.
2171  */
2172 void memory_region_set_flush_coalesced(MemoryRegion *mr);
2173 
2174 /**
2175  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
2176  *                                      accesses.
2177  *
2178  * Clear the automatic coalesced MMIO flushing enabled via
2179  * memory_region_set_flush_coalesced. Note that this service has no effect on
2180  * memory regions that have MMIO coalescing enabled for themselves. For them,
2181  * automatic flushing will stop once coalescing is disabled.
2182  *
2183  * @mr: the memory region to be updated.
2184  */
2185 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
2186 
2187 /**
2188  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
2189  *                            is written to a location.
2190  *
2191  * Marks a word in an IO region (initialized with memory_region_init_io())
2192  * as a trigger for an eventfd event.  The I/O callback will not be called.
2193  * The caller must be prepared to handle failure (that is, take the required
2194  * action if the callback _is_ called).
2195  *
2196  * @mr: the memory region being updated.
2197  * @addr: the address within @mr that is to be monitored
2198  * @size: the size of the access to trigger the eventfd
2199  * @match_data: whether to match against @data, instead of just @addr
2200  * @data: the data to match against the guest write
2201  * @e: event notifier to be triggered when @addr, @size, and @data all match.
2202  **/
2203 void memory_region_add_eventfd(MemoryRegion *mr,
2204                                hwaddr addr,
2205                                unsigned size,
2206                                bool match_data,
2207                                uint64_t data,
2208                                EventNotifier *e);
2209 
2210 /**
2211  * memory_region_del_eventfd: Cancel an eventfd.
2212  *
2213  * Cancels an eventfd trigger requested by a previous
2214  * memory_region_add_eventfd() call.
2215  *
2216  * @mr: the memory region being updated.
2217  * @addr: the address within @mr that is to be monitored
2218  * @size: the size of the access to trigger the eventfd
2219  * @match_data: whether to match against @data, instead of just @addr
2220  * @data: the data to match against the guest write
2221  * @e: event notifier to be triggered when @addr, @size, and @data all match.
2222  */
2223 void memory_region_del_eventfd(MemoryRegion *mr,
2224                                hwaddr addr,
2225                                unsigned size,
2226                                bool match_data,
2227                                uint64_t data,
2228                                EventNotifier *e);
2229 
2230 /**
2231  * memory_region_add_subregion: Add a subregion to a container.
2232  *
2233  * Adds a subregion at @offset.  The subregion may not overlap with other
2234  * subregions (except for those explicitly marked as overlapping).  A region
2235  * may only be added once as a subregion (unless removed with
2236  * memory_region_del_subregion()); use memory_region_init_alias() if you
2237  * want a region to be a subregion in multiple locations.
2238  *
2239  * @mr: the region to contain the new subregion; must be a container
2240  *      initialized with memory_region_init().
2241  * @offset: the offset relative to @mr where @subregion is added.
2242  * @subregion: the subregion to be added.
2243  */
2244 void memory_region_add_subregion(MemoryRegion *mr,
2245                                  hwaddr offset,
2246                                  MemoryRegion *subregion);
2247 /**
2248  * memory_region_add_subregion_overlap: Add a subregion to a container
2249  *                                      with overlap.
2250  *
2251  * Adds a subregion at @offset.  The subregion may overlap with other
2252  * subregions.  Conflicts are resolved by having a higher @priority hide a
2253  * lower @priority. Subregions without priority are taken as @priority 0.
2254  * A region may only be added once as a subregion (unless removed with
2255  * memory_region_del_subregion()); use memory_region_init_alias() if you
2256  * want a region to be a subregion in multiple locations.
2257  *
2258  * @mr: the region to contain the new subregion; must be a container
2259  *      initialized with memory_region_init().
2260  * @offset: the offset relative to @mr where @subregion is added.
2261  * @subregion: the subregion to be added.
2262  * @priority: used for resolving overlaps; highest priority wins.
