1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef MEMORY_H 15 #define MEMORY_H 16 17 #ifndef CONFIG_USER_ONLY 18 19 #include "exec/cpu-common.h" 20 #include "exec/hwaddr.h" 21 #include "exec/memattrs.h" 22 #include "exec/memop.h" 23 #include "exec/ramlist.h" 24 #include "qemu/bswap.h" 25 #include "qemu/queue.h" 26 #include "qemu/int128.h" 27 #include "qemu/notify.h" 28 #include "qom/object.h" 29 #include "qemu/rcu.h" 30 31 #define RAM_ADDR_INVALID (~(ram_addr_t)0) 32 33 #define MAX_PHYS_ADDR_SPACE_BITS 62 34 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 35 36 #define TYPE_MEMORY_REGION "qemu:memory-region" 37 #define MEMORY_REGION(obj) \ 38 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION) 39 40 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region" 41 #define IOMMU_MEMORY_REGION(obj) \ 42 OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION) 43 #define IOMMU_MEMORY_REGION_CLASS(klass) \ 44 OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \ 45 TYPE_IOMMU_MEMORY_REGION) 46 #define IOMMU_MEMORY_REGION_GET_CLASS(obj) \ 47 OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \ 48 TYPE_IOMMU_MEMORY_REGION) 49 50 extern bool global_dirty_log; 51 52 typedef struct MemoryRegionOps MemoryRegionOps; 53 typedef struct MemoryRegionMmio MemoryRegionMmio; 54 55 struct MemoryRegionMmio { 56 CPUReadMemoryFunc *read[3]; 57 CPUWriteMemoryFunc *write[3]; 58 }; 59 60 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 61 62 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 63 typedef enum { 64 IOMMU_NONE = 0, 65 IOMMU_RO = 1, 66 IOMMU_WO = 2, 67 IOMMU_RW = 3, 68 } IOMMUAccessFlags; 69 70 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0)) 71 72 struct IOMMUTLBEntry { 73 AddressSpace *target_as; 74 hwaddr iova; 75 hwaddr translated_addr; 76 hwaddr addr_mask; /* 0xfff = 4k translation */ 77 IOMMUAccessFlags perm; 78 }; 79 80 /* 81 * Bitmap for different IOMMUNotifier capabilities. Each notifier can 82 * register with one or multiple IOMMU Notifier capability bit(s). 83 */ 84 typedef enum { 85 IOMMU_NOTIFIER_NONE = 0, 86 /* Notify cache invalidations */ 87 IOMMU_NOTIFIER_UNMAP = 0x1, 88 /* Notify entry changes (newly created entries) */ 89 IOMMU_NOTIFIER_MAP = 0x2, 90 } IOMMUNotifierFlag; 91 92 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP) 93 94 struct IOMMUNotifier; 95 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier, 96 IOMMUTLBEntry *data); 97 98 struct IOMMUNotifier { 99 IOMMUNotify notify; 100 IOMMUNotifierFlag notifier_flags; 101 /* Notify for address space range start <= addr <= end */ 102 hwaddr start; 103 hwaddr end; 104 int iommu_idx; 105 QLIST_ENTRY(IOMMUNotifier) node; 106 }; 107 typedef struct IOMMUNotifier IOMMUNotifier; 108 109 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ 110 #define RAM_PREALLOC (1 << 0) 111 112 /* RAM is mmap-ed with MAP_SHARED */ 113 #define RAM_SHARED (1 << 1) 114 115 /* Only a portion of RAM (used_length) is actually used, and migrated. 116 * This used_length size can change across reboots. 117 */ 118 #define RAM_RESIZEABLE (1 << 2) 119 120 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically 121 * zero the page and wake waiting processes. 122 * (Set during postcopy) 123 */ 124 #define RAM_UF_ZEROPAGE (1 << 3) 125 126 /* RAM can be migrated */ 127 #define RAM_MIGRATABLE (1 << 4) 128 129 /* RAM is a persistent kind memory */ 130 #define RAM_PMEM (1 << 5) 131 132 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn, 133 IOMMUNotifierFlag flags, 134 hwaddr start, hwaddr end, 135 int iommu_idx) 136 { 137 n->notify = fn; 138 n->notifier_flags = flags; 139 n->start = start; 140 n->end = end; 141 n->iommu_idx = iommu_idx; 142 } 143 144 /* 145 * Memory region callbacks 146 */ 147 struct MemoryRegionOps { 148 /* Read from the memory region. @addr is relative to @mr; @size is 149 * in bytes. */ 150 uint64_t (*read)(void *opaque, 151 hwaddr addr, 152 unsigned size); 153 /* Write to the memory region. @addr is relative to @mr; @size is 154 * in bytes. */ 155 void (*write)(void *opaque, 156 hwaddr addr, 157 uint64_t data, 158 unsigned size); 159 160 MemTxResult (*read_with_attrs)(void *opaque, 161 hwaddr addr, 162 uint64_t *data, 163 unsigned size, 164 MemTxAttrs attrs); 165 MemTxResult (*write_with_attrs)(void *opaque, 166 hwaddr addr, 167 uint64_t data, 168 unsigned size, 169 MemTxAttrs attrs); 170 171 enum device_endian endianness; 172 /* Guest-visible constraints: */ 173 struct { 174 /* If nonzero, specify bounds on access sizes beyond which a machine 175 * check is thrown. 176 */ 177 unsigned min_access_size; 178 unsigned max_access_size; 179 /* If true, unaligned accesses are supported. Otherwise unaligned 180 * accesses throw machine checks. 181 */ 182 bool unaligned; 183 /* 184 * If present, and returns #false, the transaction is not accepted 185 * by the device (and results in machine dependent behaviour such 186 * as a machine check exception). 187 */ 188 bool (*accepts)(void *opaque, hwaddr addr, 189 unsigned size, bool is_write, 190 MemTxAttrs attrs); 191 } valid; 192 /* Internal implementation constraints: */ 193 struct { 194 /* If nonzero, specifies the minimum size implemented. Smaller sizes 195 * will be rounded upwards and a partial result will be returned. 196 */ 197 unsigned min_access_size; 198 /* If nonzero, specifies the maximum size implemented. Larger sizes 199 * will be done as a series of accesses with smaller sizes. 200 */ 201 unsigned max_access_size; 202 /* If true, unaligned accesses are supported. Otherwise all accesses 203 * are converted to (possibly multiple) naturally aligned accesses. 204 */ 205 bool unaligned; 206 } impl; 207 }; 208 209 typedef struct MemoryRegionClass { 210 /* private */ 211 ObjectClass parent_class; 212 } MemoryRegionClass; 213 214 215 enum IOMMUMemoryRegionAttr { 216 IOMMU_ATTR_SPAPR_TCE_FD 217 }; 218 219 /** 220 * IOMMUMemoryRegionClass: 221 * 222 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION 223 * and provide an implementation of at least the @translate method here 224 * to handle requests to the memory region. Other methods are optional. 225 * 226 * The IOMMU implementation must use the IOMMU notifier infrastructure 227 * to report whenever mappings are changed, by calling 228 * memory_region_notify_iommu() (or, if necessary, by calling 229 * memory_region_notify_one() for each registered notifier). 230 * 231 * Conceptually an IOMMU provides a mapping from input address 232 * to an output TLB entry. If the IOMMU is aware of memory transaction 233 * attributes and the output TLB entry depends on the transaction 234 * attributes, we represent this using IOMMU indexes. Each index 235 * selects a particular translation table that the IOMMU has: 236 * @attrs_to_index returns the IOMMU index for a set of transaction attributes 237 * @translate takes an input address and an IOMMU index 238 * and the mapping returned can only depend on the input address and the 239 * IOMMU index. 240 * 241 * Most IOMMUs don't care about the transaction attributes and support 242 * only a single IOMMU index. A more complex IOMMU might have one index 243 * for secure transactions and one for non-secure transactions. 244 */ 245 typedef struct IOMMUMemoryRegionClass { 246 /* private */ 247 MemoryRegionClass parent_class; 248 249 /* 250 * Return a TLB entry that contains a given address. 251 * 252 * The IOMMUAccessFlags indicated via @flag are optional and may 253 * be specified as IOMMU_NONE to indicate that the caller needs 254 * the full translation information for both reads and writes. If 255 * the access flags are specified then the IOMMU implementation 256 * may use this as an optimization, to stop doing a page table 257 * walk as soon as it knows that the requested permissions are not 258 * allowed. If IOMMU_NONE is passed then the IOMMU must do the 259 * full page table walk and report the permissions in the returned 260 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not 261 * return different mappings for reads and writes.) 262 * 263 * The returned information remains valid while the caller is 264 * holding the big QEMU lock or is inside an RCU critical section; 265 * if the caller wishes to cache the mapping beyond that it must 266 * register an IOMMU notifier so it can invalidate its cached 267 * information when the IOMMU mapping changes. 268 * 269 * @iommu: the IOMMUMemoryRegion 270 * @hwaddr: address to be translated within the memory region 271 * @flag: requested access permissions 272 * @iommu_idx: IOMMU index for the translation 273 */ 274 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr, 275 IOMMUAccessFlags flag, int iommu_idx); 276 /* Returns minimum supported page size in bytes. 277 * If this method is not provided then the minimum is assumed to 278 * be TARGET_PAGE_SIZE. 279 * 280 * @iommu: the IOMMUMemoryRegion 281 */ 282 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu); 283 /* Called when IOMMU Notifier flag changes (ie when the set of 284 * events which IOMMU users are requesting notification for changes). 285 * Optional method -- need not be provided if the IOMMU does not 286 * need to know exactly which events must be notified. 287 * 288 * @iommu: the IOMMUMemoryRegion 289 * @old_flags: events which previously needed to be notified 290 * @new_flags: events which now need to be notified 291 */ 292 void (*notify_flag_changed)(IOMMUMemoryRegion *iommu, 293 IOMMUNotifierFlag old_flags, 294 IOMMUNotifierFlag new_flags); 295 /* Called to handle memory_region_iommu_replay(). 296 * 297 * The default implementation of memory_region_iommu_replay() is to 298 * call the IOMMU translate method for every page in the address space 299 * with flag == IOMMU_NONE and then call the notifier if translate 300 * returns a valid mapping. If this method is implemented then it 301 * overrides the default behaviour, and must provide the full semantics 302 * of memory_region_iommu_replay(), by calling @notifier for every 303 * translation present in the IOMMU. 304 * 305 * Optional method -- an IOMMU only needs to provide this method 306 * if the default is inefficient or produces undesirable side effects. 