xref: /openbmc/qemu/include/exec/memory.h (revision 0b7e89b1)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #define DIRTY_MEMORY_VGA       0
20 #define DIRTY_MEMORY_CODE      1
21 #define DIRTY_MEMORY_MIGRATION 2
22 #define DIRTY_MEMORY_NUM       3        /* num of dirty bits */
23 
24 #include <stdint.h>
25 #include <stdbool.h>
26 #include "qemu-common.h"
27 #include "exec/cpu-common.h"
28 #ifndef CONFIG_USER_ONLY
29 #include "exec/hwaddr.h"
30 #endif
31 #include "qemu/queue.h"
32 #include "qemu/int128.h"
33 #include "qemu/notify.h"
34 #include "qapi/error.h"
35 #include "qom/object.h"
36 #include "qemu/rcu.h"
37 
38 #define MAX_PHYS_ADDR_SPACE_BITS 62
39 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
40 
41 #define TYPE_MEMORY_REGION "qemu:memory-region"
42 #define MEMORY_REGION(obj) \
43         OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
44 
45 typedef struct MemoryRegionOps MemoryRegionOps;
46 typedef struct MemoryRegionMmio MemoryRegionMmio;
47 
48 struct MemoryRegionMmio {
49     CPUReadMemoryFunc *read[3];
50     CPUWriteMemoryFunc *write[3];
51 };
52 
53 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
54 
55 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
56 typedef enum {
57     IOMMU_NONE = 0,
58     IOMMU_RO   = 1,
59     IOMMU_WO   = 2,
60     IOMMU_RW   = 3,
61 } IOMMUAccessFlags;
62 
63 struct IOMMUTLBEntry {
64     AddressSpace    *target_as;
65     hwaddr           iova;
66     hwaddr           translated_addr;
67     hwaddr           addr_mask;  /* 0xfff = 4k translation */
68     IOMMUAccessFlags perm;
69 };
70 
71 /*
72  * Memory region callbacks
73  */
74 struct MemoryRegionOps {
75     /* Read from the memory region. @addr is relative to @mr; @size is
76      * in bytes. */
77     uint64_t (*read)(void *opaque,
78                      hwaddr addr,
79                      unsigned size);
80     /* Write to the memory region. @addr is relative to @mr; @size is
81      * in bytes. */
82     void (*write)(void *opaque,
83                   hwaddr addr,
84                   uint64_t data,
85                   unsigned size);
86 
87     enum device_endian endianness;
88     /* Guest-visible constraints: */
89     struct {
90         /* If nonzero, specify bounds on access sizes beyond which a machine
91          * check is thrown.
92          */
93         unsigned min_access_size;
94         unsigned max_access_size;
95         /* If true, unaligned accesses are supported.  Otherwise unaligned
96          * accesses throw machine checks.
97          */
98          bool unaligned;
99         /*
100          * If present, and returns #false, the transaction is not accepted
101          * by the device (and results in machine dependent behaviour such
102          * as a machine check exception).
103          */
104         bool (*accepts)(void *opaque, hwaddr addr,
105                         unsigned size, bool is_write);
106     } valid;
107     /* Internal implementation constraints: */
108     struct {
109         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
110          * will be rounded upwards and a partial result will be returned.
111          */
112         unsigned min_access_size;
113         /* If nonzero, specifies the maximum size implemented.  Larger sizes
114          * will be done as a series of accesses with smaller sizes.
115          */
116         unsigned max_access_size;
117         /* If true, unaligned accesses are supported.  Otherwise all accesses
118          * are converted to (possibly multiple) naturally aligned accesses.
119          */
120         bool unaligned;
121     } impl;
122 
123     /* If .read and .write are not present, old_mmio may be used for
124      * backwards compatibility with old mmio registration
125      */
126     const MemoryRegionMmio old_mmio;
127 };
128 
129 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
130 
131 struct MemoryRegionIOMMUOps {
132     /* Return a TLB entry that contains a given address. */
133     IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write);
134 };
135 
136 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
137 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
138 
139 struct MemoryRegion {
140     Object parent_obj;
141     /* All fields are private - violators will be prosecuted */
142     const MemoryRegionOps *ops;
143     const MemoryRegionIOMMUOps *iommu_ops;
144     void *opaque;
145     MemoryRegion *container;
146     Int128 size;
147     hwaddr addr;
148     void (*destructor)(MemoryRegion *mr);
149     ram_addr_t ram_addr;
150     uint64_t align;
151     bool subpage;
152     bool terminates;
153     bool romd_mode;
154     bool ram;
155     bool skip_dump;
156     bool readonly; /* For RAM regions */
157     bool enabled;
158     bool rom_device;
159     bool warning_printed; /* For reservations */
160     bool flush_coalesced_mmio;
161     MemoryRegion *alias;
162     hwaddr alias_offset;
163     int32_t priority;
164     bool may_overlap;
165     QTAILQ_HEAD(subregions, MemoryRegion) subregions;
166     QTAILQ_ENTRY(MemoryRegion) subregions_link;
167     QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
168     const char *name;
169     uint8_t dirty_log_mask;
170     unsigned ioeventfd_nb;
171     MemoryRegionIoeventfd *ioeventfds;
172     NotifierList iommu_notify;
173 };
174 
175 /**
176  * MemoryListener: callbacks structure for updates to the physical memory map
177  *
178  * Allows a component to adjust to changes in the guest-visible memory map.
