1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef MEMORY_H 15 #define MEMORY_H 16 17 #ifndef CONFIG_USER_ONLY 18 19 #define DIRTY_MEMORY_VGA 0 20 #define DIRTY_MEMORY_CODE 1 21 #define DIRTY_MEMORY_MIGRATION 2 22 #define DIRTY_MEMORY_NUM 3 /* num of dirty bits */ 23 24 #include <stdint.h> 25 #include <stdbool.h> 26 #include "qemu-common.h" 27 #include "exec/cpu-common.h" 28 #ifndef CONFIG_USER_ONLY 29 #include "exec/hwaddr.h" 30 #endif 31 #include "qemu/queue.h" 32 #include "qemu/int128.h" 33 #include "qemu/notify.h" 34 #include "qapi/error.h" 35 36 #define MAX_PHYS_ADDR_SPACE_BITS 62 37 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 38 39 typedef struct MemoryRegionOps MemoryRegionOps; 40 typedef struct MemoryRegionMmio MemoryRegionMmio; 41 42 struct MemoryRegionMmio { 43 CPUReadMemoryFunc *read[3]; 44 CPUWriteMemoryFunc *write[3]; 45 }; 46 47 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 48 49 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 50 typedef enum { 51 IOMMU_NONE = 0, 52 IOMMU_RO = 1, 53 IOMMU_WO = 2, 54 IOMMU_RW = 3, 55 } IOMMUAccessFlags; 56 57 struct IOMMUTLBEntry { 58 AddressSpace *target_as; 59 hwaddr iova; 60 hwaddr translated_addr; 61 hwaddr addr_mask; /* 0xfff = 4k translation */ 62 IOMMUAccessFlags perm; 63 }; 64 65 /* 66 * Memory region callbacks 67 */ 68 struct MemoryRegionOps { 69 /* Read from the memory region. @addr is relative to @mr; @size is 70 * in bytes. */ 71 uint64_t (*read)(void *opaque, 72 hwaddr addr, 73 unsigned size); 74 /* Write to the memory region. @addr is relative to @mr; @size is 75 * in bytes. */ 76 void (*write)(void *opaque, 77 hwaddr addr, 78 uint64_t data, 79 unsigned size); 80 81 enum device_endian endianness; 82 /* Guest-visible constraints: */ 83 struct { 84 /* If nonzero, specify bounds on access sizes beyond which a machine 85 * check is thrown. 86 */ 87 unsigned min_access_size; 88 unsigned max_access_size; 89 /* If true, unaligned accesses are supported. Otherwise unaligned 90 * accesses throw machine checks. 91 */ 92 bool unaligned; 93 /* 94 * If present, and returns #false, the transaction is not accepted 95 * by the device (and results in machine dependent behaviour such 96 * as a machine check exception). 97 */ 98 bool (*accepts)(void *opaque, hwaddr addr, 99 unsigned size, bool is_write); 100 } valid; 101 /* Internal implementation constraints: */ 102 struct { 103 /* If nonzero, specifies the minimum size implemented. Smaller sizes 104 * will be rounded upwards and a partial result will be returned. 105 */ 106 unsigned min_access_size; 107 /* If nonzero, specifies the maximum size implemented. Larger sizes 108 * will be done as a series of accesses with smaller sizes. 109 */ 110 unsigned max_access_size; 111 /* If true, unaligned accesses are supported. Otherwise all accesses 112 * are converted to (possibly multiple) naturally aligned accesses. 113 */ 114 bool unaligned; 115 } impl; 116 117 /* If .read and .write are not present, old_mmio may be used for 118 * backwards compatibility with old mmio registration 119 */ 120 const MemoryRegionMmio old_mmio; 121 }; 122 123 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps; 124 125 struct MemoryRegionIOMMUOps { 126 /* Return a TLB entry that contains a given address. */ 127 IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr); 128 }; 129 130 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 131 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 132 133 struct MemoryRegion { 134 /* All fields are private - violators will be prosecuted */ 135 const MemoryRegionOps *ops; 136 const MemoryRegionIOMMUOps *iommu_ops; 137 void *opaque; 138 struct Object *owner; 139 MemoryRegion *container; 140 Int128 size; 141 hwaddr addr; 142 void (*destructor)(MemoryRegion *mr); 143 ram_addr_t ram_addr; 144 bool subpage; 145 bool terminates; 146 bool romd_mode; 147 bool ram; 148 bool readonly; /* For RAM regions */ 149 bool enabled; 150 bool rom_device; 151 bool warning_printed; /* For reservations */ 152 bool flush_coalesced_mmio; 153 MemoryRegion *alias; 154 hwaddr alias_offset; 155 int priority; 156 bool may_overlap; 157 QTAILQ_HEAD(subregions, MemoryRegion) subregions; 158 QTAILQ_ENTRY(MemoryRegion) subregions_link; 159 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced; 160 const char *name; 161 uint8_t dirty_log_mask; 162 unsigned ioeventfd_nb; 163 MemoryRegionIoeventfd *ioeventfds; 164 NotifierList iommu_notify; 165 }; 166 167 /** 168 * MemoryListener: callbacks structure for updates to the physical memory map 169 * 170 * Allows a component to adjust to changes in the guest-visible memory map. 171 * Use with memory_listener_register() and memory_listener_unregister(). 