2263  */
2264 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2265                                          hwaddr offset,
2266                                          MemoryRegion *subregion,
2267                                          int priority);
2268 
2269 /**
2270  * memory_region_get_ram_addr: Get the ram address associated with a memory
2271  *                             region
2272  *
2273  * @mr: the region to be queried
2274  */
2275 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
2276 
2277 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
2278 /**
2279  * memory_region_del_subregion: Remove a subregion.
2280  *
2281  * Removes a subregion from its container.
2282  *
2283  * @mr: the container to be updated.
2284  * @subregion: the region being removed; must be a current subregion of @mr.
2285  */
2286 void memory_region_del_subregion(MemoryRegion *mr,
2287                                  MemoryRegion *subregion);
2288 
2289 /*
2290  * memory_region_set_enabled: dynamically enable or disable a region
2291  *
2292  * Enables or disables a memory region.  A disabled memory region
2293  * ignores all accesses to itself and its subregions.  It does not
2294  * obscure sibling subregions with lower priority - it simply behaves as
2295  * if it was removed from the hierarchy.
2296  *
2297  * Regions default to being enabled.
2298  *
2299  * @mr: the region to be updated
2300  * @enabled: whether to enable or disable the region
2301  */
2302 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
2303 
2304 /*
2305  * memory_region_set_address: dynamically update the address of a region
2306  *
2307  * Dynamically updates the address of a region, relative to its container.
2308  * May be used on regions are currently part of a memory hierarchy.
2309  *
2310  * @mr: the region to be updated
2311  * @addr: new address, relative to container region
2312  */
2313 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
2314 
2315 /*
2316  * memory_region_set_size: dynamically update the size of a region.
2317  *
2318  * Dynamically updates the size of a region.
2319  *
2320  * @mr: the region to be updated
2321  * @size: used size of the region.
2322  */
2323 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
2324 
2325 /*
2326  * memory_region_set_alias_offset: dynamically update a memory alias's offset
2327  *
2328  * Dynamically updates the offset into the target region that an alias points
2329  * to, as if the fourth argument to memory_region_init_alias() has changed.
2330  *
2331  * @mr: the #MemoryRegion to be updated; should be an alias.
2332  * @offset: the new offset into the target memory region
2333  */
2334 void memory_region_set_alias_offset(MemoryRegion *mr,
2335                                     hwaddr offset);
2336 
2337 /**
2338  * memory_region_present: checks if an address relative to a @container
2339  * translates into #MemoryRegion within @container
2340  *
2341  * Answer whether a #MemoryRegion within @container covers the address
2342  * @addr.
2343  *
2344  * @container: a #MemoryRegion within which @addr is a relative address
2345  * @addr: the area within @container to be searched
2346  */
2347 bool memory_region_present(MemoryRegion *container, hwaddr addr);
2348 
2349 /**
2350  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
2351  * into another memory region, which does not necessarily imply that it is
2352  * mapped into an address space.
2353  *
2354  * @mr: a #MemoryRegion which should be checked if it's mapped
2355  */
2356 bool memory_region_is_mapped(MemoryRegion *mr);
2357 
2358 /**
2359  * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a
2360  * #MemoryRegion
2361  *
2362  * The #RamDiscardManager cannot change while a memory region is mapped.
2363  *
2364  * @mr: the #MemoryRegion
2365  */
2366 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr);
2367 
2368 /**
2369  * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a
2370  * #RamDiscardManager assigned
2371  *
2372  * @mr: the #MemoryRegion
2373  */
2374 static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr)
2375 {
2376     return !!memory_region_get_ram_discard_manager(mr);
2377 }
2378 
2379 /**
2380  * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a
2381  * #MemoryRegion
2382  *
2383  * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion
2384  * that does not cover RAM, or a #MemoryRegion that already has a
2385  * #RamDiscardManager assigned.
2386  *
2387  * @mr: the #MemoryRegion
2388  * @rdm: #RamDiscardManager to set
2389  */
2390 void memory_region_set_ram_discard_manager(MemoryRegion *mr,
2391                                            RamDiscardManager *rdm);
2392 
2393 /**
2394  * memory_region_find: translate an address/size relative to a
2395  * MemoryRegion into a #MemoryRegionSection.