179  * Use with memory_listener_register() and memory_listener_unregister().
180  */
181 struct MemoryListener {
182     void (*begin)(MemoryListener *listener);
183     void (*commit)(MemoryListener *listener);
184     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
185     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
186     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
187     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section);
188     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section);
189     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
190     void (*log_global_start)(MemoryListener *listener);
191     void (*log_global_stop)(MemoryListener *listener);
192     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
193                         bool match_data, uint64_t data, EventNotifier *e);
194     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
195                         bool match_data, uint64_t data, EventNotifier *e);
196     void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
197                                hwaddr addr, hwaddr len);
198     void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
199                                hwaddr addr, hwaddr len);
200     /* Lower = earlier (during add), later (during del) */
201     unsigned priority;
202     AddressSpace *address_space_filter;
203     QTAILQ_ENTRY(MemoryListener) link;
204 };
205 
206 /**
207  * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
208  */
209 struct AddressSpace {
210     /* All fields are private. */
211     struct rcu_head rcu;
212     char *name;
213     MemoryRegion *root;
214 
215     /* Accessed via RCU.  */
216     struct FlatView *current_map;
217 
218     int ioeventfd_nb;
219     struct MemoryRegionIoeventfd *ioeventfds;
220     struct AddressSpaceDispatch *dispatch;
221     struct AddressSpaceDispatch *next_dispatch;
222     MemoryListener dispatch_listener;
223 
224     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
225 };
226 
227 /**
228  * MemoryRegionSection: describes a fragment of a #MemoryRegion
229  *
230  * @mr: the region, or %NULL if empty
231  * @address_space: the address space the region is mapped in
232  * @offset_within_region: the beginning of the section, relative to @mr's start
233  * @size: the size of the section; will not exceed @mr's boundaries
234  * @offset_within_address_space: the address of the first byte of the section
235  *     relative to the region's address space
236  * @readonly: writes to this section are ignored
237  */
238 struct MemoryRegionSection {
239     MemoryRegion *mr;
240     AddressSpace *address_space;
241     hwaddr offset_within_region;
242     Int128 size;
243     hwaddr offset_within_address_space;
244     bool readonly;
245 };
246 
247 /**
248  * memory_region_init: Initialize a memory region
249  *
250  * The region typically acts as a container for other memory regions.  Use
251  * memory_region_add_subregion() to add subregions.
252  *
253  * @mr: the #MemoryRegion to be initialized
254  * @owner: the object that tracks the region's reference count
255  * @name: used for debugging; not visible to the user or ABI
256  * @size: size of the region; any subregions beyond this size will be clipped
257  */
258 void memory_region_init(MemoryRegion *mr,
259                         struct Object *owner,
260                         const char *name,
261                         uint64_t size);
262 
263 /**
264  * memory_region_ref: Add 1 to a memory region's reference count
265  *
266  * Whenever memory regions are accessed outside the BQL, they need to be
267  * preserved against hot-unplug.  MemoryRegions actually do not have their
268  * own reference count; they piggyback on a QOM object, their "owner".
269  * This function adds a reference to the owner.
270  *
271  * All MemoryRegions must have an owner if they can disappear, even if the
272  * device they belong to operates exclusively under the BQL.  This is because
273  * the region could be returned at any time by memory_region_find, and this
274  * is usually under guest control.
275  *
276  * @mr: the #MemoryRegion
277  */
278 void memory_region_ref(MemoryRegion *mr);
279 
280 /**
281  * memory_region_unref: Remove 1 to a memory region's reference count
282  *
283  * Whenever memory regions are accessed outside the BQL, they need to be
284  * preserved against hot-unplug.  MemoryRegions actually do not have their
285  * own reference count; they piggyback on a QOM object, their "owner".
286  * This function removes a reference to the owner and possibly destroys it.
287  *
288  * @mr: the #MemoryRegion
289  */
290 void memory_region_unref(MemoryRegion *mr);
291 
292 /**
293  * memory_region_init_io: Initialize an I/O memory region.
294  *
295  * Accesses into the region will cause the callbacks in @ops to be called.
296  * if @size is nonzero, subregions will be clipped to @size.