172 */ 173 struct MemoryListener { 174 void (*begin)(MemoryListener *listener); 175 void (*commit)(MemoryListener *listener); 176 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 177 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 178 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 179 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section); 180 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section); 181 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 182 void (*log_global_start)(MemoryListener *listener); 183 void (*log_global_stop)(MemoryListener *listener); 184 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 185 bool match_data, uint64_t data, EventNotifier *e); 186 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 187 bool match_data, uint64_t data, EventNotifier *e); 188 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section, 189 hwaddr addr, hwaddr len); 190 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section, 191 hwaddr addr, hwaddr len); 192 /* Lower = earlier (during add), later (during del) */ 193 unsigned priority; 194 AddressSpace *address_space_filter; 195 QTAILQ_ENTRY(MemoryListener) link; 196 }; 197 198 /** 199 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects 200 */ 201 struct AddressSpace { 202 /* All fields are private. */ 203 char *name; 204 MemoryRegion *root; 205 struct FlatView *current_map; 206 int ioeventfd_nb; 207 struct MemoryRegionIoeventfd *ioeventfds; 208 struct AddressSpaceDispatch *dispatch; 209 struct AddressSpaceDispatch *next_dispatch; 210 MemoryListener dispatch_listener; 211 212 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 213 }; 214 215 /** 216 * MemoryRegionSection: describes a fragment of a #MemoryRegion 217 * 218 * @mr: the region, or %NULL if empty 219 * @address_space: the address space the region is mapped in 220 * @offset_within_region: the beginning of the section, relative to @mr's start 221 * @size: the size of the section; will not exceed @mr's boundaries 222 * @offset_within_address_space: the address of the first byte of the section 223 * relative to the region's address space 224 * @readonly: writes to this section are ignored 225 */ 226 struct MemoryRegionSection { 227 MemoryRegion *mr; 228 AddressSpace *address_space; 229 hwaddr offset_within_region; 230 Int128 size; 231 hwaddr offset_within_address_space; 232 bool readonly; 233 }; 234 235 /** 236 * memory_region_init: Initialize a memory region 237 * 238 * The region typically acts as a container for other memory regions. Use 239 * memory_region_add_subregion() to add subregions. 240 * 241 * @mr: the #MemoryRegion to be initialized 242 * @owner: the object that tracks the region's reference count 243 * @name: used for debugging; not visible to the user or ABI 244 * @size: size of the region; any subregions beyond this size will be clipped 245 */ 246 void memory_region_init(MemoryRegion *mr, 247 struct Object *owner, 248 const char *name, 249 uint64_t size); 250 251 /** 252 * memory_region_ref: Add 1 to a memory region's reference count 253 * 254 * Whenever memory regions are accessed outside the BQL, they need to be 255 * preserved against hot-unplug. MemoryRegions actually do not have their 256 * own reference count; they piggyback on a QOM object, their "owner". 257 * This function adds a reference to the owner. 258 * 259 * All MemoryRegions must have an owner if they can disappear, even if the 260 * device they belong to operates exclusively under the BQL. This is because 261 * the region could be returned at any time by memory_region_find, and this 262 * is usually under guest control. 263 * 264 * @mr: the #MemoryRegion 265 */ 266 void memory_region_ref(MemoryRegion *mr); 267 268 /** 269 * memory_region_unref: Remove 1 to a memory region's reference count 270 * 271 * Whenever memory regions are accessed outside the BQL, they need to be 272 * preserved against hot-unplug. MemoryRegions actually do not have their 273 * own reference count; they piggyback on a QOM object, their "owner". 274 * This function removes a reference to the owner and possibly destroys it. 275 * 276 * @mr: the #MemoryRegion 277 */ 278 void memory_region_unref(MemoryRegion *mr); 279 280 /** 281 * memory_region_init_io: Initialize an I/O memory region. 282 * 283 * Accesses into the region will cause the callbacks in @ops to be called. 284 * if @size is nonzero, subregions will be clipped to @size. 285 * 286 * @mr: the #MemoryRegion to be initialized. 287 * @owner: the object that tracks the region's reference count 288 * @ops: a structure containing read and write callbacks to be used when 289 * I/O is performed on the region. 290 * @opaque: passed to to the read and write callbacks of the @ops structure. 