2396  *
2397  * Locates the first #MemoryRegion within @mr that overlaps the range
2398  * given by @addr and @size.
2399  *
2400  * Returns a #MemoryRegionSection that describes a contiguous overlap.
2401  * It will have the following characteristics:
2402  * - @size = 0 iff no overlap was found
2403  * - @mr is non-%NULL iff an overlap was found
2404  *
2405  * Remember that in the return value the @offset_within_region is
2406  * relative to the returned region (in the .@mr field), not to the
2407  * @mr argument.
2408  *
2409  * Similarly, the .@offset_within_address_space is relative to the
2410  * address space that contains both regions, the passed and the
2411  * returned one.  However, in the special case where the @mr argument
2412  * has no container (and thus is the root of the address space), the
2413  * following will hold:
2414  * - @offset_within_address_space >= @addr
2415  * - @offset_within_address_space + .@size <= @addr + @size
2416  *
2417  * @mr: a MemoryRegion within which @addr is a relative address
2418  * @addr: start of the area within @as to be searched
2419  * @size: size of the area to be searched
2420  */
2421 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2422                                        hwaddr addr, uint64_t size);
2423 
2424 /**
2425  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2426  *
2427  * Synchronizes the dirty page log for all address spaces.
2428  *
2429  * @last_stage: whether this is the last stage of live migration
2430  */
2431 void memory_global_dirty_log_sync(bool last_stage);
2432 
2433 /**
2434  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2435  *
2436  * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
2437  * This function must be called after the dirty log bitmap is cleared, and
2438  * before dirty guest memory pages are read.  If you are using
2439  * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
2440  * care of doing this.
2441  */
2442 void memory_global_after_dirty_log_sync(void);
2443 
2444 /**
2445  * memory_region_transaction_begin: Start a transaction.
2446  *
2447  * During a transaction, changes will be accumulated and made visible
2448  * only when the transaction ends (is committed).
2449  */
2450 void memory_region_transaction_begin(void);
2451 
2452 /**
2453  * memory_region_transaction_commit: Commit a transaction and make changes
2454  *                                   visible to the guest.
2455  */
2456 void memory_region_transaction_commit(void);
2457 
2458 /**
2459  * memory_listener_register: register callbacks to be called when memory
2460  *                           sections are mapped or unmapped into an address
2461  *                           space
2462  *
2463  * @listener: an object containing the callbacks to be called
2464  * @filter: if non-%NULL, only regions in this address space will be observed
2465  */
2466 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
2467 
2468 /**
2469  * memory_listener_unregister: undo the effect of memory_listener_register()
2470  *
2471  * @listener: an object containing the callbacks to be removed
2472  */
2473 void memory_listener_unregister(MemoryListener *listener);
2474 
2475 /**
2476  * memory_global_dirty_log_start: begin dirty logging for all regions
2477  *
2478  * @flags: purpose of starting dirty log, migration or dirty rate
2479  */
2480 void memory_global_dirty_log_start(unsigned int flags);
2481 
2482 /**
2483  * memory_global_dirty_log_stop: end dirty logging for all regions
2484  *
2485  * @flags: purpose of stopping dirty log, migration or dirty rate
2486  */
2487 void memory_global_dirty_log_stop(unsigned int flags);
2488 
2489 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled);
2490 
2491 bool memory_region_access_valid(MemoryRegion *mr, hwaddr addr,
2492                                 unsigned size, bool is_write,
2493                                 MemTxAttrs attrs);
2494 
2495 /**
2496  * memory_region_dispatch_read: perform a read directly to the specified
2497  * MemoryRegion.
2498  *
2499  * @mr: #MemoryRegion to access
2500  * @addr: address within that region
2501  * @pval: pointer to uint64_t which the data is written to
2502  * @op: size, sign, and endianness of the memory operation
2503  * @attrs: memory transaction attributes to use for the access
2504  */
2505 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
2506                                         hwaddr addr,
2507                                         uint64_t *pval,
2508                                         MemOp op,
2509                                         MemTxAttrs attrs);
2510 /**
2511  * memory_region_dispatch_write: perform a write directly to the specified
2512  * MemoryRegion.