307 * 308 * Note: this is not related to record-and-replay functionality. 309 */ 310 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier); 311 312 /* Get IOMMU misc attributes. This is an optional method that 313 * can be used to allow users of the IOMMU to get implementation-specific 314 * information. The IOMMU implements this method to handle calls 315 * by IOMMU users to memory_region_iommu_get_attr() by filling in 316 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that 317 * the IOMMU supports. If the method is unimplemented then 318 * memory_region_iommu_get_attr() will always return -EINVAL. 319 * 320 * @iommu: the IOMMUMemoryRegion 321 * @attr: attribute being queried 322 * @data: memory to fill in with the attribute data 323 * 324 * Returns 0 on success, or a negative errno; in particular 325 * returns -EINVAL for unrecognized or unimplemented attribute types. 326 */ 327 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr, 328 void *data); 329 330 /* Return the IOMMU index to use for a given set of transaction attributes. 331 * 332 * Optional method: if an IOMMU only supports a single IOMMU index then 333 * the default implementation of memory_region_iommu_attrs_to_index() 334 * will return 0. 335 * 336 * The indexes supported by an IOMMU must be contiguous, starting at 0. 337 * 338 * @iommu: the IOMMUMemoryRegion 339 * @attrs: memory transaction attributes 340 */ 341 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs); 342 343 /* Return the number of IOMMU indexes this IOMMU supports. 344 * 345 * Optional method: if this method is not provided, then 346 * memory_region_iommu_num_indexes() will return 1, indicating that 347 * only a single IOMMU index is supported. 348 * 349 * @iommu: the IOMMUMemoryRegion 350 */ 351 int (*num_indexes)(IOMMUMemoryRegion *iommu); 352 } IOMMUMemoryRegionClass; 353 354 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 355 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 356 357 struct MemoryRegion { 358 Object parent_obj; 359 360 /* All fields are private - violators will be prosecuted */ 361 362 /* The following fields should fit in a cache line */ 363 bool romd_mode; 364 bool ram; 365 bool subpage; 366 bool readonly; /* For RAM regions */ 367 bool nonvolatile; 368 bool rom_device; 369 bool flush_coalesced_mmio; 370 bool global_locking; 371 uint8_t dirty_log_mask; 372 bool is_iommu; 373 RAMBlock *ram_block; 374 Object *owner; 375 376 const MemoryRegionOps *ops; 377 void *opaque; 378 MemoryRegion *container; 379 Int128 size; 380 hwaddr addr; 381 void (*destructor)(MemoryRegion *mr); 382 uint64_t align; 383 bool terminates; 384 bool ram_device; 385 bool enabled; 386 bool warning_printed; /* For reservations */ 387 uint8_t vga_logging_count; 388 MemoryRegion *alias; 389 hwaddr alias_offset; 390 int32_t priority; 391 QTAILQ_HEAD(, MemoryRegion) subregions; 392 QTAILQ_ENTRY(MemoryRegion) subregions_link; 393 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced; 394 const char *name; 395 unsigned ioeventfd_nb; 396 MemoryRegionIoeventfd *ioeventfds; 397 }; 398 399 struct IOMMUMemoryRegion { 400 MemoryRegion parent_obj; 401 402 QLIST_HEAD(, IOMMUNotifier) iommu_notify; 403 IOMMUNotifierFlag iommu_notify_flags; 404 }; 405 406 #define IOMMU_NOTIFIER_FOREACH(n, mr) \ 407 QLIST_FOREACH((n), &(mr)->iommu_notify, node) 408 409 /** 410 * MemoryListener: callbacks structure for updates to the physical memory map 411 * 412 * Allows a component to adjust to changes in the guest-visible memory map. 413 * Use with memory_listener_register() and memory_listener_unregister(). 414 */ 415 struct MemoryListener { 416 void (*begin)(MemoryListener *listener); 417 void (*commit)(MemoryListener *listener); 418 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 419 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 420 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 421 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 422 int old, int new); 423 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 424 int old, int new); 425 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 426 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section); 427 void (*log_global_start)(MemoryListener *listener); 428 void (*log_global_stop)(MemoryListener *listener); 429 void (*log_global_after_sync)(MemoryListener *listener); 430 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 431 bool match_data, uint64_t data, EventNotifier *e); 432 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 433 bool match_data, uint64_t data, EventNotifier *e); 434 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section, 435 hwaddr addr, hwaddr len); 436 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section, 437 hwaddr addr, hwaddr len); 438 /* Lower = earlier (during add), later (during del) */ 439 unsigned priority; 440 AddressSpace *address_space; 441 QTAILQ_ENTRY(MemoryListener) link; 442 QTAILQ_ENTRY(MemoryListener) link_as; 443 }; 444 445 /** 446 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects 447 */ 448 struct AddressSpace { 449 /* All fields are private. */ 450 struct rcu_head rcu; 451 char *name; 452 MemoryRegion *root; 453 454 /* Accessed via RCU. */ 455 struct FlatView *current_map; 456 457 int ioeventfd_nb; 458 struct MemoryRegionIoeventfd *ioeventfds; 459 QTAILQ_HEAD(, MemoryListener) listeners; 460 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 461 }; 462 463 typedef struct AddressSpaceDispatch AddressSpaceDispatch; 464 typedef struct FlatRange FlatRange; 465 466 /* Flattened global view of current active memory hierarchy. Kept in sorted 467 * order. 468 */ 469 struct FlatView { 470 struct rcu_head rcu; 471 unsigned ref; 472 FlatRange *ranges; 473 unsigned nr; 474 unsigned nr_allocated; 475 struct AddressSpaceDispatch *dispatch; 476 MemoryRegion *root; 477 }; 478 479 static inline FlatView *address_space_to_flatview(AddressSpace *as) 480 { 481 return atomic_rcu_read(&as->current_map); 482 } 483 484 485 /** 486 * MemoryRegionSection: describes a fragment of a #MemoryRegion 487 * 488 * @mr: the region, or %NULL if empty 489 * @fv: the flat view of the address space the region is mapped in 490 * @offset_within_region: the beginning of the section, relative to @mr's start 491 * @size: the size of the section; will not exceed @mr's boundaries 492 * @offset_within_address_space: the address of the first byte of the section 493 * relative to the region's address space 494 * @readonly: writes to this section are ignored 495 * @nonvolatile: this section is non-volatile 496 */ 497 struct MemoryRegionSection { 498 MemoryRegion *mr; 499 FlatView *fv; 500 hwaddr offset_within_region; 501 Int128 size; 502 hwaddr offset_within_address_space; 503 bool readonly; 504 bool nonvolatile; 505 }; 506 507 /** 508 * memory_region_init: Initialize a memory region 509 * 510 * The region typically acts as a container for other memory regions. Use 511 * memory_region_add_subregion() to add subregions. 512 * 513 * @mr: the #MemoryRegion to be initialized 514 * @owner: the object that tracks the region's reference count 515 * @name: used for debugging; not visible to the user or ABI 516 * @size: size of the region; any subregions beyond this size will be clipped 517 */ 518 void memory_region_init(MemoryRegion *mr, 519 struct Object *owner, 520 const char *name, 521 uint64_t size); 522 523 /** 524 * memory_region_ref: Add 1 to a memory region's reference count 525 * 526 * Whenever memory regions are accessed outside the BQL, they need to be 527 * preserved against hot-unplug. MemoryRegions actually do not have their 528 * own reference count; they piggyback on a QOM object, their "owner". 529 * This function adds a reference to the owner. 530 * 531 * All MemoryRegions must have an owner if they can disappear, even if the 532 * device they belong to operates exclusively under the BQL. This is because 533 * the region could be returned at any time by memory_region_find, and this 534 * is usually under guest control. 535 * 536 * @mr: the #MemoryRegion 537 */ 538 void memory_region_ref(MemoryRegion *mr); 539 540 /** 541 * memory_region_unref: Remove 1 to a memory region's reference count 542 * 543 * Whenever memory regions are accessed outside the BQL, they need to be 544 * preserved against hot-unplug. MemoryRegions actually do not have their 545 * own reference count; they piggyback on a QOM object, their "owner". 546 * This function removes a reference to the owner and possibly destroys it. 547 * 548 * @mr: the #MemoryRegion 549 */ 550 void memory_region_unref(MemoryRegion *mr); 551 552 /** 553 * memory_region_init_io: Initialize an I/O memory region. 554 * 555 * Accesses into the region will cause the callbacks in @ops to be called. 556 * if @size is nonzero, subregions will be clipped to @size. 557 * 558 * @mr: the #MemoryRegion to be initialized. 559 * @owner: the object that tracks the region's reference count 560 * @ops: a structure containing read and write callbacks to be used when 561 * I/O is performed on the region. 562 * @opaque: passed to the read and write callbacks of the @ops structure. 563 * @name: used for debugging; not visible to the user or ABI 564 * @size: size of the region. 565 */ 566 void memory_region_init_io(MemoryRegion *mr, 567 struct Object *owner, 568 const MemoryRegionOps *ops, 569 void *opaque, 570 const char *name, 571 uint64_t size); 572 573 /** 574 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses 575 * into the region will modify memory 576 * directly. 577 * 578 * @mr: the #MemoryRegion to be initialized. 579 * @owner: the object that tracks the region's reference count 580 * @name: Region name, becomes part of RAMBlock name used in migration stream 581 * must be unique within any device 582 * @size: size of the region. 583 * @errp: pointer to Error*, to store an error if it happens. 584 * 585 * Note that this function does not do anything to cause the data in the 586 * RAM memory region to be migrated; that is the responsibility of the caller. 