297  *
298  * @mr: the #MemoryRegion to be initialized.
299  * @owner: the object that tracks the region's reference count
300  * @ops: a structure containing read and write callbacks to be used when
301  *       I/O is performed on the region.
302  * @opaque: passed to to the read and write callbacks of the @ops structure.
303  * @name: used for debugging; not visible to the user or ABI
304  * @size: size of the region.
305  */
306 void memory_region_init_io(MemoryRegion *mr,
307                            struct Object *owner,
308                            const MemoryRegionOps *ops,
309                            void *opaque,
310                            const char *name,
311                            uint64_t size);
312 
313 /**
314  * memory_region_init_ram:  Initialize RAM memory region.  Accesses into the
315  *                          region will modify memory directly.
316  *
317  * @mr: the #MemoryRegion to be initialized.
318  * @owner: the object that tracks the region's reference count
319  * @name: the name of the region.
320  * @size: size of the region.
321  * @errp: pointer to Error*, to store an error if it happens.
322  */
323 void memory_region_init_ram(MemoryRegion *mr,
324                             struct Object *owner,
325                             const char *name,
326                             uint64_t size,
327                             Error **errp);
328 
329 /**
330  * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
331  *                                     RAM.  Accesses into the region will
332  *                                     modify memory directly.  Only an initial
333  *                                     portion of this RAM is actually used.
334  *                                     The used size can change across reboots.
335  *
336  * @mr: the #MemoryRegion to be initialized.
337  * @owner: the object that tracks the region's reference count
338  * @name: the name of the region.
339  * @size: used size of the region.
340  * @max_size: max size of the region.
341  * @resized: callback to notify owner about used size change.
342  * @errp: pointer to Error*, to store an error if it happens.
343  */
344 void memory_region_init_resizeable_ram(MemoryRegion *mr,
345                                        struct Object *owner,
346                                        const char *name,
347                                        uint64_t size,
348                                        uint64_t max_size,
349                                        void (*resized)(const char*,
350                                                        uint64_t length,
351                                                        void *host),
352                                        Error **errp);
353 #ifdef __linux__
354 /**
355  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
356  *                                    mmap-ed backend.
357  *
358  * @mr: the #MemoryRegion to be initialized.
359  * @owner: the object that tracks the region's reference count
360  * @name: the name of the region.
361  * @size: size of the region.
362  * @share: %true if memory must be mmaped with the MAP_SHARED flag
363  * @path: the path in which to allocate the RAM.
364  * @errp: pointer to Error*, to store an error if it happens.
365  */
366 void memory_region_init_ram_from_file(MemoryRegion *mr,
367                                       struct Object *owner,
368                                       const char *name,
369                                       uint64_t size,
370                                       bool share,
371                                       const char *path,
372                                       Error **errp);
373 #endif
374 
375 /**
376  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
377  *                              user-provided pointer.  Accesses into the
378  *                              region will modify memory directly.
379  *
380  * @mr: the #MemoryRegion to be initialized.
381  * @owner: the object that tracks the region's reference count
382  * @name: the name of the region.
383  * @size: size of the region.
384  * @ptr: memory to be mapped; must contain at least @size bytes.
385  */
386 void memory_region_init_ram_ptr(MemoryRegion *mr,
387                                 struct Object *owner,
388                                 const char *name,
389                                 uint64_t size,
390                                 void *ptr);
391 
392 /**
393  * memory_region_init_alias: Initialize a memory region that aliases all or a
394  *                           part of another memory region.
395  *
396  * @mr: the #MemoryRegion to be initialized.
397  * @owner: the object that tracks the region's reference count
398  * @name: used for debugging; not visible to the user or ABI
399  * @orig: the region to be referenced; @mr will be equivalent to
400  *        @orig between @offset and @offset + @size - 1.
401  * @offset: start of the section in @orig to be referenced.
402  * @size: size of the region.
403  */
404 void memory_region_init_alias(MemoryRegion *mr,
405                               struct Object *owner,
406                               const char *name,
407                               MemoryRegion *orig,
408                               hwaddr offset,
409                               uint64_t size);
410 
411 /**
412  * memory_region_init_rom_device:  Initialize a ROM memory region.  Writes are
413  *                                 handled via callbacks.
414  *
415  * @mr: the #MemoryRegion to be initialized.
416  * @owner: the object that tracks the region's reference count
417  * @ops: callbacks for write access handling.
418  * @name: the name of the region.
419  * @size: size of the region.
420  * @errp: pointer to Error*, to store an error if it happens.
421  */
422 void memory_region_init_rom_device(MemoryRegion *mr,
423                                    struct Object *owner,
424                                    const MemoryRegionOps *ops,
425                                    void *opaque,
426                                    const char *name,
427                                    uint64_t size,
428                                    Error **errp);
429 
430 /**
431  * memory_region_init_reservation: Initialize a memory region that reserves
432  *                                 I/O space.