291 * @name: used for debugging; not visible to the user or ABI 292 * @size: size of the region. 293 */ 294 void memory_region_init_io(MemoryRegion *mr, 295 struct Object *owner, 296 const MemoryRegionOps *ops, 297 void *opaque, 298 const char *name, 299 uint64_t size); 300 301 /** 302 * memory_region_init_ram: Initialize RAM memory region. Accesses into the 303 * region will modify memory directly. 304 * 305 * @mr: the #MemoryRegion to be initialized. 306 * @owner: the object that tracks the region's reference count 307 * @name: the name of the region. 308 * @size: size of the region. 309 */ 310 void memory_region_init_ram(MemoryRegion *mr, 311 struct Object *owner, 312 const char *name, 313 uint64_t size); 314 315 #ifdef __linux__ 316 /** 317 * memory_region_init_ram_from_file: Initialize RAM memory region with a 318 * mmap-ed backend. 319 * 320 * @mr: the #MemoryRegion to be initialized. 321 * @owner: the object that tracks the region's reference count 322 * @name: the name of the region. 323 * @size: size of the region. 324 * @share: %true if memory must be mmaped with the MAP_SHARED flag 325 * @path: the path in which to allocate the RAM. 326 * @errp: pointer to Error*, to store an error if it happens. 327 */ 328 void memory_region_init_ram_from_file(MemoryRegion *mr, 329 struct Object *owner, 330 const char *name, 331 uint64_t size, 332 bool share, 333 const char *path, 334 Error **errp); 335 #endif 336 337 /** 338 * memory_region_init_ram_ptr: Initialize RAM memory region from a 339 * user-provided pointer. Accesses into the 340 * region will modify memory directly. 341 * 342 * @mr: the #MemoryRegion to be initialized. 343 * @owner: the object that tracks the region's reference count 344 * @name: the name of the region. 345 * @size: size of the region. 346 * @ptr: memory to be mapped; must contain at least @size bytes. 347 */ 348 void memory_region_init_ram_ptr(MemoryRegion *mr, 349 struct Object *owner, 350 const char *name, 351 uint64_t size, 352 void *ptr); 353 354 /** 355 * memory_region_init_alias: Initialize a memory region that aliases all or a 356 * part of another memory region. 357 * 358 * @mr: the #MemoryRegion to be initialized. 359 * @owner: the object that tracks the region's reference count 360 * @name: used for debugging; not visible to the user or ABI 361 * @orig: the region to be referenced; @mr will be equivalent to 362 * @orig between @offset and @offset + @size - 1. 363 * @offset: start of the section in @orig to be referenced. 364 * @size: size of the region. 365 */ 366 void memory_region_init_alias(MemoryRegion *mr, 367 struct Object *owner, 368 const char *name, 369 MemoryRegion *orig, 370 hwaddr offset, 371 uint64_t size); 372 373 /** 374 * memory_region_init_rom_device: Initialize a ROM memory region. Writes are 375 * handled via callbacks. 376 * 377 * @mr: the #MemoryRegion to be initialized. 378 * @owner: the object that tracks the region's reference count 379 * @ops: callbacks for write access handling. 380 * @name: the name of the region. 381 * @size: size of the region. 382 */ 383 void memory_region_init_rom_device(MemoryRegion *mr, 384 struct Object *owner, 385 const MemoryRegionOps *ops, 386 void *opaque, 387 const char *name, 388 uint64_t size); 389 390 /** 391 * memory_region_init_reservation: Initialize a memory region that reserves 392 * I/O space. 393 * 394 * A reservation region primariy serves debugging purposes. It claims I/O 395 * space that is not supposed to be handled by QEMU itself. Any access via 396 * the memory API will cause an abort(). 397 * 398 * @mr: the #MemoryRegion to be initialized 399 * @owner: the object that tracks the region's reference count 400 * @name: used for debugging; not visible to the user or ABI 401 * @size: size of the region. 402 */ 403 void memory_region_init_reservation(MemoryRegion *mr, 404 struct Object *owner, 405 const char *name, 406 uint64_t size); 407 408 /** 409 * memory_region_init_iommu: Initialize a memory region that translates 410 * addresses 411 * 412 * An IOMMU region translates addresses and forwards accesses to a target 413 * memory region. 414 * 415 * @mr: the #MemoryRegion to be initialized 416 * @owner: the object that tracks the region's reference count 417 * @ops: a function that translates addresses into the @target region 418 * @name: used for debugging; not visible to the user or ABI 419 * @size: size of the region. 420 */ 421 void memory_region_init_iommu(MemoryRegion *mr, 422 struct Object *owner, 423 const MemoryRegionIOMMUOps *ops, 424 const char *name, 425 uint64_t size); 426 427 /** 428 * memory_region_destroy: Destroy a memory region and reclaim all resources. 429 * 430 * @mr: the region to be destroyed. May not currently be a subregion 431 * (see memory_region_add_subregion()) or referenced in an alias 432 * (see memory_region_init_alias()). 