587 */ 588 void memory_region_init_ram_nomigrate(MemoryRegion *mr, 589 struct Object *owner, 590 const char *name, 591 uint64_t size, 592 Error **errp); 593 594 /** 595 * memory_region_init_ram_shared_nomigrate: Initialize RAM memory region. 596 * Accesses into the region will 597 * modify memory directly. 598 * 599 * @mr: the #MemoryRegion to be initialized. 600 * @owner: the object that tracks the region's reference count 601 * @name: Region name, becomes part of RAMBlock name used in migration stream 602 * must be unique within any device 603 * @size: size of the region. 604 * @share: allow remapping RAM to different addresses 605 * @errp: pointer to Error*, to store an error if it happens. 606 * 607 * Note that this function is similar to memory_region_init_ram_nomigrate. 608 * The only difference is part of the RAM region can be remapped. 609 */ 610 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr, 611 struct Object *owner, 612 const char *name, 613 uint64_t size, 614 bool share, 615 Error **errp); 616 617 /** 618 * memory_region_init_resizeable_ram: Initialize memory region with resizeable 619 * RAM. Accesses into the region will 620 * modify memory directly. Only an initial 621 * portion of this RAM is actually used. 622 * The used size can change across reboots. 623 * 624 * @mr: the #MemoryRegion to be initialized. 625 * @owner: the object that tracks the region's reference count 626 * @name: Region name, becomes part of RAMBlock name used in migration stream 627 * must be unique within any device 628 * @size: used size of the region. 629 * @max_size: max size of the region. 630 * @resized: callback to notify owner about used size change. 631 * @errp: pointer to Error*, to store an error if it happens. 632 * 633 * Note that this function does not do anything to cause the data in the 634 * RAM memory region to be migrated; that is the responsibility of the caller. 635 */ 636 void memory_region_init_resizeable_ram(MemoryRegion *mr, 637 struct Object *owner, 638 const char *name, 639 uint64_t size, 640 uint64_t max_size, 641 void (*resized)(const char*, 642 uint64_t length, 643 void *host), 644 Error **errp); 645 #ifdef CONFIG_POSIX 646 647 /** 648 * memory_region_init_ram_from_file: Initialize RAM memory region with a 649 * mmap-ed backend. 650 * 651 * @mr: the #MemoryRegion to be initialized. 652 * @owner: the object that tracks the region's reference count 653 * @name: Region name, becomes part of RAMBlock name used in migration stream 654 * must be unique within any device 655 * @size: size of the region. 656 * @align: alignment of the region base address; if 0, the default alignment 657 * (getpagesize()) will be used. 658 * @ram_flags: Memory region features: 659 * - RAM_SHARED: memory must be mmaped with the MAP_SHARED flag 660 * - RAM_PMEM: the memory is persistent memory 661 * Other bits are ignored now. 662 * @path: the path in which to allocate the RAM. 663 * @errp: pointer to Error*, to store an error if it happens. 664 * 665 * Note that this function does not do anything to cause the data in the 666 * RAM memory region to be migrated; that is the responsibility of the caller. 667 */ 668 void memory_region_init_ram_from_file(MemoryRegion *mr, 669 struct Object *owner, 670 const char *name, 671 uint64_t size, 672 uint64_t align, 673 uint32_t ram_flags, 674 const char *path, 675 Error **errp); 676 677 /** 678 * memory_region_init_ram_from_fd: Initialize RAM memory region with a 679 * mmap-ed backend. 680 * 681 * @mr: the #MemoryRegion to be initialized. 682 * @owner: the object that tracks the region's reference count 683 * @name: the name of the region. 684 * @size: size of the region. 685 * @share: %true if memory must be mmaped with the MAP_SHARED flag 686 * @fd: the fd to mmap. 687 * @errp: pointer to Error*, to store an error if it happens. 688 * 689 * Note that this function does not do anything to cause the data in the 690 * RAM memory region to be migrated; that is the responsibility of the caller. 691 */ 692 void memory_region_init_ram_from_fd(MemoryRegion *mr, 693 struct Object *owner, 694 const char *name, 695 uint64_t size, 696 bool share, 697 int fd, 698 Error **errp); 699 #endif 700 701 /** 702 * memory_region_init_ram_ptr: Initialize RAM memory region from a 703 * user-provided pointer. Accesses into the 704 * region will modify memory directly. 705 * 706 * @mr: the #MemoryRegion to be initialized. 707 * @owner: the object that tracks the region's reference count 708 * @name: Region name, becomes part of RAMBlock name used in migration stream 709 * must be unique within any device 710 * @size: size of the region. 711 * @ptr: memory to be mapped; must contain at least @size bytes. 712 * 713 * Note that this function does not do anything to cause the data in the 714 * RAM memory region to be migrated; that is the responsibility of the caller. 715 */ 716 void memory_region_init_ram_ptr(MemoryRegion *mr, 717 struct Object *owner, 718 const char *name, 719 uint64_t size, 720 void *ptr); 721 722 /** 723 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from 724 * a user-provided pointer. 725 * 726 * A RAM device represents a mapping to a physical device, such as to a PCI 727 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped 728 * into the VM address space and access to the region will modify memory 729 * directly. However, the memory region should not be included in a memory 730 * dump (device may not be enabled/mapped at the time of the dump), and 731 * operations incompatible with manipulating MMIO should be avoided. Replaces 732 * skip_dump flag. 733 * 734 * @mr: the #MemoryRegion to be initialized. 735 * @owner: the object that tracks the region's reference count 736 * @name: the name of the region. 737 * @size: size of the region. 738 * @ptr: memory to be mapped; must contain at least @size bytes. 739 * 740 * Note that this function does not do anything to cause the data in the 741 * RAM memory region to be migrated; that is the responsibility of the caller. 742 * (For RAM device memory regions, migrating the contents rarely makes sense.) 743 */ 744 void memory_region_init_ram_device_ptr(MemoryRegion *mr, 745 struct Object *owner, 746 const char *name, 747 uint64_t size, 748 void *ptr); 749 750 /** 751 * memory_region_init_alias: Initialize a memory region that aliases all or a 752 * part of another memory region. 753 * 754 * @mr: the #MemoryRegion to be initialized. 755 * @owner: the object that tracks the region's reference count 756 * @name: used for debugging; not visible to the user or ABI 757 * @orig: the region to be referenced; @mr will be equivalent to 758 * @orig between @offset and @offset + @size - 1. 759 * @offset: start of the section in @orig to be referenced. 760 * @size: size of the region. 761 */ 762 void memory_region_init_alias(MemoryRegion *mr, 763 struct Object *owner, 764 const char *name, 765 MemoryRegion *orig, 766 hwaddr offset, 767 uint64_t size); 768 769 /** 770 * memory_region_init_rom_nomigrate: Initialize a ROM memory region. 771 * 772 * This has the same effect as calling memory_region_init_ram_nomigrate() 773 * and then marking the resulting region read-only with 774 * memory_region_set_readonly(). 775 * 776 * Note that this function does not do anything to cause the data in the 777 * RAM side of the memory region to be migrated; that is the responsibility 778 * of the caller. 779 * 780 * @mr: the #MemoryRegion to be initialized. 781 * @owner: the object that tracks the region's reference count 782 * @name: Region name, becomes part of RAMBlock name used in migration stream 783 * must be unique within any device 784 * @size: size of the region. 785 * @errp: pointer to Error*, to store an error if it happens. 786 */ 787 void memory_region_init_rom_nomigrate(MemoryRegion *mr, 788 struct Object *owner, 789 const char *name, 790 uint64_t size, 791 Error **errp); 792 793 /** 794 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region. 795 * Writes are handled via callbacks. 796 * 797 * Note that this function does not do anything to cause the data in the 798 * RAM side of the memory region to be migrated; that is the responsibility 799 * of the caller. 800 * 801 * @mr: the #MemoryRegion to be initialized. 802 * @owner: the object that tracks the region's reference count 803 * @ops: callbacks for write access handling (must not be NULL). 804 * @opaque: passed to the read and write callbacks of the @ops structure. 805 * @name: Region name, becomes part of RAMBlock name used in migration stream 806 * must be unique within any device 807 * @size: size of the region. 808 * @errp: pointer to Error*, to store an error if it happens. 809 */ 810 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr, 811 struct Object *owner, 812 const MemoryRegionOps *ops, 813 void *opaque, 814 const char *name, 815 uint64_t size, 816 Error **errp); 817 818 /** 819 * memory_region_init_iommu: Initialize a memory region of a custom type 820 * that translates addresses 821 * 822 * An IOMMU region translates addresses and forwards accesses to a target 823 * memory region. 824 * 825 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION. 826 * @_iommu_mr should be a pointer to enough memory for an instance of 827 * that subclass, @instance_size is the size of that subclass, and 828 * @mrtypename is its name. This function will initialize @_iommu_mr as an 829 * instance of the subclass, and its methods will then be called to handle 830 * accesses to the memory region. See the documentation of 831 * #IOMMUMemoryRegionClass for further details. 832 * 833 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized 834 * @instance_size: the IOMMUMemoryRegion subclass instance size 835 * @mrtypename: the type name of the #IOMMUMemoryRegion 836 * @owner: the object that tracks the region's reference count 837 * @name: used for debugging; not visible to the user or ABI 838 * @size: size of the region. 839 */ 840 void memory_region_init_iommu(void *_iommu_mr, 841 size_t instance_size, 842 const char *mrtypename, 843 Object *owner, 844 const char *name, 845 uint64_t size); 846 847 /** 848 * memory_region_init_ram - Initialize RAM memory region. Accesses into the 849 * region will modify memory directly. 