2513  *
2514  * @mr: #MemoryRegion to access
2515  * @addr: address within that region
2516  * @data: data to write
2517  * @op: size, sign, and endianness of the memory operation
2518  * @attrs: memory transaction attributes to use for the access
2519  */
2520 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
2521                                          hwaddr addr,
2522                                          uint64_t data,
2523                                          MemOp op,
2524                                          MemTxAttrs attrs);
2525 
2526 /**
2527  * address_space_init: initializes an address space
2528  *
2529  * @as: an uninitialized #AddressSpace
2530  * @root: a #MemoryRegion that routes addresses for the address space
2531  * @name: an address space name.  The name is only used for debugging
2532  *        output.
2533  */
2534 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
2535 
2536 /**
2537  * address_space_destroy: destroy an address space
2538  *
2539  * Releases all resources associated with an address space.  After an address space
2540  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
2541  * as well.
2542  *
2543  * @as: address space to be destroyed
2544  */
2545 void address_space_destroy(AddressSpace *as);
2546 
2547 /**
2548  * address_space_remove_listeners: unregister all listeners of an address space
2549  *
2550  * Removes all callbacks previously registered with memory_listener_register()
2551  * for @as.
2552  *
2553  * @as: an initialized #AddressSpace
2554  */
2555 void address_space_remove_listeners(AddressSpace *as);
2556 
2557 /**
2558  * address_space_rw: read from or write to an address space.
2559  *
2560  * Return a MemTxResult indicating whether the operation succeeded
2561  * or failed (eg unassigned memory, device rejected the transaction,
2562  * IOMMU fault).
2563  *
2564  * @as: #AddressSpace to be accessed
2565  * @addr: address within that address space
2566  * @attrs: memory transaction attributes
2567  * @buf: buffer with the data transferred
2568  * @len: the number of bytes to read or write
2569  * @is_write: indicates the transfer direction
2570  */
2571 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
2572                              MemTxAttrs attrs, void *buf,
2573                              hwaddr len, bool is_write);
2574 
2575 /**
2576  * address_space_write: write to address space.
2577  *
2578  * Return a MemTxResult indicating whether the operation succeeded
2579  * or failed (eg unassigned memory, device rejected the transaction,
2580  * IOMMU fault).
2581  *
2582  * @as: #AddressSpace to be accessed
2583  * @addr: address within that address space
2584  * @attrs: memory transaction attributes
2585  * @buf: buffer with the data transferred
2586  * @len: the number of bytes to write
2587  */
2588 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2589                                 MemTxAttrs attrs,
2590                                 const void *buf, hwaddr len);
2591 
2592 /**
2593  * address_space_write_rom: write to address space, including ROM.
2594  *
2595  * This function writes to the specified address space, but will
2596  * write data to both ROM and RAM. This is used for non-guest
2597  * writes like writes from the gdb debug stub or initial loading
2598  * of ROM contents.
2599  *
2600  * Note that portions of the write which attempt to write data to
2601  * a device will be silently ignored -- only real RAM and ROM will
2602  * be written to.
2603  *
2604  * Return a MemTxResult indicating whether the operation succeeded
2605  * or failed (eg unassigned memory, device rejected the transaction,
2606  * IOMMU fault).
2607  *
2608  * @as: #AddressSpace to be accessed
2609  * @addr: address within that address space
2610  * @attrs: memory transaction attributes
2611  * @buf: buffer with the data transferred
2612  * @len: the number of bytes to write
2613  */
2614 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2615                                     MemTxAttrs attrs,
2616                                     const void *buf, hwaddr len);
2617 
2618 /* address_space_ld*: load from an address space
2619  * address_space_st*: store to an address space
2620  *
2621  * These functions perform a load or store of the byte, word,
2622  * longword or quad to the specified address within the AddressSpace.
2623  * The _le suffixed functions treat the data as little endian;
2624  * _be indicates big endian; no suffix indicates "same endianness
2625  * as guest CPU".