433 */ 434 void memory_region_destroy(MemoryRegion *mr); 435 436 /** 437 * memory_region_owner: get a memory region's owner. 438 * 439 * @mr: the memory region being queried. 440 */ 441 struct Object *memory_region_owner(MemoryRegion *mr); 442 443 /** 444 * memory_region_size: get a memory region's size. 445 * 446 * @mr: the memory region being queried. 447 */ 448 uint64_t memory_region_size(MemoryRegion *mr); 449 450 /** 451 * memory_region_is_ram: check whether a memory region is random access 452 * 453 * Returns %true is a memory region is random access. 454 * 455 * @mr: the memory region being queried 456 */ 457 bool memory_region_is_ram(MemoryRegion *mr); 458 459 /** 460 * memory_region_is_romd: check whether a memory region is in ROMD mode 461 * 462 * Returns %true if a memory region is a ROM device and currently set to allow 463 * direct reads. 464 * 465 * @mr: the memory region being queried 466 */ 467 static inline bool memory_region_is_romd(MemoryRegion *mr) 468 { 469 return mr->rom_device && mr->romd_mode; 470 } 471 472 /** 473 * memory_region_is_iommu: check whether a memory region is an iommu 474 * 475 * Returns %true is a memory region is an iommu. 476 * 477 * @mr: the memory region being queried 478 */ 479 bool memory_region_is_iommu(MemoryRegion *mr); 480 481 /** 482 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 483 * 484 * @mr: the memory region that was changed 485 * @entry: the new entry in the IOMMU translation table. The entry 486 * replaces all old entries for the same virtual I/O address range. 487 * Deleted entries have .@perm == 0. 488 */ 489 void memory_region_notify_iommu(MemoryRegion *mr, 490 IOMMUTLBEntry entry); 491 492 /** 493 * memory_region_register_iommu_notifier: register a notifier for changes to 494 * IOMMU translation entries. 495 * 496 * @mr: the memory region to observe 497 * @n: the notifier to be added; the notifier receives a pointer to an 498 * #IOMMUTLBEntry as the opaque value; the pointer ceases to be 499 * valid on exit from the notifier. 500 */ 501 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n); 502 503 /** 504 * memory_region_unregister_iommu_notifier: unregister a notifier for 505 * changes to IOMMU translation entries. 506 * 507 * @n: the notifier to be removed. 508 */ 509 void memory_region_unregister_iommu_notifier(Notifier *n); 510 511 /** 512 * memory_region_name: get a memory region's name 513 * 514 * Returns the string that was used to initialize the memory region. 515 * 516 * @mr: the memory region being queried 517 */ 518 const char *memory_region_name(MemoryRegion *mr); 519 520 /** 521 * memory_region_is_logging: return whether a memory region is logging writes 522 * 523 * Returns %true if the memory region is logging writes 524 * 525 * @mr: the memory region being queried 526 */ 527 bool memory_region_is_logging(MemoryRegion *mr); 528 529 /** 530 * memory_region_is_rom: check whether a memory region is ROM 531 * 532 * Returns %true is a memory region is read-only memory. 533 * 534 * @mr: the memory region being queried 535 */ 536 bool memory_region_is_rom(MemoryRegion *mr); 537 538 /** 539 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 540 * 541 * Returns a file descriptor backing a file-based RAM memory region, 542 * or -1 if the region is not a file-based RAM memory region. 543 * 544 * @mr: the RAM or alias memory region being queried. 545 */ 546 int memory_region_get_fd(MemoryRegion *mr); 547 548 /** 549 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 550 * 551 * Returns a host pointer to a RAM memory region (created with 552 * memory_region_init_ram() or memory_region_init_ram_ptr()). Use with 553 * care. 554 * 555 * @mr: the memory region being queried. 556 */ 557 void *memory_region_get_ram_ptr(MemoryRegion *mr); 558 559 /** 560 * memory_region_set_log: Turn dirty logging on or off for a region. 561 * 562 * Turns dirty logging on or off for a specified client (display, migration). 563 * Only meaningful for RAM regions. 564 * 565 * @mr: the memory region being updated. 566 * @log: whether dirty logging is to be enabled or disabled. 567 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 568 * %DIRTY_MEMORY_VGA. 569 */ 570 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 571 572 /** 573 * memory_region_get_dirty: Check whether a range of bytes is dirty 574 * for a specified client. 575 * 576 * Checks whether a range of bytes has been written to since the last 577 * call to memory_region_reset_dirty() with the same @client. Dirty logging 578 * must be enabled. 579 * 580 * @mr: the memory region being queried. 581 * @addr: the address (relative to the start of the region) being queried. 