850 * 851 * @mr: the #MemoryRegion to be initialized 852 * @owner: the object that tracks the region's reference count (must be 853 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL) 854 * @name: name of the memory region 855 * @size: size of the region in bytes 856 * @errp: pointer to Error*, to store an error if it happens. 857 * 858 * This function allocates RAM for a board model or device, and 859 * arranges for it to be migrated (by calling vmstate_register_ram() 860 * if @owner is a DeviceState, or vmstate_register_ram_global() if 861 * @owner is NULL). 862 * 863 * TODO: Currently we restrict @owner to being either NULL (for 864 * global RAM regions with no owner) or devices, so that we can 865 * give the RAM block a unique name for migration purposes. 866 * We should lift this restriction and allow arbitrary Objects. 867 * If you pass a non-NULL non-device @owner then we will assert. 868 */ 869 void memory_region_init_ram(MemoryRegion *mr, 870 struct Object *owner, 871 const char *name, 872 uint64_t size, 873 Error **errp); 874 875 /** 876 * memory_region_init_rom: Initialize a ROM memory region. 877 * 878 * This has the same effect as calling memory_region_init_ram() 879 * and then marking the resulting region read-only with 880 * memory_region_set_readonly(). This includes arranging for the 881 * contents to be migrated. 882 * 883 * TODO: Currently we restrict @owner to being either NULL (for 884 * global RAM regions with no owner) or devices, so that we can 885 * give the RAM block a unique name for migration purposes. 886 * We should lift this restriction and allow arbitrary Objects. 887 * If you pass a non-NULL non-device @owner then we will assert. 888 * 889 * @mr: the #MemoryRegion to be initialized. 890 * @owner: the object that tracks the region's reference count 891 * @name: Region name, becomes part of RAMBlock name used in migration stream 892 * must be unique within any device 893 * @size: size of the region. 894 * @errp: pointer to Error*, to store an error if it happens. 895 */ 896 void memory_region_init_rom(MemoryRegion *mr, 897 struct Object *owner, 898 const char *name, 899 uint64_t size, 900 Error **errp); 901 902 /** 903 * memory_region_init_rom_device: Initialize a ROM memory region. 904 * Writes are handled via callbacks. 905 * 906 * This function initializes a memory region backed by RAM for reads 907 * and callbacks for writes, and arranges for the RAM backing to 908 * be migrated (by calling vmstate_register_ram() 909 * if @owner is a DeviceState, or vmstate_register_ram_global() if 910 * @owner is NULL). 911 * 912 * TODO: Currently we restrict @owner to being either NULL (for 913 * global RAM regions with no owner) or devices, so that we can 914 * give the RAM block a unique name for migration purposes. 915 * We should lift this restriction and allow arbitrary Objects. 916 * If you pass a non-NULL non-device @owner then we will assert. 917 * 918 * @mr: the #MemoryRegion to be initialized. 919 * @owner: the object that tracks the region's reference count 920 * @ops: callbacks for write access handling (must not be NULL). 921 * @name: Region name, becomes part of RAMBlock name used in migration stream 922 * must be unique within any device 923 * @size: size of the region. 924 * @errp: pointer to Error*, to store an error if it happens. 925 */ 926 void memory_region_init_rom_device(MemoryRegion *mr, 927 struct Object *owner, 928 const MemoryRegionOps *ops, 929 void *opaque, 930 const char *name, 931 uint64_t size, 932 Error **errp); 933 934 935 /** 936 * memory_region_owner: get a memory region's owner. 937 * 938 * @mr: the memory region being queried. 939 */ 940 struct Object *memory_region_owner(MemoryRegion *mr); 941 942 /** 943 * memory_region_size: get a memory region's size. 944 * 945 * @mr: the memory region being queried. 946 */ 947 uint64_t memory_region_size(MemoryRegion *mr); 948 949 /** 950 * memory_region_is_ram: check whether a memory region is random access 951 * 952 * Returns %true if a memory region is random access. 953 * 954 * @mr: the memory region being queried 955 */ 956 static inline bool memory_region_is_ram(MemoryRegion *mr) 957 { 958 return mr->ram; 959 } 960 961 /** 962 * memory_region_is_ram_device: check whether a memory region is a ram device 963 * 964 * Returns %true if a memory region is a device backed ram region 965 * 966 * @mr: the memory region being queried 967 */ 968 bool memory_region_is_ram_device(MemoryRegion *mr); 969 970 /** 971 * memory_region_is_romd: check whether a memory region is in ROMD mode 972 * 973 * Returns %true if a memory region is a ROM device and currently set to allow 974 * direct reads. 975 * 976 * @mr: the memory region being queried 977 */ 978 static inline bool memory_region_is_romd(MemoryRegion *mr) 979 { 980 return mr->rom_device && mr->romd_mode; 981 } 982 983 /** 984 * memory_region_get_iommu: check whether a memory region is an iommu 985 * 986 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu, 987 * otherwise NULL. 988 * 989 * @mr: the memory region being queried 990 */ 991 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr) 992 { 993 if (mr->alias) { 994 return memory_region_get_iommu(mr->alias); 995 } 996 if (mr->is_iommu) { 997 return (IOMMUMemoryRegion *) mr; 998 } 999 return NULL; 1000 } 1001 1002 /** 1003 * memory_region_get_iommu_class_nocheck: returns iommu memory region class 1004 * if an iommu or NULL if not 1005 * 1006 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu, 1007 * otherwise NULL. This is fast path avoiding QOM checking, use with caution. 1008 * 1009 * @mr: the memory region being queried 1010 */ 1011 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck( 1012 IOMMUMemoryRegion *iommu_mr) 1013 { 1014 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class); 1015 } 1016 1017 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL) 1018 1019 /** 1020 * memory_region_iommu_get_min_page_size: get minimum supported page size 1021 * for an iommu 1022 * 1023 * Returns minimum supported page size for an iommu. 1024 * 1025 * @iommu_mr: the memory region being queried 1026 */ 1027 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr); 1028 1029 /** 1030 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 1031 * 1032 * The notification type will be decided by entry.perm bits: 1033 * 1034 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE. 1035 * - For MAP (newly added entry) notifies: set entry.perm to the 1036 * permission of the page (which is definitely !IOMMU_NONE). 1037 * 1038 * Note: for any IOMMU implementation, an in-place mapping change 1039 * should be notified with an UNMAP followed by a MAP. 1040 * 1041 * @iommu_mr: the memory region that was changed 1042 * @iommu_idx: the IOMMU index for the translation table which has changed 1043 * @entry: the new entry in the IOMMU translation table. The entry 1044 * replaces all old entries for the same virtual I/O address range. 1045 * Deleted entries have .@perm == 0. 1046 */ 1047 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr, 1048 int iommu_idx, 1049 IOMMUTLBEntry entry); 1050 1051 /** 1052 * memory_region_notify_one: notify a change in an IOMMU translation 1053 * entry to a single notifier 1054 * 1055 * This works just like memory_region_notify_iommu(), but it only 1056 * notifies a specific notifier, not all of them. 1057 * 1058 * @notifier: the notifier to be notified 1059 * @entry: the new entry in the IOMMU translation table. The entry 1060 * replaces all old entries for the same virtual I/O address range. 1061 * Deleted entries have .@perm == 0. 1062 */ 1063 void memory_region_notify_one(IOMMUNotifier *notifier, 1064 IOMMUTLBEntry *entry); 1065 1066 /** 1067 * memory_region_register_iommu_notifier: register a notifier for changes to 1068 * IOMMU translation entries. 1069 * 1070 * @mr: the memory region to observe 1071 * @n: the IOMMUNotifier to be added; the notify callback receives a 1072 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer 1073 * ceases to be valid on exit from the notifier. 1074 */ 1075 void memory_region_register_iommu_notifier(MemoryRegion *mr, 1076 IOMMUNotifier *n); 1077 1078 /** 1079 * memory_region_iommu_replay: replay existing IOMMU translations to 1080 * a notifier with the minimum page granularity returned by 1081 * mr->iommu_ops->get_page_size(). 1082 * 1083 * Note: this is not related to record-and-replay functionality. 1084 * 1085 * @iommu_mr: the memory region to observe 1086 * @n: the notifier to which to replay iommu mappings 1087 */ 1088 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n); 1089 1090 /** 1091 * memory_region_unregister_iommu_notifier: unregister a notifier for 1092 * changes to IOMMU translation entries. 1093 * 1094 * @mr: the memory region which was observed and for which notity_stopped() 1095 * needs to be called 1096 * @n: the notifier to be removed. 1097 */ 1098 void memory_region_unregister_iommu_notifier(MemoryRegion *mr, 1099 IOMMUNotifier *n); 1100 1101 /** 1102 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is 1103 * defined on the IOMMU. 1104 * 1105 * Returns 0 on success, or a negative errno otherwise. In particular, 1106 * -EINVAL indicates that the IOMMU does not support the requested 1107 * attribute. 1108 * 1109 * @iommu_mr: the memory region 1110 * @attr: the requested attribute 1111 * @data: a pointer to the requested attribute data 1112 */ 1113 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr, 1114 enum IOMMUMemoryRegionAttr attr, 1115 void *data); 1116 1117 /** 1118 * memory_region_iommu_attrs_to_index: return the IOMMU index to 1119 * use for translations with the given memory transaction attributes. 1120 * 1121 * @iommu_mr: the memory region 1122 * @attrs: the memory transaction attributes 1123 */ 1124 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr, 1125 MemTxAttrs attrs); 1126 1127 /** 1128 * memory_region_iommu_num_indexes: return the total number of IOMMU 1129 * indexes that this IOMMU supports. 