2626  *
2627  * The "guest CPU endianness" accessors are deprecated for use outside
2628  * target-* code; devices should be CPU-agnostic and use either the LE
2629  * or the BE accessors.
2630  *
2631  * @as #AddressSpace to be accessed
2632  * @addr: address within that address space
2633  * @val: data value, for stores
2634  * @attrs: memory transaction attributes
2635  * @result: location to write the success/failure of the transaction;
2636  *   if NULL, this information is discarded
2637  */
2638 
2639 #define SUFFIX
2640 #define ARG1         as
2641 #define ARG1_DECL    AddressSpace *as
2642 #include "exec/memory_ldst.h.inc"
2643 
2644 #define SUFFIX
2645 #define ARG1         as
2646 #define ARG1_DECL    AddressSpace *as
2647 #include "exec/memory_ldst_phys.h.inc"
2648 
2649 struct MemoryRegionCache {
2650     void *ptr;
2651     hwaddr xlat;
2652     hwaddr len;
2653     FlatView *fv;
2654     MemoryRegionSection mrs;
2655     bool is_write;
2656 };
2657 
2658 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
2659 
2660 
2661 /* address_space_ld*_cached: load from a cached #MemoryRegion
2662  * address_space_st*_cached: store into a cached #MemoryRegion
2663  *
2664  * These functions perform a load or store of the byte, word,
2665  * longword or quad to the specified address.  The address is
2666  * a physical address in the AddressSpace, but it must lie within
2667  * a #MemoryRegion that was mapped with address_space_cache_init.
2668  *
2669  * The _le suffixed functions treat the data as little endian;
2670  * _be indicates big endian; no suffix indicates "same endianness
2671  * as guest CPU".
2672  *
2673  * The "guest CPU endianness" accessors are deprecated for use outside
2674  * target-* code; devices should be CPU-agnostic and use either the LE
2675  * or the BE accessors.
2676  *
2677  * @cache: previously initialized #MemoryRegionCache to be accessed
2678  * @addr: address within the address space
2679  * @val: data value, for stores
2680  * @attrs: memory transaction attributes
2681  * @result: location to write the success/failure of the transaction;
2682  *   if NULL, this information is discarded
2683  */
2684 
2685 #define SUFFIX       _cached_slow
2686 #define ARG1         cache
2687 #define ARG1_DECL    MemoryRegionCache *cache
2688 #include "exec/memory_ldst.h.inc"
2689 
2690 /* Inline fast path for direct RAM access.  */
2691 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
2692     hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
2693 {
2694     assert(addr < cache->len);
2695     if (likely(cache->ptr)) {
2696         return ldub_p(cache->ptr + addr);
2697     } else {
2698         return address_space_ldub_cached_slow(cache, addr, attrs, result);
2699     }
2700 }
2701 
2702 static inline void address_space_stb_cached(MemoryRegionCache *cache,
2703     hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result)
2704 {
2705     assert(addr < cache->len);
2706     if (likely(cache->ptr)) {
2707         stb_p(cache->ptr + addr, val);
2708     } else {
2709         address_space_stb_cached_slow(cache, addr, val, attrs, result);
2710     }
2711 }
2712 
2713 #define ENDIANNESS   _le
2714 #include "exec/memory_ldst_cached.h.inc"
2715 
2716 #define ENDIANNESS   _be
2717 #include "exec/memory_ldst_cached.h.inc"
2718 
2719 #define SUFFIX       _cached
2720 #define ARG1         cache
2721 #define ARG1_DECL    MemoryRegionCache *cache
2722 #include "exec/memory_ldst_phys.h.inc"
2723 
2724 /* address_space_cache_init: prepare for repeated access to a physical
2725  * memory region
2726  *
2727  * @cache: #MemoryRegionCache to be filled
2728  * @as: #AddressSpace to be accessed
2729  * @addr: address within that address space
2730  * @len: length of buffer
2731  * @is_write: indicates the transfer direction
2732  *
2733  * Will only work with RAM, and may map a subset of the requested range by
2734  * returning a value that is less than @len.  On failure, return a negative
2735  * errno value.