433  *
434  * A reservation region primariy serves debugging purposes.  It claims I/O
435  * space that is not supposed to be handled by QEMU itself.  Any access via
436  * the memory API will cause an abort().
437  *
438  * @mr: the #MemoryRegion to be initialized
439  * @owner: the object that tracks the region's reference count
440  * @name: used for debugging; not visible to the user or ABI
441  * @size: size of the region.
442  */
443 void memory_region_init_reservation(MemoryRegion *mr,
444                                     struct Object *owner,
445                                     const char *name,
446                                     uint64_t size);
447 
448 /**
449  * memory_region_init_iommu: Initialize a memory region that translates
450  * addresses
451  *
452  * An IOMMU region translates addresses and forwards accesses to a target
453  * memory region.
454  *
455  * @mr: the #MemoryRegion to be initialized
456  * @owner: the object that tracks the region's reference count
457  * @ops: a function that translates addresses into the @target region
458  * @name: used for debugging; not visible to the user or ABI
459  * @size: size of the region.
460  */
461 void memory_region_init_iommu(MemoryRegion *mr,
462                               struct Object *owner,
463                               const MemoryRegionIOMMUOps *ops,
464                               const char *name,
465                               uint64_t size);
466 
467 /**
468  * memory_region_owner: get a memory region's owner.
469  *
470  * @mr: the memory region being queried.
471  */
472 struct Object *memory_region_owner(MemoryRegion *mr);
473 
474 /**
475  * memory_region_size: get a memory region's size.
476  *
477  * @mr: the memory region being queried.
478  */
479 uint64_t memory_region_size(MemoryRegion *mr);
480 
481 /**
482  * memory_region_is_ram: check whether a memory region is random access
483  *
484  * Returns %true is a memory region is random access.
485  *
486  * @mr: the memory region being queried
487  */
488 bool memory_region_is_ram(MemoryRegion *mr);
489 
490 /**
491  * memory_region_is_skip_dump: check whether a memory region should not be
492  *                             dumped
493  *
494  * Returns %true is a memory region should not be dumped(e.g. VFIO BAR MMAP).
495  *
496  * @mr: the memory region being queried
497  */
498 bool memory_region_is_skip_dump(MemoryRegion *mr);
499 
500 /**
501  * memory_region_set_skip_dump: Set skip_dump flag, dump will ignore this memory
502  *                              region
503  *
504  * @mr: the memory region being queried
505  */
506 void memory_region_set_skip_dump(MemoryRegion *mr);
507 
508 /**
509  * memory_region_is_romd: check whether a memory region is in ROMD mode
510  *
511  * Returns %true if a memory region is a ROM device and currently set to allow
512  * direct reads.
513  *
514  * @mr: the memory region being queried
515  */
516 static inline bool memory_region_is_romd(MemoryRegion *mr)
517 {
518     return mr->rom_device && mr->romd_mode;
519 }
520 
521 /**
522  * memory_region_is_iommu: check whether a memory region is an iommu
523  *
524  * Returns %true is a memory region is an iommu.
525  *
526  * @mr: the memory region being queried
527  */
528 bool memory_region_is_iommu(MemoryRegion *mr);
529 
530 /**
531  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
532  *
533  * @mr: the memory region that was changed
534  * @entry: the new entry in the IOMMU translation table.  The entry
535  *         replaces all old entries for the same virtual I/O address range.
536  *         Deleted entries have .@perm == 0.
537  */
538 void memory_region_notify_iommu(MemoryRegion *mr,
539                                 IOMMUTLBEntry entry);
540 
541 /**
542  * memory_region_register_iommu_notifier: register a notifier for changes to
543  * IOMMU translation entries.
544  *
545  * @mr: the memory region to observe
546  * @n: the notifier to be added; the notifier receives a pointer to an
547  *     #IOMMUTLBEntry as the opaque value; the pointer ceases to be
548  *     valid on exit from the notifier.
549  */
550 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n);
551 
552 /**
553  * memory_region_unregister_iommu_notifier: unregister a notifier for
554  * changes to IOMMU translation entries.
555  *
556  * @n: the notifier to be removed.
557  */
558 void memory_region_unregister_iommu_notifier(Notifier *n);
559 
560 /**
561  * memory_region_name: get a memory region's name
562  *
563  * Returns the string that was used to initialize the memory region.
564  *
565  * @mr: the memory region being queried
566  */
567 const char *memory_region_name(const MemoryRegion *mr);
568 
569 /**
570  * memory_region_is_logging: return whether a memory region is logging writes
571  *
572  * Returns %true if the memory region is logging writes
573  *
574  * @mr: the memory region being queried
575  */
576 bool memory_region_is_logging(MemoryRegion *mr);
577 
578 /**
579  * memory_region_is_rom: check whether a memory region is ROM
580  *
581  * Returns %true is a memory region is read-only memory.