1130 * 1131 * @iommu_mr: the memory region 1132 */ 1133 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr); 1134 1135 /** 1136 * memory_region_name: get a memory region's name 1137 * 1138 * Returns the string that was used to initialize the memory region. 1139 * 1140 * @mr: the memory region being queried 1141 */ 1142 const char *memory_region_name(const MemoryRegion *mr); 1143 1144 /** 1145 * memory_region_is_logging: return whether a memory region is logging writes 1146 * 1147 * Returns %true if the memory region is logging writes for the given client 1148 * 1149 * @mr: the memory region being queried 1150 * @client: the client being queried 1151 */ 1152 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 1153 1154 /** 1155 * memory_region_get_dirty_log_mask: return the clients for which a 1156 * memory region is logging writes. 1157 * 1158 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 1159 * are the bit indices. 1160 * 1161 * @mr: the memory region being queried 1162 */ 1163 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 1164 1165 /** 1166 * memory_region_is_rom: check whether a memory region is ROM 1167 * 1168 * Returns %true if a memory region is read-only memory. 1169 * 1170 * @mr: the memory region being queried 1171 */ 1172 static inline bool memory_region_is_rom(MemoryRegion *mr) 1173 { 1174 return mr->ram && mr->readonly; 1175 } 1176 1177 /** 1178 * memory_region_is_nonvolatile: check whether a memory region is non-volatile 1179 * 1180 * Returns %true is a memory region is non-volatile memory. 1181 * 1182 * @mr: the memory region being queried 1183 */ 1184 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr) 1185 { 1186 return mr->nonvolatile; 1187 } 1188 1189 /** 1190 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 1191 * 1192 * Returns a file descriptor backing a file-based RAM memory region, 1193 * or -1 if the region is not a file-based RAM memory region. 1194 * 1195 * @mr: the RAM or alias memory region being queried. 1196 */ 1197 int memory_region_get_fd(MemoryRegion *mr); 1198 1199 /** 1200 * memory_region_from_host: Convert a pointer into a RAM memory region 1201 * and an offset within it. 1202 * 1203 * Given a host pointer inside a RAM memory region (created with 1204 * memory_region_init_ram() or memory_region_init_ram_ptr()), return 1205 * the MemoryRegion and the offset within it. 1206 * 1207 * Use with care; by the time this function returns, the returned pointer is 1208 * not protected by RCU anymore. If the caller is not within an RCU critical 1209 * section and does not hold the iothread lock, it must have other means of 1210 * protecting the pointer, such as a reference to the region that includes 1211 * the incoming ram_addr_t. 1212 * 1213 * @ptr: the host pointer to be converted 1214 * @offset: the offset within memory region 1215 */ 1216 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset); 1217 1218 /** 1219 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 1220 * 1221 * Returns a host pointer to a RAM memory region (created with 1222 * memory_region_init_ram() or memory_region_init_ram_ptr()). 1223 * 1224 * Use with care; by the time this function returns, the returned pointer is 1225 * not protected by RCU anymore. If the caller is not within an RCU critical 1226 * section and does not hold the iothread lock, it must have other means of 1227 * protecting the pointer, such as a reference to the region that includes 1228 * the incoming ram_addr_t. 1229 * 1230 * @mr: the memory region being queried. 1231 */ 1232 void *memory_region_get_ram_ptr(MemoryRegion *mr); 1233 1234 /* memory_region_ram_resize: Resize a RAM region. 1235 * 1236 * Only legal before guest might have detected the memory size: e.g. on 1237 * incoming migration, or right after reset. 1238 * 1239 * @mr: a memory region created with @memory_region_init_resizeable_ram. 1240 * @newsize: the new size the region 1241 * @errp: pointer to Error*, to store an error if it happens. 1242 */ 1243 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 1244 Error **errp); 1245 1246 /** 1247 * memory_region_set_log: Turn dirty logging on or off for a region. 1248 * 1249 * Turns dirty logging on or off for a specified client (display, migration). 1250 * Only meaningful for RAM regions. 1251 * 1252 * @mr: the memory region being updated. 1253 * @log: whether dirty logging is to be enabled or disabled. 1254 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 1255 */ 1256 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 1257 1258 /** 1259 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 1260 * 1261 * Marks a range of bytes as dirty, after it has been dirtied outside 1262 * guest code. 1263 * 1264 * @mr: the memory region being dirtied. 1265 * @addr: the address (relative to the start of the region) being dirtied. 1266 * @size: size of the range being dirtied. 1267 */ 1268 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 1269 hwaddr size); 1270 1271 /** 1272 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range 1273 * 1274 * This function is called when the caller wants to clear the remote 1275 * dirty bitmap of a memory range within the memory region. This can 1276 * be used by e.g. KVM to manually clear dirty log when 1277 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host 1278 * kernel. 1279 * 1280 * @mr: the memory region to clear the dirty log upon 1281 * @start: start address offset within the memory region 1282 * @len: length of the memory region to clear dirty bitmap 1283 */ 1284 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start, 1285 hwaddr len); 1286 1287 /** 1288 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty 1289 * bitmap and clear it. 1290 * 1291 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and 1292 * returns the snapshot. The snapshot can then be used to query dirty 1293 * status, using memory_region_snapshot_get_dirty. Snapshotting allows 1294 * querying the same page multiple times, which is especially useful for 1295 * display updates where the scanlines often are not page aligned. 1296 * 1297 * The dirty bitmap region which gets copyed into the snapshot (and 1298 * cleared afterwards) can be larger than requested. The boundaries 1299 * are rounded up/down so complete bitmap longs (covering 64 pages on 1300 * 64bit hosts) can be copied over into the bitmap snapshot. Which 1301 * isn't a problem for display updates as the extra pages are outside 1302 * the visible area, and in case the visible area changes a full 1303 * display redraw is due anyway. Should other use cases for this 1304 * function emerge we might have to revisit this implementation 1305 * detail. 1306 * 1307 * Use g_free to release DirtyBitmapSnapshot. 1308 * 1309 * @mr: the memory region being queried. 1310 * @addr: the address (relative to the start of the region) being queried. 1311 * @size: the size of the range being queried. 1312 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA. 1313 */ 1314 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr, 1315 hwaddr addr, 1316 hwaddr size, 1317 unsigned client); 1318 1319 /** 1320 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty 1321 * in the specified dirty bitmap snapshot. 1322 * 1323 * @mr: the memory region being queried. 1324 * @snap: the dirty bitmap snapshot 1325 * @addr: the address (relative to the start of the region) being queried. 1326 * @size: the size of the range being queried. 1327 */ 1328 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, 1329 DirtyBitmapSnapshot *snap, 1330 hwaddr addr, hwaddr size); 1331 1332 /** 1333 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 1334 * client. 1335 * 1336 * Marks a range of pages as no longer dirty. 1337 * 1338 * @mr: the region being updated. 1339 * @addr: the start of the subrange being cleaned. 1340 * @size: the size of the subrange being cleaned. 1341 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 1342 * %DIRTY_MEMORY_VGA. 1343 */ 1344 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 1345 hwaddr size, unsigned client); 1346 1347 /** 1348 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate 1349 * TBs (for self-modifying code). 1350 * 1351 * The MemoryRegionOps->write() callback of a ROM device must use this function 1352 * to mark byte ranges that have been modified internally, such as by directly 1353 * accessing the memory returned by memory_region_get_ram_ptr(). 1354 * 1355 * This function marks the range dirty and invalidates TBs so that TCG can 1356 * detect self-modifying code. 1357 * 1358 * @mr: the region being flushed. 1359 * @addr: the start, relative to the start of the region, of the range being 1360 * flushed. 1361 * @size: the size, in bytes, of the range being flushed. 1362 */ 1363 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size); 1364 1365 /** 1366 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 1367 * 1368 * Allows a memory region to be marked as read-only (turning it into a ROM). 1369 * only useful on RAM regions. 1370 * 1371 * @mr: the region being updated. 1372 * @readonly: whether rhe region is to be ROM or RAM. 1373 */ 1374 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 1375 1376 /** 1377 * memory_region_set_nonvolatile: Turn a memory region non-volatile 1378 * 1379 * Allows a memory region to be marked as non-volatile. 1380 * only useful on RAM regions. 1381 * 1382 * @mr: the region being updated. 1383 * @nonvolatile: whether rhe region is to be non-volatile. 1384 */ 1385 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile); 1386 1387 /** 1388 * memory_region_rom_device_set_romd: enable/disable ROMD mode 1389 * 1390 * Allows a ROM device (initialized with memory_region_init_rom_device() to 1391 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 1392 * device is mapped to guest memory and satisfies read access directly. 1393 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 1394 * Writes are always handled by the #MemoryRegion.write function. 1395 * 1396 * @mr: the memory region to be updated 1397 * @romd_mode: %true to put the region into ROMD mode 1398 */ 1399 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 1400 1401 /** 1402 * memory_region_set_coalescing: Enable memory coalescing for the region. 