2736  *
2737  * Because it only works with RAM, this function can be used for
2738  * read-modify-write operations.  In this case, is_write should be %true.
2739  *
2740  * Note that addresses passed to the address_space_*_cached functions
2741  * are relative to @addr.
2742  */
2743 int64_t address_space_cache_init(MemoryRegionCache *cache,
2744                                  AddressSpace *as,
2745                                  hwaddr addr,
2746                                  hwaddr len,
2747                                  bool is_write);
2748 
2749 /**
2750  * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2751  *
2752  * @cache: The #MemoryRegionCache to operate on.
2753  * @addr: The first physical address that was written, relative to the
2754  * address that was passed to @address_space_cache_init.
2755  * @access_len: The number of bytes that were written starting at @addr.
2756  */
2757 void address_space_cache_invalidate(MemoryRegionCache *cache,
2758                                     hwaddr addr,
2759                                     hwaddr access_len);
2760 
2761 /**
2762  * address_space_cache_destroy: free a #MemoryRegionCache
2763  *
2764  * @cache: The #MemoryRegionCache whose memory should be released.
2765  */
2766 void address_space_cache_destroy(MemoryRegionCache *cache);
2767 
2768 /* address_space_get_iotlb_entry: translate an address into an IOTLB
2769  * entry. Should be called from an RCU critical section.
2770  */
2771 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2772                                             bool is_write, MemTxAttrs attrs);
2773 
2774 /* address_space_translate: translate an address range into an address space
2775  * into a MemoryRegion and an address range into that section.  Should be
2776  * called from an RCU critical section, to avoid that the last reference
2777  * to the returned region disappears after address_space_translate returns.
2778  *
2779  * @fv: #FlatView to be accessed
2780  * @addr: address within that address space
2781  * @xlat: pointer to address within the returned memory region section's
2782  * #MemoryRegion.
2783  * @len: pointer to length
2784  * @is_write: indicates the transfer direction
2785  * @attrs: memory attributes
2786  */
2787 MemoryRegion *flatview_translate(FlatView *fv,
2788                                  hwaddr addr, hwaddr *xlat,
2789                                  hwaddr *len, bool is_write,
2790                                  MemTxAttrs attrs);
2791 
2792 static inline MemoryRegion *address_space_translate(AddressSpace *as,
2793                                                     hwaddr addr, hwaddr *xlat,
2794                                                     hwaddr *len, bool is_write,
2795                                                     MemTxAttrs attrs)
2796 {
2797     return flatview_translate(address_space_to_flatview(as),
2798                               addr, xlat, len, is_write, attrs);
2799 }
2800 
2801 /* address_space_access_valid: check for validity of accessing an address
2802  * space range
2803  *
2804  * Check whether memory is assigned to the given address space range, and
2805  * access is permitted by any IOMMU regions that are active for the address
2806  * space.
2807  *
2808  * For now, addr and len should be aligned to a page size.  This limitation
2809  * will be lifted in the future.
2810  *
2811  * @as: #AddressSpace to be accessed
2812  * @addr: address within that address space
2813  * @len: length of the area to be checked
2814  * @is_write: indicates the transfer direction
2815  * @attrs: memory attributes
2816  */
2817 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2818                                 bool is_write, MemTxAttrs attrs);
2819 
2820 /* address_space_map: map a physical memory region into a host virtual address
2821  *
2822  * May map a subset of the requested range, given by and returned in @plen.
2823  * May return %NULL and set *@plen to zero(0), if resources needed to perform
2824  * the mapping are exhausted.
2825  * Use only for reads OR writes - not for read-modify-write operations.
2826  * Use cpu_register_map_client() to know when retrying the map operation is
2827  * likely to succeed.
2828  *
2829  * @as: #AddressSpace to be accessed
2830  * @addr: address within that address space
2831  * @plen: pointer to length of buffer; updated on return
2832  * @is_write: indicates the transfer direction
2833  * @attrs: memory attributes
2834  */
2835 void *address_space_map(AddressSpace *as, hwaddr addr,
2836                         hwaddr *plen, bool is_write, MemTxAttrs attrs);
2837 
2838 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2839  *
2840  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
2841  * the amount of memory that was actually read or written by the caller.