582  *
583  * @mr: the memory region being queried
584  */
585 bool memory_region_is_rom(MemoryRegion *mr);
586 
587 /**
588  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
589  *
590  * Returns a file descriptor backing a file-based RAM memory region,
591  * or -1 if the region is not a file-based RAM memory region.
592  *
593  * @mr: the RAM or alias memory region being queried.
594  */
595 int memory_region_get_fd(MemoryRegion *mr);
596 
597 /**
598  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
599  *
600  * Returns a host pointer to a RAM memory region (created with
601  * memory_region_init_ram() or memory_region_init_ram_ptr()).  Use with
602  * care.
603  *
604  * @mr: the memory region being queried.
605  */
606 void *memory_region_get_ram_ptr(MemoryRegion *mr);
607 
608 /**
609  * memory_region_set_log: Turn dirty logging on or off for a region.
610  *
611  * Turns dirty logging on or off for a specified client (display, migration).
612  * Only meaningful for RAM regions.
613  *
614  * @mr: the memory region being updated.
615  * @log: whether dirty logging is to be enabled or disabled.
616  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
617  *          %DIRTY_MEMORY_VGA.
618  */
619 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
620 
621 /**
622  * memory_region_get_dirty: Check whether a range of bytes is dirty
623  *                          for a specified client.
624  *
625  * Checks whether a range of bytes has been written to since the last
626  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
627  * must be enabled.
628  *
629  * @mr: the memory region being queried.
630  * @addr: the address (relative to the start of the region) being queried.
631  * @size: the size of the range being queried.
632  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
633  *          %DIRTY_MEMORY_VGA.
634  */
635 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
636                              hwaddr size, unsigned client);
637 
638 /**
639  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
640  *
641  * Marks a range of bytes as dirty, after it has been dirtied outside
642  * guest code.
643  *
644  * @mr: the memory region being dirtied.
645  * @addr: the address (relative to the start of the region) being dirtied.
646  * @size: size of the range being dirtied.
647  */
648 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
649                              hwaddr size);
650 
651 /**
652  * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
653  *                                     for a specified client. It clears them.
654  *
655  * Checks whether a range of bytes has been written to since the last
656  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
657  * must be enabled.
658  *
659  * @mr: the memory region being queried.
660  * @addr: the address (relative to the start of the region) being queried.
661  * @size: the size of the range being queried.
662  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
663  *          %DIRTY_MEMORY_VGA.
664  */
665 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
666                                         hwaddr size, unsigned client);
667 /**
668  * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
669  *                                  any external TLBs (e.g. kvm)
670  *
671  * Flushes dirty information from accelerators such as kvm and vhost-net
672  * and makes it available to users of the memory API.
673  *
674  * @mr: the region being flushed.
675  */
676 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
677 
678 /**
679  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
680  *                            client.
681  *
682  * Marks a range of pages as no longer dirty.
683  *
684  * @mr: the region being updated.
685  * @addr: the start of the subrange being cleaned.
686  * @size: the size of the subrange being cleaned.
687  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
688  *          %DIRTY_MEMORY_VGA.
689  */
690 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
691                                hwaddr size, unsigned client);
692 
693 /**
694  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
695  *
696  * Allows a memory region to be marked as read-only (turning it into a ROM).
697  * only useful on RAM regions.
698  *
699  * @mr: the region being updated.
700  * @readonly: whether rhe region is to be ROM or RAM.
701  */
702 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
703 
704 /**
705  * memory_region_rom_device_set_romd: enable/disable ROMD mode
706  *
707  * Allows a ROM device (initialized with memory_region_init_rom_device() to
708  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
709  * device is mapped to guest memory and satisfies read access directly.
710  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
711  * Writes are always handled by the #MemoryRegion.write function.
712  *
713  * @mr: the memory region to be updated
714  * @romd_mode: %true to put the region into ROMD mode
715  */
716 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
717 
718 /**
719  * memory_region_set_coalescing: Enable memory coalescing for the region.
720  *
721  * Enabled writes to a region to be queued for later processing. MMIO ->write
722  * callbacks may be delayed until a non-coalesced MMIO is issued.
723  * Only useful for IO regions.  Roughly similar to write-combining hardware.
724  *
725  * @mr: the memory region to be write coalesced
726  */
727 void memory_region_set_coalescing(MemoryRegion *mr);
728 
729 /**
730  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
731  *                               a region.
732  *
733  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
734  * Multiple calls can be issued coalesced disjoint ranges.
735  *
736  * @mr: the memory region to be updated.
737  * @offset: the start of the range within the region to be coalesced.