1403 * 1404 * Enabled writes to a region to be queued for later processing. MMIO ->write 1405 * callbacks may be delayed until a non-coalesced MMIO is issued. 1406 * Only useful for IO regions. Roughly similar to write-combining hardware. 1407 * 1408 * @mr: the memory region to be write coalesced 1409 */ 1410 void memory_region_set_coalescing(MemoryRegion *mr); 1411 1412 /** 1413 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 1414 * a region. 1415 * 1416 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 1417 * Multiple calls can be issued coalesced disjoint ranges. 1418 * 1419 * @mr: the memory region to be updated. 1420 * @offset: the start of the range within the region to be coalesced. 1421 * @size: the size of the subrange to be coalesced. 1422 */ 1423 void memory_region_add_coalescing(MemoryRegion *mr, 1424 hwaddr offset, 1425 uint64_t size); 1426 1427 /** 1428 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 1429 * 1430 * Disables any coalescing caused by memory_region_set_coalescing() or 1431 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 1432 * hardware. 1433 * 1434 * @mr: the memory region to be updated. 1435 */ 1436 void memory_region_clear_coalescing(MemoryRegion *mr); 1437 1438 /** 1439 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 1440 * accesses. 1441 * 1442 * Ensure that pending coalesced MMIO request are flushed before the memory 1443 * region is accessed. This property is automatically enabled for all regions 1444 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 1445 * 1446 * @mr: the memory region to be updated. 1447 */ 1448 void memory_region_set_flush_coalesced(MemoryRegion *mr); 1449 1450 /** 1451 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 1452 * accesses. 1453 * 1454 * Clear the automatic coalesced MMIO flushing enabled via 1455 * memory_region_set_flush_coalesced. Note that this service has no effect on 1456 * memory regions that have MMIO coalescing enabled for themselves. For them, 1457 * automatic flushing will stop once coalescing is disabled. 1458 * 1459 * @mr: the memory region to be updated. 1460 */ 1461 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 1462 1463 /** 1464 * memory_region_clear_global_locking: Declares that access processing does 1465 * not depend on the QEMU global lock. 1466 * 1467 * By clearing this property, accesses to the memory region will be processed 1468 * outside of QEMU's global lock (unless the lock is held on when issuing the 1469 * access request). In this case, the device model implementing the access 1470 * handlers is responsible for synchronization of concurrency. 1471 * 1472 * @mr: the memory region to be updated. 1473 */ 1474 void memory_region_clear_global_locking(MemoryRegion *mr); 1475 1476 /** 1477 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 1478 * is written to a location. 1479 * 1480 * Marks a word in an IO region (initialized with memory_region_init_io()) 1481 * as a trigger for an eventfd event. The I/O callback will not be called. 1482 * The caller must be prepared to handle failure (that is, take the required 1483 * action if the callback _is_ called). 1484 * 1485 * @mr: the memory region being updated. 1486 * @addr: the address within @mr that is to be monitored 1487 * @size: the size of the access to trigger the eventfd 1488 * @match_data: whether to match against @data, instead of just @addr 1489 * @data: the data to match against the guest write 1490 * @e: event notifier to be triggered when @addr, @size, and @data all match. 1491 **/ 1492 void memory_region_add_eventfd(MemoryRegion *mr, 1493 hwaddr addr, 1494 unsigned size, 1495 bool match_data, 1496 uint64_t data, 1497 EventNotifier *e); 1498 1499 /** 1500 * memory_region_del_eventfd: Cancel an eventfd. 1501 * 1502 * Cancels an eventfd trigger requested by a previous 1503 * memory_region_add_eventfd() call. 1504 * 1505 * @mr: the memory region being updated. 1506 * @addr: the address within @mr that is to be monitored 1507 * @size: the size of the access to trigger the eventfd 1508 * @match_data: whether to match against @data, instead of just @addr 1509 * @data: the data to match against the guest write 1510 * @e: event notifier to be triggered when @addr, @size, and @data all match. 1511 */ 1512 void memory_region_del_eventfd(MemoryRegion *mr, 1513 hwaddr addr, 1514 unsigned size, 1515 bool match_data, 1516 uint64_t data, 1517 EventNotifier *e); 1518 1519 /** 1520 * memory_region_add_subregion: Add a subregion to a container. 1521 * 1522 * Adds a subregion at @offset. The subregion may not overlap with other 1523 * subregions (except for those explicitly marked as overlapping). A region 1524 * may only be added once as a subregion (unless removed with 1525 * memory_region_del_subregion()); use memory_region_init_alias() if you 1526 * want a region to be a subregion in multiple locations. 1527 * 1528 * @mr: the region to contain the new subregion; must be a container 1529 * initialized with memory_region_init(). 1530 * @offset: the offset relative to @mr where @subregion is added. 1531 * @subregion: the subregion to be added. 1532 */ 1533 void memory_region_add_subregion(MemoryRegion *mr, 1534 hwaddr offset, 1535 MemoryRegion *subregion); 1536 /** 1537 * memory_region_add_subregion_overlap: Add a subregion to a container 1538 * with overlap. 1539 * 1540 * Adds a subregion at @offset. The subregion may overlap with other 1541 * subregions. Conflicts are resolved by having a higher @priority hide a 1542 * lower @priority. Subregions without priority are taken as @priority 0. 1543 * A region may only be added once as a subregion (unless removed with 1544 * memory_region_del_subregion()); use memory_region_init_alias() if you 1545 * want a region to be a subregion in multiple locations. 1546 * 1547 * @mr: the region to contain the new subregion; must be a container 1548 * initialized with memory_region_init(). 1549 * @offset: the offset relative to @mr where @subregion is added. 1550 * @subregion: the subregion to be added. 1551 * @priority: used for resolving overlaps; highest priority wins. 1552 */ 1553 void memory_region_add_subregion_overlap(MemoryRegion *mr, 1554 hwaddr offset, 1555 MemoryRegion *subregion, 1556 int priority); 1557 1558 /** 1559 * memory_region_get_ram_addr: Get the ram address associated with a memory 1560 * region 1561 */ 1562 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 1563 1564 uint64_t memory_region_get_alignment(const MemoryRegion *mr); 1565 /** 1566 * memory_region_del_subregion: Remove a subregion. 1567 * 1568 * Removes a subregion from its container. 1569 * 1570 * @mr: the container to be updated. 1571 * @subregion: the region being removed; must be a current subregion of @mr. 1572 */ 1573 void memory_region_del_subregion(MemoryRegion *mr, 1574 MemoryRegion *subregion); 1575 1576 /* 1577 * memory_region_set_enabled: dynamically enable or disable a region 1578 * 1579 * Enables or disables a memory region. A disabled memory region 1580 * ignores all accesses to itself and its subregions. It does not 1581 * obscure sibling subregions with lower priority - it simply behaves as 1582 * if it was removed from the hierarchy. 1583 * 1584 * Regions default to being enabled. 1585 * 1586 * @mr: the region to be updated 1587 * @enabled: whether to enable or disable the region 1588 */ 1589 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 1590 1591 /* 1592 * memory_region_set_address: dynamically update the address of a region 1593 * 1594 * Dynamically updates the address of a region, relative to its container. 1595 * May be used on regions are currently part of a memory hierarchy. 1596 * 1597 * @mr: the region to be updated 1598 * @addr: new address, relative to container region 1599 */ 1600 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 1601 1602 /* 1603 * memory_region_set_size: dynamically update the size of a region. 1604 * 1605 * Dynamically updates the size of a region. 1606 * 1607 * @mr: the region to be updated 1608 * @size: used size of the region. 1609 */ 1610 void memory_region_set_size(MemoryRegion *mr, uint64_t size); 1611 1612 /* 1613 * memory_region_set_alias_offset: dynamically update a memory alias's offset 1614 * 1615 * Dynamically updates the offset into the target region that an alias points 1616 * to, as if the fourth argument to memory_region_init_alias() has changed. 1617 * 1618 * @mr: the #MemoryRegion to be updated; should be an alias. 1619 * @offset: the new offset into the target memory region 1620 */ 1621 void memory_region_set_alias_offset(MemoryRegion *mr, 1622 hwaddr offset); 1623 1624 /** 1625 * memory_region_present: checks if an address relative to a @container 1626 * translates into #MemoryRegion within @container 1627 * 1628 * Answer whether a #MemoryRegion within @container covers the address 1629 * @addr. 1630 * 1631 * @container: a #MemoryRegion within which @addr is a relative address 1632 * @addr: the area within @container to be searched 1633 */ 1634 bool memory_region_present(MemoryRegion *container, hwaddr addr); 1635 1636 /** 1637 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 1638 * into any address space. 1639 * 1640 * @mr: a #MemoryRegion which should be checked if it's mapped 1641 */ 1642 bool memory_region_is_mapped(MemoryRegion *mr); 1643 1644 /** 1645 * memory_region_find: translate an address/size relative to a 1646 * MemoryRegion into a #MemoryRegionSection. 1647 * 1648 * Locates the first #MemoryRegion within @mr that overlaps the range 1649 * given by @addr and @size. 1650 * 1651 * Returns a #MemoryRegionSection that describes a contiguous overlap. 1652 * It will have the following characteristics: 1653 * .@size = 0 iff no overlap was found 1654 * .@mr is non-%NULL iff an overlap was found 1655 * 1656 * Remember that in the return value the @offset_within_region is 1657 * relative to the returned region (in the .@mr field), not to the 1658 * @mr argument. 1659 * 1660 * Similarly, the .