2842  *
2843  * @as: #AddressSpace used
2844  * @buffer: host pointer as returned by address_space_map()
2845  * @len: buffer length as returned by address_space_map()
2846  * @access_len: amount of data actually transferred
2847  * @is_write: indicates the transfer direction
2848  */
2849 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2850                          bool is_write, hwaddr access_len);
2851 
2852 
2853 /* Internal functions, part of the implementation of address_space_read.  */
2854 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2855                                     MemTxAttrs attrs, void *buf, hwaddr len);
2856 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2857                                    MemTxAttrs attrs, void *buf,
2858                                    hwaddr len, hwaddr addr1, hwaddr l,
2859                                    MemoryRegion *mr);
2860 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2861 
2862 /* Internal functions, part of the implementation of address_space_read_cached
2863  * and address_space_write_cached.  */
2864 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache,
2865                                            hwaddr addr, void *buf, hwaddr len);
2866 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
2867                                             hwaddr addr, const void *buf,
2868                                             hwaddr len);
2869 
2870 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr);
2871 bool prepare_mmio_access(MemoryRegion *mr);
2872 
2873 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2874 {
2875     if (is_write) {
2876         return memory_region_is_ram(mr) && !mr->readonly &&
2877                !mr->rom_device && !memory_region_is_ram_device(mr);
2878     } else {
2879         return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2880                memory_region_is_romd(mr);
2881     }
2882 }
2883 
2884 /**
2885  * address_space_read: read from an address space.
2886  *
2887  * Return a MemTxResult indicating whether the operation succeeded
2888  * or failed (eg unassigned memory, device rejected the transaction,
2889  * IOMMU fault).  Called within RCU critical section.
2890  *
2891  * @as: #AddressSpace to be accessed
2892  * @addr: address within that address space
2893  * @attrs: memory transaction attributes
2894  * @buf: buffer with the data transferred
2895  * @len: length of the data transferred
2896  */
2897 static inline __attribute__((__always_inline__))
2898 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
2899                                MemTxAttrs attrs, void *buf,
2900                                hwaddr len)
2901 {
2902     MemTxResult result = MEMTX_OK;
2903     hwaddr l, addr1;
2904     void *ptr;
2905     MemoryRegion *mr;
2906     FlatView *fv;
2907 
2908     if (__builtin_constant_p(len)) {
2909         if (len) {
2910             RCU_READ_LOCK_GUARD();
2911             fv = address_space_to_flatview(as);
2912             l = len;
2913             mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2914             if (len == l && memory_access_is_direct(mr, false)) {
2915                 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2916                 memcpy(buf, ptr, len);
2917             } else {
2918                 result = flatview_read_continue(fv, addr, attrs, buf, len,
2919                                                 addr1, l, mr);
2920             }
2921         }
2922     } else {
2923         result = address_space_read_full(as, addr, attrs, buf, len);
2924     }
2925     return result;
2926 }
2927 
2928 /**
2929  * address_space_read_cached: read from a cached RAM region
2930  *
2931  * @cache: Cached region to be addressed
2932  * @addr: address relative to the base of the RAM region
2933  * @buf: buffer with the data transferred
2934  * @len: length of the data transferred
2935  */
2936 static inline MemTxResult
2937 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
2938                           void *buf, hwaddr len)
2939 {
2940     assert(addr < cache->len && len <= cache->len - addr);
2941     fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr);
2942     if (likely(cache->ptr)) {
2943         memcpy(buf, cache->ptr + addr, len);
2944         return MEMTX_OK;
2945     } else {
2946         return address_space_read_cached_slow(cache, addr, buf, len);
2947     }
2948 }
2949 
2950 /**
2951  * address_space_write_cached: write to a cached RAM region
2952  *
2953  * @cache: Cached region to be addressed
2954  * @addr: address relative to the base of the RAM region
2955  * @buf: buffer with the data transferred
2956  * @len: length of the data transferred
2957  */
2958 static inline MemTxResult
2959 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2960                            const void *buf, hwaddr len)
2961 {
2962     assert(addr < cache->len && len <= cache->len - addr);
2963     if (likely(cache->ptr)) {
2964         memcpy(cache->ptr + addr, buf, len);
2965         return MEMTX_OK;
2966     } else {
2967         return address_space_write_cached_slow(cache, addr, buf, len);
2968     }
2969 }
2970 
2971 /**
2972  * address_space_set: Fill address space with a constant byte.