738  * @size: the size of the subrange to be coalesced.
739  */
740 void memory_region_add_coalescing(MemoryRegion *mr,
741                                   hwaddr offset,
742                                   uint64_t size);
743 
744 /**
745  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
746  *
747  * Disables any coalescing caused by memory_region_set_coalescing() or
748  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
749  * hardware.
750  *
751  * @mr: the memory region to be updated.
752  */
753 void memory_region_clear_coalescing(MemoryRegion *mr);
754 
755 /**
756  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
757  *                                    accesses.
758  *
759  * Ensure that pending coalesced MMIO request are flushed before the memory
760  * region is accessed. This property is automatically enabled for all regions
761  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
762  *
763  * @mr: the memory region to be updated.
764  */
765 void memory_region_set_flush_coalesced(MemoryRegion *mr);
766 
767 /**
768  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
769  *                                      accesses.
770  *
771  * Clear the automatic coalesced MMIO flushing enabled via
772  * memory_region_set_flush_coalesced. Note that this service has no effect on
773  * memory regions that have MMIO coalescing enabled for themselves. For them,
774  * automatic flushing will stop once coalescing is disabled.
775  *
776  * @mr: the memory region to be updated.
777  */
778 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
779 
780 /**
781  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
782  *                            is written to a location.
783  *
784  * Marks a word in an IO region (initialized with memory_region_init_io())
785  * as a trigger for an eventfd event.  The I/O callback will not be called.
786  * The caller must be prepared to handle failure (that is, take the required
787  * action if the callback _is_ called).
788  *
789  * @mr: the memory region being updated.
790  * @addr: the address within @mr that is to be monitored
791  * @size: the size of the access to trigger the eventfd
792  * @match_data: whether to match against @data, instead of just @addr
793  * @data: the data to match against the guest write
794  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
795  **/
796 void memory_region_add_eventfd(MemoryRegion *mr,
797                                hwaddr addr,
798                                unsigned size,
799                                bool match_data,
800                                uint64_t data,
801                                EventNotifier *e);
802 
803 /**
804  * memory_region_del_eventfd: Cancel an eventfd.
805  *
806  * Cancels an eventfd trigger requested by a previous
807  * memory_region_add_eventfd() call.
808  *
809  * @mr: the memory region being updated.
810  * @addr: the address within @mr that is to be monitored
811  * @size: the size of the access to trigger the eventfd
812  * @match_data: whether to match against @data, instead of just @addr
813  * @data: the data to match against the guest write
814  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
815  */
816 void memory_region_del_eventfd(MemoryRegion *mr,
817                                hwaddr addr,
818                                unsigned size,
819                                bool match_data,
820                                uint64_t data,
821                                EventNotifier *e);
822 
823 /**
824  * memory_region_add_subregion: Add a subregion to a container.
825  *
826  * Adds a subregion at @offset.  The subregion may not overlap with other
827  * subregions (except for those explicitly marked as overlapping).  A region
828  * may only be added once as a subregion (unless removed with
829  * memory_region_del_subregion()); use memory_region_init_alias() if you
830  * want a region to be a subregion in multiple locations.
831  *
832  * @mr: the region to contain the new subregion; must be a container
833  *      initialized with memory_region_init().
834  * @offset: the offset relative to @mr where @subregion is added.
835  * @subregion: the subregion to be added.
836  */
837 void memory_region_add_subregion(MemoryRegion *mr,
838                                  hwaddr offset,
839                                  MemoryRegion *subregion);
840 /**
841  * memory_region_add_subregion_overlap: Add a subregion to a container
842  *                                      with overlap.
843  *
844  * Adds a subregion at @offset.  The subregion may overlap with other
845  * subregions.  Conflicts are resolved by having a higher @priority hide a
846  * lower @priority. Subregions without priority are taken as @priority 0.
847  * A region may only be added once as a subregion (unless removed with
848  * memory_region_del_subregion()); use memory_region_init_alias() if you
849  * want a region to be a subregion in multiple locations.
850  *
851  * @mr: the region to contain the new subregion; must be a container
852  *      initialized with memory_region_init().
853  * @offset: the offset relative to @mr where @subregion is added.
854  * @subregion: the subregion to be added.
855  * @priority: used for resolving overlaps; highest priority wins.
856  */
857 void memory_region_add_subregion_overlap(MemoryRegion *mr,
858                                          hwaddr offset,
859                                          MemoryRegion *subregion,
860                                          int priority);
861 
862 /**
863  * memory_region_get_ram_addr: Get the ram address associated with a memory
864  *                             region
865  *
866  * DO NOT USE THIS FUNCTION.  This is a temporary workaround while the Xen
867  * code is being reworked.
868  */
869 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
870 
871 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
872 /**
873  * memory_region_del_subregion: Remove a subregion.