@offset_within_address_space is relative to the 1661 * address space that contains both regions, the passed and the 1662 * returned one. However, in the special case where the @mr argument 1663 * has no container (and thus is the root of the address space), the 1664 * following will hold: 1665 * .@offset_within_address_space >= @addr 1666 * .@offset_within_address_space + .@size <= @addr + @size 1667 * 1668 * @mr: a MemoryRegion within which @addr is a relative address 1669 * @addr: start of the area within @as to be searched 1670 * @size: size of the area to be searched 1671 */ 1672 MemoryRegionSection memory_region_find(MemoryRegion *mr, 1673 hwaddr addr, uint64_t size); 1674 1675 /** 1676 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 1677 * 1678 * Synchronizes the dirty page log for all address spaces. 1679 */ 1680 void memory_global_dirty_log_sync(void); 1681 1682 /** 1683 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 1684 * 1685 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap. 1686 * This function must be called after the dirty log bitmap is cleared, and 1687 * before dirty guest memory pages are read. If you are using 1688 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes 1689 * care of doing this. 1690 */ 1691 void memory_global_after_dirty_log_sync(void); 1692 1693 /** 1694 * memory_region_transaction_begin: Start a transaction. 1695 * 1696 * During a transaction, changes will be accumulated and made visible 1697 * only when the transaction ends (is committed). 1698 */ 1699 void memory_region_transaction_begin(void); 1700 1701 /** 1702 * memory_region_transaction_commit: Commit a transaction and make changes 1703 * visible to the guest. 1704 */ 1705 void memory_region_transaction_commit(void); 1706 1707 /** 1708 * memory_listener_register: register callbacks to be called when memory 1709 * sections are mapped or unmapped into an address 1710 * space 1711 * 1712 * @listener: an object containing the callbacks to be called 1713 * @filter: if non-%NULL, only regions in this address space will be observed 1714 */ 1715 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 1716 1717 /** 1718 * memory_listener_unregister: undo the effect of memory_listener_register() 1719 * 1720 * @listener: an object containing the callbacks to be removed 1721 */ 1722 void memory_listener_unregister(MemoryListener *listener); 1723 1724 /** 1725 * memory_global_dirty_log_start: begin dirty logging for all regions 1726 */ 1727 void memory_global_dirty_log_start(void); 1728 1729 /** 1730 * memory_global_dirty_log_stop: end dirty logging for all regions 1731 */ 1732 void memory_global_dirty_log_stop(void); 1733 1734 void mtree_info(bool flatview, bool dispatch_tree, bool owner); 1735 1736 /** 1737 * memory_region_dispatch_read: perform a read directly to the specified 1738 * MemoryRegion. 1739 * 1740 * @mr: #MemoryRegion to access 1741 * @addr: address within that region 1742 * @pval: pointer to uint64_t which the data is written to 1743 * @op: size, sign, and endianness of the memory operation 1744 * @attrs: memory transaction attributes to use for the access 1745 */ 1746 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 1747 hwaddr addr, 1748 uint64_t *pval, 1749 MemOp op, 1750 MemTxAttrs attrs); 1751 /** 1752 * memory_region_dispatch_write: perform a write directly to the specified 1753 * MemoryRegion. 1754 * 1755 * @mr: #MemoryRegion to access 1756 * @addr: address within that region 1757 * @data: data to write 1758 * @op: size, sign, and endianness of the memory operation 1759 * @attrs: memory transaction attributes to use for the access 1760 */ 1761 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 1762 hwaddr addr, 1763 uint64_t data, 1764 MemOp op, 1765 MemTxAttrs attrs); 1766 1767 /** 1768 * address_space_init: initializes an address space 1769 * 1770 * @as: an uninitialized #AddressSpace 1771 * @root: a #MemoryRegion that routes addresses for the address space 1772 * @name: an address space name. The name is only used for debugging 1773 * output. 1774 */ 1775 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 1776 1777 /** 1778 * address_space_destroy: destroy an address space 1779 * 1780 * Releases all resources associated with an address space. After an address space 1781 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 1782 * as well. 1783 * 1784 * @as: address space to be destroyed 1785 */ 1786 void address_space_destroy(AddressSpace *as); 1787 1788 /** 1789 * address_space_remove_listeners: unregister all listeners of an address space 1790 * 1791 * Removes all callbacks previously registered with memory_listener_register() 1792 * for @as. 1793 * 1794 * @as: an initialized #AddressSpace 1795 */ 1796 void address_space_remove_listeners(AddressSpace *as); 1797 1798 /** 1799 * address_space_rw: read from or write to an address space. 1800 * 1801 * Return a MemTxResult indicating whether the operation succeeded 1802 * or failed (eg unassigned memory, device rejected the transaction, 1803 * IOMMU fault). 1804 * 1805 * @as: #AddressSpace to be accessed 1806 * @addr: address within that address space 1807 * @attrs: memory transaction attributes 1808 * @buf: buffer with the data transferred 1809 * @len: the number of bytes to read or write 1810 * @is_write: indicates the transfer direction 1811 */ 1812 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 1813 MemTxAttrs attrs, uint8_t *buf, 1814 hwaddr len, bool is_write); 1815 1816 /** 1817 * address_space_write: write to address space. 1818 * 1819 * Return a MemTxResult indicating whether the operation succeeded 1820 * or failed (eg unassigned memory, device rejected the transaction, 1821 * IOMMU fault). 1822 * 1823 * @as: #AddressSpace to be accessed 1824 * @addr: address within that address space 1825 * @attrs: memory transaction attributes 1826 * @buf: buffer with the data transferred 1827 * @len: the number of bytes to write 1828 */ 1829 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 1830 MemTxAttrs attrs, 1831 const uint8_t *buf, hwaddr len); 1832 1833 /** 1834 * address_space_write_rom: write to address space, including ROM. 1835 * 1836 * This function writes to the specified address space, but will 1837 * write data to both ROM and RAM. This is used for non-guest 1838 * writes like writes from the gdb debug stub or initial loading 1839 * of ROM contents. 1840 * 1841 * Note that portions of the write which attempt to write data to 1842 * a device will be silently ignored -- only real RAM and ROM will 1843 * be written to. 1844 * 1845 * Return a MemTxResult indicating whether the operation succeeded 1846 * or failed (eg unassigned memory, device rejected the transaction, 1847 * IOMMU fault). 1848 * 1849 * @as: #AddressSpace to be accessed 1850 * @addr: address within that address space 1851 * @attrs: memory transaction attributes 1852 * @buf: buffer with the data transferred 1853 * @len: the number of bytes to write 1854 */ 1855 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 1856 MemTxAttrs attrs, 1857 const uint8_t *buf, hwaddr len); 1858 1859 /* address_space_ld*: load from an address space 1860 * address_space_st*: store to an address space 1861 * 1862 * These functions perform a load or store of the byte, word, 1863 * longword or quad to the specified address within the AddressSpace. 1864 * The _le suffixed functions treat the data as little endian; 1865 * _be indicates big endian; no suffix indicates "same endianness 1866 * as guest CPU". 1867 * 1868 * The "guest CPU endianness" accessors are deprecated for use outside 1869 * target-* code; devices should be CPU-agnostic and use either the LE 1870 * or the BE accessors. 1871 * 1872 * @as #AddressSpace to be accessed 1873 * @addr: address within that address space 1874 * @val: data value, for stores 1875 * @attrs: memory transaction attributes 1876 * @result: location to write the success/failure of the transaction; 1877 * if NULL, this information is discarded 1878 */ 1879 1880 #define SUFFIX 1881 #define ARG1 as 1882 #define ARG1_DECL AddressSpace *as 1883 #include "exec/memory_ldst.inc.h" 1884 1885 #define SUFFIX 1886 #define ARG1 as 1887 #define ARG1_DECL AddressSpace *as 1888 #include "exec/memory_ldst_phys.inc.h" 1889 1890 struct MemoryRegionCache { 1891 void *ptr; 1892 hwaddr xlat; 1893 hwaddr len; 1894 FlatView *fv; 1895 MemoryRegionSection mrs; 1896 bool is_write; 1897 }; 1898 1899 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL }) 1900 1901 1902 /* address_space_ld*_cached: load from a cached #MemoryRegion 1903 * address_space_st*_cached: store into a cached #MemoryRegion 1904 * 1905 * These functions perform a load or store of the byte, word, 1906 * longword or quad to the specified address. The address is 1907 * a physical address in the AddressSpace, but it must lie within 1908 * a #MemoryRegion that was mapped with address_space_cache_init. 1909 * 1910 * The _le suffixed functions treat the data as little endian; 1911 * _be indicates big endian; no suffix indicates "same endianness 1912 * as guest CPU". 1913 * 1914 * The "guest CPU endianness" accessors are deprecated for use outside 1915 * target-* code; devices should be CPU-agnostic and use either the LE 1916 * or the BE accessors. 