2973  *
2974  * Return a MemTxResult indicating whether the operation succeeded
2975  * or failed (eg unassigned memory, device rejected the transaction,
2976  * IOMMU fault).
2977  *
2978  * @as: #AddressSpace to be accessed
2979  * @addr: address within that address space
2980  * @c: constant byte to fill the memory
2981  * @len: the number of bytes to fill with the constant byte
2982  * @attrs: memory transaction attributes
2983  */
2984 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2985                               uint8_t c, hwaddr len, MemTxAttrs attrs);
2986 
2987 #ifdef NEED_CPU_H
2988 /* enum device_endian to MemOp.  */
2989 static inline MemOp devend_memop(enum device_endian end)
2990 {
2991     QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
2992                       DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
2993 
2994 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
2995     /* Swap if non-host endianness or native (target) endianness */
2996     return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
2997 #else
2998     const int non_host_endianness =
2999         DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
3000 
3001     /* In this case, native (target) endianness needs no swap.  */
3002     return (end == non_host_endianness) ? MO_BSWAP : 0;
3003 #endif
3004 }
3005 #endif
3006 
3007 /*
3008  * Inhibit technologies that require discarding of pages in RAM blocks, e.g.,
3009  * to manage the actual amount of memory consumed by the VM (then, the memory
3010  * provided by RAM blocks might be bigger than the desired memory consumption).
3011  * This *must* be set if:
3012  * - Discarding parts of a RAM blocks does not result in the change being
3013  *   reflected in the VM and the pages getting freed.
3014  * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous
3015  *   discards blindly.
3016  * - Discarding parts of a RAM blocks will result in integrity issues (e.g.,
3017  *   encrypted VMs).
3018  * Technologies that only temporarily pin the current working set of a
3019  * driver are fine, because we don't expect such pages to be discarded
3020  * (esp. based on guest action like balloon inflation).
3021  *
3022  * This is *not* to be used to protect from concurrent discards (esp.,
3023  * postcopy).
3024  *
3025  * Returns 0 if successful. Returns -EBUSY if a technology that relies on
3026  * discards to work reliably is active.
3027  */
3028 int ram_block_discard_disable(bool state);
3029 
3030 /*
3031  * See ram_block_discard_disable(): only disable uncoordinated discards,
3032  * keeping coordinated discards (via the RamDiscardManager) enabled.
3033  */
3034 int ram_block_uncoordinated_discard_disable(bool state);
3035 
3036 /*
3037  * Inhibit technologies that disable discarding of pages in RAM blocks.
3038  *
3039  * Returns 0 if successful. Returns -EBUSY if discards are already set to
3040  * broken.
3041  */
3042 int ram_block_discard_require(bool state);
3043 
3044 /*
3045  * See ram_block_discard_require(): only inhibit technologies that disable
3046  * uncoordinated discarding of pages in RAM blocks, allowing co-existance with
3047  * technologies that only inhibit uncoordinated discards (via the
3048  * RamDiscardManager).
3049  */
3050 int ram_block_coordinated_discard_require(bool state);
3051 
3052 /*
3053  * Test if any discarding of memory in ram blocks is disabled.
3054  */
3055 bool ram_block_discard_is_disabled(void);
3056 
3057 /*
3058  * Test if any discarding of memory in ram blocks is required to work reliably.
3059  */
3060 bool ram_block_discard_is_required(void);
3061 
3062 #endif
3063 
3064 #endif
3065