874  *
875  * Removes a subregion from its container.
876  *
877  * @mr: the container to be updated.
878  * @subregion: the region being removed; must be a current subregion of @mr.
879  */
880 void memory_region_del_subregion(MemoryRegion *mr,
881                                  MemoryRegion *subregion);
882 
883 /*
884  * memory_region_set_enabled: dynamically enable or disable a region
885  *
886  * Enables or disables a memory region.  A disabled memory region
887  * ignores all accesses to itself and its subregions.  It does not
888  * obscure sibling subregions with lower priority - it simply behaves as
889  * if it was removed from the hierarchy.
890  *
891  * Regions default to being enabled.
892  *
893  * @mr: the region to be updated
894  * @enabled: whether to enable or disable the region
895  */
896 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
897 
898 /*
899  * memory_region_set_address: dynamically update the address of a region
900  *
901  * Dynamically updates the address of a region, relative to its container.
902  * May be used on regions are currently part of a memory hierarchy.
903  *
904  * @mr: the region to be updated
905  * @addr: new address, relative to container region
906  */
907 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
908 
909 /*
910  * memory_region_set_size: dynamically update the size of a region.
911  *
912  * Dynamically updates the size of a region.
913  *
914  * @mr: the region to be updated
915  * @size: used size of the region.
916  */
917 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
918 
919 /*
920  * memory_region_set_alias_offset: dynamically update a memory alias's offset
921  *
922  * Dynamically updates the offset into the target region that an alias points
923  * to, as if the fourth argument to memory_region_init_alias() has changed.
924  *
925  * @mr: the #MemoryRegion to be updated; should be an alias.
926  * @offset: the new offset into the target memory region
927  */
928 void memory_region_set_alias_offset(MemoryRegion *mr,
929                                     hwaddr offset);
930 
931 /**
932  * memory_region_present: checks if an address relative to a @container
933  * translates into #MemoryRegion within @container
934  *
935  * Answer whether a #MemoryRegion within @container covers the address
936  * @addr.
937  *
938  * @container: a #MemoryRegion within which @addr is a relative address
939  * @addr: the area within @container to be searched
940  */
941 bool memory_region_present(MemoryRegion *container, hwaddr addr);
942 
943 /**
944  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
945  * into any address space.
946  *
947  * @mr: a #MemoryRegion which should be checked if it's mapped
948  */
949 bool memory_region_is_mapped(MemoryRegion *mr);
950 
951 /**
952  * memory_region_find: translate an address/size relative to a
953  * MemoryRegion into a #MemoryRegionSection.
954  *
955  * Locates the first #MemoryRegion within @mr that overlaps the range
956  * given by @addr and @size.
957  *
958  * Returns a #MemoryRegionSection that describes a contiguous overlap.
959  * It will have the following characteristics:
960  *    .@size = 0 iff no overlap was found
961  *    .@mr is non-%NULL iff an overlap was found
962  *
963  * Remember that in the return value the @offset_within_region is
964  * relative to the returned region (in the .@mr field), not to the
965  * @mr argument.
966  *
967  * Similarly, the .@offset_within_address_space is relative to the
968  * address space that contains both regions, the passed and the
969  * returned one.  However, in the special case where the @mr argument
970  * has no container (and thus is the root of the address space), the
971  * following will hold:
972  *    .@offset_within_address_space >= @addr
973  *    .@offset_within_address_space + .@size <= @addr + @size
974  *
975  * @mr: a MemoryRegion within which @addr is a relative address
976  * @addr: start of the area within @as to be searched
977  * @size: size of the area to be searched
978  */
979 MemoryRegionSection memory_region_find(MemoryRegion *mr,
980                                        hwaddr addr, uint64_t size);
981 
982 /**
983  * address_space_sync_dirty_bitmap: synchronize the dirty log for all memory
984  *
985  * Synchronizes the dirty page log for an entire address space.
986  * @as: the address space that contains the memory being synchronized
987  */
988 void address_space_sync_dirty_bitmap(AddressSpace *as);
989 
990 /**
991  * memory_region_transaction_begin: Start a transaction.
992  *
993  * During a transaction, changes will be accumulated and made visible
994  * only when the transaction ends (is committed).
995  */
996 void memory_region_transaction_begin(void);
997 
998 /**
999  * memory_region_transaction_commit: Commit a transaction and make changes
1000  *                                   visible to the guest.