1917 * 1918 * @cache: previously initialized #MemoryRegionCache to be accessed 1919 * @addr: address within the address space 1920 * @val: data value, for stores 1921 * @attrs: memory transaction attributes 1922 * @result: location to write the success/failure of the transaction; 1923 * if NULL, this information is discarded 1924 */ 1925 1926 #define SUFFIX _cached_slow 1927 #define ARG1 cache 1928 #define ARG1_DECL MemoryRegionCache *cache 1929 #include "exec/memory_ldst.inc.h" 1930 1931 /* Inline fast path for direct RAM access. */ 1932 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache, 1933 hwaddr addr, MemTxAttrs attrs, MemTxResult *result) 1934 { 1935 assert(addr < cache->len); 1936 if (likely(cache->ptr)) { 1937 return ldub_p(cache->ptr + addr); 1938 } else { 1939 return address_space_ldub_cached_slow(cache, addr, attrs, result); 1940 } 1941 } 1942 1943 static inline void address_space_stb_cached(MemoryRegionCache *cache, 1944 hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result) 1945 { 1946 assert(addr < cache->len); 1947 if (likely(cache->ptr)) { 1948 stb_p(cache->ptr + addr, val); 1949 } else { 1950 address_space_stb_cached_slow(cache, addr, val, attrs, result); 1951 } 1952 } 1953 1954 #define ENDIANNESS _le 1955 #include "exec/memory_ldst_cached.inc.h" 1956 1957 #define ENDIANNESS _be 1958 #include "exec/memory_ldst_cached.inc.h" 1959 1960 #define SUFFIX _cached 1961 #define ARG1 cache 1962 #define ARG1_DECL MemoryRegionCache *cache 1963 #include "exec/memory_ldst_phys.inc.h" 1964 1965 /* address_space_cache_init: prepare for repeated access to a physical 1966 * memory region 1967 * 1968 * @cache: #MemoryRegionCache to be filled 1969 * @as: #AddressSpace to be accessed 1970 * @addr: address within that address space 1971 * @len: length of buffer 1972 * @is_write: indicates the transfer direction 1973 * 1974 * Will only work with RAM, and may map a subset of the requested range by 1975 * returning a value that is less than @len. On failure, return a negative 1976 * errno value. 1977 * 1978 * Because it only works with RAM, this function can be used for 1979 * read-modify-write operations. In this case, is_write should be %true. 1980 * 1981 * Note that addresses passed to the address_space_*_cached functions 1982 * are relative to @addr. 1983 */ 1984 int64_t address_space_cache_init(MemoryRegionCache *cache, 1985 AddressSpace *as, 1986 hwaddr addr, 1987 hwaddr len, 1988 bool is_write); 1989 1990 /** 1991 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache 1992 * 1993 * @cache: The #MemoryRegionCache to operate on. 1994 * @addr: The first physical address that was written, relative to the 1995 * address that was passed to @address_space_cache_init. 1996 * @access_len: The number of bytes that were written starting at @addr. 1997 */ 1998 void address_space_cache_invalidate(MemoryRegionCache *cache, 1999 hwaddr addr, 2000 hwaddr access_len); 2001 2002 /** 2003 * address_space_cache_destroy: free a #MemoryRegionCache 2004 * 2005 * @cache: The #MemoryRegionCache whose memory should be released. 2006 */ 2007 void address_space_cache_destroy(MemoryRegionCache *cache); 2008 2009 /* address_space_get_iotlb_entry: translate an address into an IOTLB 2010 * entry. Should be called from an RCU critical section. 2011 */ 2012 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 2013 bool is_write, MemTxAttrs attrs); 2014 2015 /* address_space_translate: translate an address range into an address space 2016 * into a MemoryRegion and an address range into that section. Should be 2017 * called from an RCU critical section, to avoid that the last reference 2018 * to the returned region disappears after address_space_translate returns. 2019 * 2020 * @fv: #FlatView to be accessed 2021 * @addr: address within that address space 2022 * @xlat: pointer to address within the returned memory region section's 2023 * #MemoryRegion. 2024 * @len: pointer to length 2025 * @is_write: indicates the transfer direction 2026 * @attrs: memory attributes 2027 */ 2028 MemoryRegion *flatview_translate(FlatView *fv, 2029 hwaddr addr, hwaddr *xlat, 2030 hwaddr *len, bool is_write, 2031 MemTxAttrs attrs); 2032 2033 static inline MemoryRegion *address_space_translate(AddressSpace *as, 2034 hwaddr addr, hwaddr *xlat, 2035 hwaddr *len, bool is_write, 2036 MemTxAttrs attrs) 2037 { 2038 return flatview_translate(address_space_to_flatview(as), 2039 addr, xlat, len, is_write, attrs); 2040 } 2041 2042 /* address_space_access_valid: check for validity of accessing an address 2043 * space range 2044 * 2045 * Check whether memory is assigned to the given address space range, and 2046 * access is permitted by any IOMMU regions that are active for the address 2047 * space. 2048 * 2049 * For now, addr and len should be aligned to a page size. This limitation 2050 * will be lifted in the future. 2051 * 2052 * @as: #AddressSpace to be accessed 2053 * @addr: address within that address space 2054 * @len: length of the area to be checked 2055 * @is_write: indicates the transfer direction 2056 * @attrs: memory attributes 2057 */ 2058 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len, 2059 bool is_write, MemTxAttrs attrs); 2060 2061 /* address_space_map: map a physical memory region into a host virtual address 2062 * 2063 * May map a subset of the requested range, given by and returned in @plen. 2064 * May return %NULL if resources needed to perform the mapping are exhausted. 2065 * Use only for reads OR writes - not for read-modify-write operations. 2066 * Use cpu_register_map_client() to know when retrying the map operation is 2067 * likely to succeed. 2068 * 2069 * @as: #AddressSpace to be accessed 2070 * @addr: address within that address space 2071 * @plen: pointer to length of buffer; updated on return 2072 * @is_write: indicates the transfer direction 2073 * @attrs: memory attributes 2074 */ 2075 void *address_space_map(AddressSpace *as, hwaddr addr, 2076 hwaddr *plen, bool is_write, MemTxAttrs attrs); 2077 2078 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 2079 * 2080 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 2081 * the amount of memory that was actually read or written by the caller. 2082 * 2083 * @as: #AddressSpace used 2084 * @buffer: host pointer as returned by address_space_map() 2085 * @len: buffer length as returned by address_space_map() 2086 * @access_len: amount of data actually transferred 2087 * @is_write: indicates the transfer direction 2088 */ 2089 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 2090 int is_write, hwaddr access_len); 2091 2092 2093 /* Internal functions, part of the implementation of address_space_read. */ 2094 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2095 MemTxAttrs attrs, uint8_t *buf, hwaddr len); 2096 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2097 MemTxAttrs attrs, uint8_t *buf, 2098 hwaddr len, hwaddr addr1, hwaddr l, 2099 MemoryRegion *mr); 2100 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr); 2101 2102 /* Internal functions, part of the implementation of address_space_read_cached 2103 * and address_space_write_cached. */ 2104 void address_space_read_cached_slow(MemoryRegionCache *cache, 2105 hwaddr addr, void *buf, hwaddr len); 2106 void address_space_write_cached_slow(MemoryRegionCache *cache, 2107 hwaddr addr, const void *buf, hwaddr len); 2108 2109 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) 2110 { 2111 if (is_write) { 2112 return memory_region_is_ram(mr) && 2113 !mr->readonly && !memory_region_is_ram_device(mr); 2114 } else { 2115 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) || 2116 memory_region_is_romd(mr); 2117 } 2118 } 2119 2120 /** 2121 * address_space_read: read from an address space. 2122 * 2123 * Return a MemTxResult indicating whether the operation succeeded 2124 * or failed (eg unassigned memory, device rejected the transaction, 2125 * IOMMU fault). Called within RCU critical section. 2126 * 2127 * @as: #AddressSpace to be accessed 2128 * @addr: address within that address space 2129 * @attrs: memory transaction attributes 2130 * @buf: buffer with the data transferred 2131 */ 2132 static inline __attribute__((__always_inline__)) 2133 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, 2134 MemTxAttrs attrs, uint8_t *buf, 2135 hwaddr len) 2136 { 2137 MemTxResult result = MEMTX_OK; 2138 hwaddr l, addr1; 2139 void *ptr; 2140 MemoryRegion *mr; 2141 FlatView *fv; 2142 2143 if (__builtin_constant_p(len)) { 2144 if (len) { 2145 rcu_read_lock(); 2146 fv = address_space_to_flatview(as); 2147 l = len; 2148 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2149 if (len == l && memory_access_is_direct(mr, false)) { 2150 ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 2151 memcpy(buf, ptr, len); 2152 } else { 2153 result = flatview_read_continue(fv, addr, attrs, buf, len, 2154 addr1, l, mr); 2155 } 2156 rcu_read_unlock(); 2157 } 2158 } else { 2159 result = address_space_read_full(as, addr, attrs, buf, len); 2160 } 2161 return result; 2162 } 2163 2164 /** 2165 * address_space_read_cached: read from a cached RAM region 2166 * 2167 * @cache: Cached region to be addressed 2168 * @addr: address relative to the base of the RAM region 2169 * @buf: buffer with the data transferred 2170 * @len: length of the data transferred 2171 */ 2172 static inline void 2173 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr, 2174 void *buf, hwaddr len) 2175 { 2176 assert(addr < cache->len && len <= cache->len - addr); 2177 if (likely(cache->ptr)) { 2178 memcpy(buf, cache->ptr + addr, len); 2179 } else { 2180 address_space_read_cached_slow(cache, addr, buf, len); 2181 } 2182 } 2183 2184 /** 2185 * address_space_write_cached: write to a cached RAM region 2186 * 2187 * @cache: Cached region to be addressed 2188 * @addr: address relative to the base of the RAM region 2189 * @buf: buffer with the data transferred 2190 * @len: length of the data transferred 2191 */ 2192 static inline void 2193 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr, 2194 void *buf, hwaddr len) 2195 { 2196 assert(addr < cache->len && len <= cache->len - addr); 2197 if (likely(cache->ptr)) { 2198 memcpy(cache->ptr + addr, buf, len); 2199 } else { 2200 address_space_write_cached_slow(cache, addr, buf, len); 2201 } 2202 } 2203 2204 #ifdef NEED_CPU_H 2205 /* enum device_endian to MemOp. */ 2206 static inline MemOp devend_memop(enum device_endian end) 2207 { 2208 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN && 2209 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN); 2210 2211 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 2212 /* Swap if non-host endianness or native (target) endianness */ 2213 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP; 2214 #else 2215 const int non_host_endianness = 2216 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN; 2217 2218 /* In this case, native (target) endianness needs no swap. */ 2219 return (end == non_host_endianness) ? MO_BSWAP : 0; 2220 #endif 2221 } 2222 #endif 2223 2224 #endif 2225 2226 #endif 2227