582 * @size: the size of the range being queried. 583 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 584 * %DIRTY_MEMORY_VGA. 585 */ 586 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr, 587 hwaddr size, unsigned client); 588 589 /** 590 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 591 * 592 * Marks a range of bytes as dirty, after it has been dirtied outside 593 * guest code. 594 * 595 * @mr: the memory region being dirtied. 596 * @addr: the address (relative to the start of the region) being dirtied. 597 * @size: size of the range being dirtied. 598 */ 599 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 600 hwaddr size); 601 602 /** 603 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty 604 * for a specified client. It clears them. 605 * 606 * Checks whether a range of bytes has been written to since the last 607 * call to memory_region_reset_dirty() with the same @client. Dirty logging 608 * must be enabled. 609 * 610 * @mr: the memory region being queried. 611 * @addr: the address (relative to the start of the region) being queried. 612 * @size: the size of the range being queried. 613 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 614 * %DIRTY_MEMORY_VGA. 615 */ 616 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr, 617 hwaddr size, unsigned client); 618 /** 619 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with 620 * any external TLBs (e.g. kvm) 621 * 622 * Flushes dirty information from accelerators such as kvm and vhost-net 623 * and makes it available to users of the memory API. 624 * 625 * @mr: the region being flushed. 626 */ 627 void memory_region_sync_dirty_bitmap(MemoryRegion *mr); 628 629 /** 630 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 631 * client. 632 * 633 * Marks a range of pages as no longer dirty. 634 * 635 * @mr: the region being updated. 636 * @addr: the start of the subrange being cleaned. 637 * @size: the size of the subrange being cleaned. 638 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 639 * %DIRTY_MEMORY_VGA. 640 */ 641 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 642 hwaddr size, unsigned client); 643 644 /** 645 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 646 * 647 * Allows a memory region to be marked as read-only (turning it into a ROM). 648 * only useful on RAM regions. 649 * 650 * @mr: the region being updated. 651 * @readonly: whether rhe region is to be ROM or RAM. 652 */ 653 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 654 655 /** 656 * memory_region_rom_device_set_romd: enable/disable ROMD mode 657 * 658 * Allows a ROM device (initialized with memory_region_init_rom_device() to 659 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 660 * device is mapped to guest memory and satisfies read access directly. 661 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 662 * Writes are always handled by the #MemoryRegion.write function. 663 * 664 * @mr: the memory region to be updated 665 * @romd_mode: %true to put the region into ROMD mode 666 */ 667 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 668 669 /** 670 * memory_region_set_coalescing: Enable memory coalescing for the region. 671 * 672 * Enabled writes to a region to be queued for later processing. MMIO ->write 673 * callbacks may be delayed until a non-coalesced MMIO is issued. 674 * Only useful for IO regions. Roughly similar to write-combining hardware. 675 * 676 * @mr: the memory region to be write coalesced 677 */ 678 void memory_region_set_coalescing(MemoryRegion *mr); 679 680 /** 681 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 682 * a region. 683 * 684 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 685 * Multiple calls can be issued coalesced disjoint ranges. 686 * 687 * @mr: the memory region to be updated. 688 * @offset: the start of the range within the region to be coalesced. 689 * @size: the size of the subrange to be coalesced. 690 */ 691 void memory_region_add_coalescing(MemoryRegion *mr, 692 hwaddr offset, 693 uint64_t size); 694 695 /** 696 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 697 * 698 * Disables any coalescing caused by memory_region_set_coalescing() or 699 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 700 * hardware. 701 * 702 * @mr: the memory region to be updated. 703 */ 704 void memory_region_clear_coalescing(MemoryRegion *mr); 705 706 /** 707 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 708 * accesses. 709 * 710 * Ensure that pending coalesced MMIO request are flushed before the memory 711 * region is accessed. This property is automatically enabled for all regions 712 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 713 * 714 * @mr: the memory region to be updated. 