1001  */
1002 void memory_region_transaction_commit(void);
1003 
1004 /**
1005  * memory_listener_register: register callbacks to be called when memory
1006  *                           sections are mapped or unmapped into an address
1007  *                           space
1008  *
1009  * @listener: an object containing the callbacks to be called
1010  * @filter: if non-%NULL, only regions in this address space will be observed
1011  */
1012 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1013 
1014 /**
1015  * memory_listener_unregister: undo the effect of memory_listener_register()
1016  *
1017  * @listener: an object containing the callbacks to be removed
1018  */
1019 void memory_listener_unregister(MemoryListener *listener);
1020 
1021 /**
1022  * memory_global_dirty_log_start: begin dirty logging for all regions
1023  */
1024 void memory_global_dirty_log_start(void);
1025 
1026 /**
1027  * memory_global_dirty_log_stop: end dirty logging for all regions
1028  */
1029 void memory_global_dirty_log_stop(void);
1030 
1031 void mtree_info(fprintf_function mon_printf, void *f);
1032 
1033 /**
1034  * address_space_init: initializes an address space
1035  *
1036  * @as: an uninitialized #AddressSpace
1037  * @root: a #MemoryRegion that routes addesses for the address space
1038  * @name: an address space name.  The name is only used for debugging
1039  *        output.
1040  */
1041 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1042 
1043 
1044 /**
1045  * address_space_destroy: destroy an address space
1046  *
1047  * Releases all resources associated with an address space.  After an address space
1048  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1049  * as well.
1050  *
1051  * @as: address space to be destroyed
1052  */
1053 void address_space_destroy(AddressSpace *as);
1054 
1055 /**
1056  * address_space_rw: read from or write to an address space.
1057  *
1058  * Return true if the operation hit any unassigned memory or encountered an
1059  * IOMMU fault.
1060  *
1061  * @as: #AddressSpace to be accessed
1062  * @addr: address within that address space
1063  * @buf: buffer with the data transferred
1064  * @is_write: indicates the transfer direction
1065  */
1066 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1067                       int len, bool is_write);
1068 
1069 /**
1070  * address_space_write: write to address space.
1071  *
1072  * Return true if the operation hit any unassigned memory or encountered an
1073  * IOMMU fault.
1074  *
1075  * @as: #AddressSpace to be accessed
1076  * @addr: address within that address space
1077  * @buf: buffer with the data transferred
1078  */
1079 bool address_space_write(AddressSpace *as, hwaddr addr,
1080                          const uint8_t *buf, int len);
1081 
1082 /**
1083  * address_space_read: read from an address space.
1084  *
1085  * Return true if the operation hit any unassigned memory or encountered an
1086  * IOMMU fault.
1087  *
1088  * @as: #AddressSpace to be accessed
1089  * @addr: address within that address space
1090  * @buf: buffer with the data transferred
1091  */
1092 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len);
1093 
1094 /* address_space_translate: translate an address range into an address space
1095  * into a MemoryRegion and an address range into that section
1096  *
1097  * @as: #AddressSpace to be accessed
1098  * @addr: address within that address space
1099  * @xlat: pointer to address within the returned memory region section's
1100  * #MemoryRegion.
1101  * @len: pointer to length
1102  * @is_write: indicates the transfer direction
1103  */
1104 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1105                                       hwaddr *xlat, hwaddr *len,
1106                                       bool is_write);
1107 
1108 /* address_space_access_valid: check for validity of accessing an address
1109  * space range
1110  *
1111  * Check whether memory is assigned to the given address space range, and
1112  * access is permitted by any IOMMU regions that are active for the address
1113  * space.
1114  *
1115  * For now, addr and len should be aligned to a page size.  This limitation
1116  * will be lifted in the future.
1117  *
1118  * @as: #AddressSpace to be accessed
1119  * @addr: address within that address space
1120  * @len: length of the area to be checked
1121  * @is_write: indicates the transfer direction
1122  */
1123 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1124 
1125 /* address_space_map: map a physical memory region into a host virtual address
1126  *
1127  * May map a subset of the requested range, given by and returned in @plen.
1128  * May return %NULL if resources needed to perform the mapping are exhausted.
1129  * Use only for reads OR writes - not for read-modify-write operations.
1130  * Use cpu_register_map_client() to know when retrying the map operation is
1131  * likely to succeed.
1132  *
1133  * @as: #AddressSpace to be accessed
1134  * @addr: address within that address space
1135  * @plen: pointer to length of buffer; updated on return
1136  * @is_write: indicates the transfer direction
1137  */
1138 void *address_space_map(AddressSpace *as, hwaddr addr,
1139                         hwaddr *plen, bool is_write);
1140 
1141 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1142  *
1143  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
1144  * the amount of memory that was actually read or written by the caller.
1145  *
1146  * @as: #AddressSpace used
1147  * @addr: address within that address space
1148  * @len: buffer length as returned by address_space_map()
1149  * @access_len: amount of data actually transferred
1150  * @is_write: indicates the transfer direction
1151  */
1152 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1153                          int is_write, hwaddr access_len);
1154 
1155 
1156 #endif
1157 
1158 #endif
1159