715 */ 716 void memory_region_set_flush_coalesced(MemoryRegion *mr); 717 718 /** 719 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 720 * accesses. 721 * 722 * Clear the automatic coalesced MMIO flushing enabled via 723 * memory_region_set_flush_coalesced. Note that this service has no effect on 724 * memory regions that have MMIO coalescing enabled for themselves. For them, 725 * automatic flushing will stop once coalescing is disabled. 726 * 727 * @mr: the memory region to be updated. 728 */ 729 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 730 731 /** 732 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 733 * is written to a location. 734 * 735 * Marks a word in an IO region (initialized with memory_region_init_io()) 736 * as a trigger for an eventfd event. The I/O callback will not be called. 737 * The caller must be prepared to handle failure (that is, take the required 738 * action if the callback _is_ called). 739 * 740 * @mr: the memory region being updated. 741 * @addr: the address within @mr that is to be monitored 742 * @size: the size of the access to trigger the eventfd 743 * @match_data: whether to match against @data, instead of just @addr 744 * @data: the data to match against the guest write 745 * @fd: the eventfd to be triggered when @addr, @size, and @data all match. 746 **/ 747 void memory_region_add_eventfd(MemoryRegion *mr, 748 hwaddr addr, 749 unsigned size, 750 bool match_data, 751 uint64_t data, 752 EventNotifier *e); 753 754 /** 755 * memory_region_del_eventfd: Cancel an eventfd. 756 * 757 * Cancels an eventfd trigger requested by a previous 758 * memory_region_add_eventfd() call. 759 * 760 * @mr: the memory region being updated. 761 * @addr: the address within @mr that is to be monitored 762 * @size: the size of the access to trigger the eventfd 763 * @match_data: whether to match against @data, instead of just @addr 764 * @data: the data to match against the guest write 765 * @fd: the eventfd to be triggered when @addr, @size, and @data all match. 766 */ 767 void memory_region_del_eventfd(MemoryRegion *mr, 768 hwaddr addr, 769 unsigned size, 770 bool match_data, 771 uint64_t data, 772 EventNotifier *e); 773 774 /** 775 * memory_region_add_subregion: Add a subregion to a container. 776 * 777 * Adds a subregion at @offset. The subregion may not overlap with other 778 * subregions (except for those explicitly marked as overlapping). A region 779 * may only be added once as a subregion (unless removed with 780 * memory_region_del_subregion()); use memory_region_init_alias() if you 781 * want a region to be a subregion in multiple locations. 782 * 783 * @mr: the region to contain the new subregion; must be a container 784 * initialized with memory_region_init(). 785 * @offset: the offset relative to @mr where @subregion is added. 786 * @subregion: the subregion to be added. 787 */ 788 void memory_region_add_subregion(MemoryRegion *mr, 789 hwaddr offset, 790 MemoryRegion *subregion); 791 /** 792 * memory_region_add_subregion_overlap: Add a subregion to a container 793 * with overlap. 794 * 795 * Adds a subregion at @offset. The subregion may overlap with other 796 * subregions. Conflicts are resolved by having a higher @priority hide a 797 * lower @priority. Subregions without priority are taken as @priority 0. 798 * A region may only be added once as a subregion (unless removed with 799 * memory_region_del_subregion()); use memory_region_init_alias() if you 800 * want a region to be a subregion in multiple locations. 801 * 802 * @mr: the region to contain the new subregion; must be a container 803 * initialized with memory_region_init(). 804 * @offset: the offset relative to @mr where @subregion is added. 805 * @subregion: the subregion to be added. 806 * @priority: used for resolving overlaps; highest priority wins. 807 */ 808 void memory_region_add_subregion_overlap(MemoryRegion *mr, 809 hwaddr offset, 810 MemoryRegion *subregion, 811 int priority); 812 813 /** 814 * memory_region_get_ram_addr: Get the ram address associated with a memory 815 * region 816 * 817 * DO NOT USE THIS FUNCTION. This is a temporary workaround while the Xen 818 * code is being reworked. 819 */ 820 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 821 822 /** 823 * memory_region_del_subregion: Remove a subregion. 824 * 825 * Removes a subregion from its container. 826 * 827 * @mr: the container to be updated. 828 * @subregion: the region being removed; must be a current subregion of @mr. 829 */ 830 void memory_region_del_subregion(MemoryRegion *mr, 831 MemoryRegion *subregion); 832 833 /* 834 * memory_region_set_enabled: dynamically enable or disable a region 835 * 836 * Enables or disables a memory region. A disabled memory region 837 * ignores all accesses to itself and its subregions. It does not 838 * obscure sibling subregions with lower priority - it simply behaves as 839 * if it was removed from the hierarchy. 840 * 841 * Regions default to being enabled. 842 * 843 * @mr: the region to be updated 844 * @enabled: whether to enable or disable the region 845 */ 846 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 847 848 /* 849 * memory_region_set_address: dynamically update the address of a region 850 * 851 * Dynamically updates the address of a region, relative to its container. 852 * May be used on regions are currently part of a memory hierarchy. 853 * 854 * @mr: the region to be updated 855 * @addr: new address, relative to container region 856 */ 857 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 858 859 /* 860 * memory_region_set_alias_offset: dynamically update a memory alias's offset 861 * 862 * Dynamically updates the offset into the target region that an alias points 863 * to, as if the fourth argument to memory_region_init_alias() has changed. 864 * 865 * @mr: the #MemoryRegion to be updated; should be an alias. 866 * @offset: the new offset into the target memory region 867 */ 868 void memory_region_set_alias_offset(MemoryRegion *mr, 869 hwaddr offset); 870 871 /** 872 * memory_region_present: checks if an address relative to a @container 873 * translates into #MemoryRegion within @container 874 * 875 * Answer whether a #MemoryRegion within @container covers the address 876 * @addr. 877 * 878 * @container: a #MemoryRegion within which @addr is a relative address 879 * @addr: the area within @container to be searched 880 */ 881 bool memory_region_present(MemoryRegion *container, hwaddr addr); 882 883 /** 884 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 885 * into any address space. 886 * 887 * @mr: a #MemoryRegion which should be checked if it's mapped 888 */ 889 bool memory_region_is_mapped(MemoryRegion *mr); 890 891 /** 892 * memory_region_find: translate an address/size relative to a 893 * MemoryRegion into a #MemoryRegionSection. 894 * 895 * Locates the first #MemoryRegion within @mr that overlaps the range 896 * given by @addr and @size. 897 * 898 * Returns a #MemoryRegionSection that describes a contiguous overlap. 899 * It will have the following characteristics: 900 * .@size = 0 iff no overlap was found 901 * .@mr is non-%NULL iff an overlap was found 902 * 903 * Remember that in the return value the @offset_within_region is 904 * relative to the returned region (in the .@mr field), not to the 905 * @mr argument. 906 * 907 * Similarly, the .@offset_within_address_space is relative to the 908 * address space that contains both regions, the passed and the 909 * returned one. However, in the special case where the @mr argument 910 * has no container (and thus is the root of the address space), the 911 * following will hold: 912 * .@offset_within_address_space >= @addr 913 * .@offset_within_address_space + .@size <= @addr + @size 914 * 915 * @mr: a MemoryRegion within which @addr is a relative address 916 * @addr: start of the area within @as to be searched 917 * @size: size of the area to be searched 918 */ 919 MemoryRegionSection memory_region_find(MemoryRegion *mr, 920 hwaddr addr, uint64_t size); 921 922 /** 923 * address_space_sync_dirty_bitmap: synchronize the dirty log for all memory 924 * 925 * Synchronizes the dirty page log for an entire address space. 926 * @as: the address space that contains the memory being synchronized 927 */ 928 void address_space_sync_dirty_bitmap(AddressSpace *as); 929 930 /** 931 * memory_region_transaction_begin: Start a transaction. 932 * 933 * During a transaction, changes will be accumulated and made visible 934 * only when the transaction ends (is committed). 935 */ 936 void memory_region_transaction_begin(void); 937 938 /** 939 * memory_region_transaction_commit: Commit a transaction and make changes 940 * visible to the guest. 941 */ 942 void memory_region_transaction_commit(void); 943 944 /** 945 * memory_listener_register: register callbacks to be called when memory 946 * sections are mapped or unmapped into an address 947 * space 948 * 949 * @listener: an object containing the callbacks to be called 950 * @filter: if non-%NULL, only regions in this address space will be observed 951 */ 952 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 953 954 /** 955 * memory_listener_unregister: undo the effect of memory_listener_register() 956 * 957 * @listener: an object containing the callbacks to be removed 958 */ 959 void memory_listener_unregister(MemoryListener *listener); 960 961 /** 962 * memory_global_dirty_log_start: begin dirty logging for all regions 963 */ 964 void memory_global_dirty_log_start(void); 965 966 /** 967 * memory_global_dirty_log_stop: end dirty logging for all regions 968 */ 969 void memory_global_dirty_log_stop(void); 970 971 void mtree_info(fprintf_function mon_printf, void *f); 972 973 /** 974 * address_space_init: initializes an address space 975 * 976 * @as: an uninitialized #AddressSpace 977 * @root: a #MemoryRegion that routes addesses for the address space 978 * @name: an address space name. The name is only used for debugging 979 * output. 980 */ 981 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 982 983 984 /** 985 * address_space_destroy: destroy an address space 986 * 987 * Releases all resources associated with an address space. After an address space 988 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 989 * as well. 990 * 991 * @as: address space to be destroyed 992 */ 993 void address_space_destroy(AddressSpace *as); 994 995 /** 996 * address_space_rw: read from or write to an address space. 997 * 998 * Return true if the operation hit any unassigned memory or encountered an 999 * IOMMU fault. 1000 * 1001 * @as: #AddressSpace to be accessed 1002 * @addr: address within that address space 1003 * @buf: buffer with the data transferred 1004 * @is_write: indicates the transfer direction 1005 */ 1006 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf, 1007 int len, bool is_write); 1008 1009 /** 1010 * address_space_write: write to address space. 1011 * 1012 * Return true if the operation hit any unassigned memory or encountered an 1013 * IOMMU fault. 1014 * 1015 * @as: #AddressSpace to be accessed 1016 * @addr: address within that address space 1017 * @buf: buffer with the data transferred 1018 */ 1019 bool address_space_write(AddressSpace *as, hwaddr addr, 1020 const uint8_t *buf, int len); 1021 1022 /** 1023 * address_space_read: read from an address space. 1024 * 1025 * Return true if the operation hit any unassigned memory or encountered an 1026 * IOMMU fault. 1027 * 1028 * @as: #AddressSpace to be accessed 1029 * @addr: address within that address space 1030 * @buf: buffer with the data transferred 1031 */ 1032 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len); 1033 1034 /* address_space_translate: translate an address range into an address space 1035 * into a MemoryRegion and an address range into that section 1036 * 1037 * @as: #AddressSpace to be accessed 1038 * @addr: address within that address space 1039 * @xlat: pointer to address within the returned memory region section's 1040 * #MemoryRegion. 1041 * @len: pointer to length 1042 * @is_write: indicates the transfer direction 1043 */ 1044 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr, 1045 hwaddr *xlat, hwaddr *len, 1046 bool is_write); 1047 1048 /* address_space_access_valid: check for validity of accessing an address 1049 * space range 1050 * 1051 * Check whether memory is assigned to the given address space range, and 1052 * access is permitted by any IOMMU regions that are active for the address 1053 * space. 1054 * 1055 * For now, addr and len should be aligned to a page size. This limitation 1056 * will be lifted in the future. 1057 * 1058 * @as: #AddressSpace to be accessed 1059 * @addr: address within that address space 1060 * @len: length of the area to be checked 1061 * @is_write: indicates the transfer direction 1062 */ 1063 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write); 1064 1065 /* address_space_map: map a physical memory region into a host virtual address 1066 * 1067 * May map a subset of the requested range, given by and returned in @plen. 1068 * May return %NULL if resources needed to perform the mapping are exhausted. 1069 * Use only for reads OR writes - not for read-modify-write operations. 1070 * Use cpu_register_map_client() to know when retrying the map operation is 1071 * likely to succeed. 1072 * 1073 * @as: #AddressSpace to be accessed 1074 * @addr: address within that address space 1075 * @plen: pointer to length of buffer; updated on return 1076 * @is_write: indicates the transfer direction 1077 */ 1078 void *address_space_map(AddressSpace *as, hwaddr addr, 1079 hwaddr *plen, bool is_write); 1080 1081 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 1082 * 1083 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 1084 * the amount of memory that was actually read or written by the caller. 1085 * 1086 * @as: #AddressSpace used 1087 * @addr: address within that address space 1088 * @len: buffer length as returned by address_space_map() 1089 * @access_len: amount of data actually transferred 1090 * @is_write: indicates the transfer direction 1091 */ 1092 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 1093 int is_write, hwaddr access_len); 1094 1095 1096 #endif 1097 1098 #endif 1099