xref: /openbmc/qemu/include/exec/memory.h (revision 06831001)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/memop.h"
23 #include "exec/ramlist.h"
24 #include "qemu/bswap.h"
25 #include "qemu/queue.h"
26 #include "qemu/int128.h"
27 #include "qemu/notify.h"
28 #include "qom/object.h"
29 #include "qemu/rcu.h"
30 
31 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
32 
33 #define MAX_PHYS_ADDR_SPACE_BITS 62
34 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
35 
36 #define TYPE_MEMORY_REGION "memory-region"
37 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION,
38                          TYPE_MEMORY_REGION)
39 
40 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region"
41 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass;
42 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass,
43                      IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION)
44 
45 #define TYPE_RAM_DISCARD_MANAGER "qemu:ram-discard-manager"
46 typedef struct RamDiscardManagerClass RamDiscardManagerClass;
47 typedef struct RamDiscardManager RamDiscardManager;
48 DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass,
49                      RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER);
50 
51 #ifdef CONFIG_FUZZ
52 void fuzz_dma_read_cb(size_t addr,
53                       size_t len,
54                       MemoryRegion *mr);
55 #else
56 static inline void fuzz_dma_read_cb(size_t addr,
57                                     size_t len,
58                                     MemoryRegion *mr)
59 {
60     /* Do Nothing */
61 }
62 #endif
63 
64 /* Possible bits for global_dirty_log_{start|stop} */
65 
66 /* Dirty tracking enabled because migration is running */
67 #define GLOBAL_DIRTY_MIGRATION  (1U << 0)
68 
69 /* Dirty tracking enabled because measuring dirty rate */
70 #define GLOBAL_DIRTY_DIRTY_RATE (1U << 1)
71 
72 /* Dirty tracking enabled because dirty limit */
73 #define GLOBAL_DIRTY_LIMIT      (1U << 2)
74 
75 #define GLOBAL_DIRTY_MASK  (0x7)
76 
77 extern unsigned int global_dirty_tracking;
78 
79 typedef struct MemoryRegionOps MemoryRegionOps;
80 
81 struct ReservedRegion {
82     hwaddr low;
83     hwaddr high;
84     unsigned type;
85 };
86 
87 /**
88  * struct MemoryRegionSection: describes a fragment of a #MemoryRegion
89  *
90  * @mr: the region, or %NULL if empty
91  * @fv: the flat view of the address space the region is mapped in
92  * @offset_within_region: the beginning of the section, relative to @mr's start
93  * @size: the size of the section; will not exceed @mr's boundaries
94  * @offset_within_address_space: the address of the first byte of the section
95  *     relative to the region's address space
96  * @readonly: writes to this section are ignored
97  * @nonvolatile: this section is non-volatile
98  */
99 struct MemoryRegionSection {
100     Int128 size;
101     MemoryRegion *mr;
102     FlatView *fv;
103     hwaddr offset_within_region;
104     hwaddr offset_within_address_space;
105     bool readonly;
106     bool nonvolatile;
107 };
108 
109 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
110 
111 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
112 typedef enum {
113     IOMMU_NONE = 0,
114     IOMMU_RO   = 1,
115     IOMMU_WO   = 2,
116     IOMMU_RW   = 3,
117 } IOMMUAccessFlags;
118 
119 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
120 
121 struct IOMMUTLBEntry {
122     AddressSpace    *target_as;
123     hwaddr           iova;
124     hwaddr           translated_addr;
125     hwaddr           addr_mask;  /* 0xfff = 4k translation */
126     IOMMUAccessFlags perm;
127 };
128 
129 /*
130  * Bitmap for different IOMMUNotifier capabilities. Each notifier can
131  * register with one or multiple IOMMU Notifier capability bit(s).
132  *
133  * Normally there're two use cases for the notifiers:
134  *
135  *   (1) When the device needs accurate synchronizations of the vIOMMU page
136  *       tables, it needs to register with both MAP|UNMAP notifies (which
137  *       is defined as IOMMU_NOTIFIER_IOTLB_EVENTS below).
138  *
139  *       Regarding to accurate synchronization, it's when the notified
140  *       device maintains a shadow page table and must be notified on each
141  *       guest MAP (page table entry creation) and UNMAP (invalidation)
142  *       events (e.g. VFIO). Both notifications must be accurate so that
143  *       the shadow page table is fully in sync with the guest view.
144  *
145  *   (2) When the device doesn't need accurate synchronizations of the
146  *       vIOMMU page tables, it needs to register only with UNMAP or
147  *       DEVIOTLB_UNMAP notifies.
148  *
149  *       It's when the device maintains a cache of IOMMU translations
150  *       (IOTLB) and is able to fill that cache by requesting translations
151  *       from the vIOMMU through a protocol similar to ATS (Address
152  *       Translation Service).
153  *
154  *       Note that in this mode the vIOMMU will not maintain a shadowed
155  *       page table for the address space, and the UNMAP messages can cover
156  *       more than the pages that used to get mapped.  The IOMMU notifiee
157  *       should be able to take care of over-sized invalidations.
158  */
159 typedef enum {
160     IOMMU_NOTIFIER_NONE = 0,
161     /* Notify cache invalidations */
162     IOMMU_NOTIFIER_UNMAP = 0x1,
163     /* Notify entry changes (newly created entries) */
164     IOMMU_NOTIFIER_MAP = 0x2,
165     /* Notify changes on device IOTLB entries */
166     IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04,
167 } IOMMUNotifierFlag;
168 
169 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
170 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP
171 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \
172                             IOMMU_NOTIFIER_DEVIOTLB_EVENTS)
173 
174 struct IOMMUNotifier;
175 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
176                             IOMMUTLBEntry *data);
177 
178 struct IOMMUNotifier {
179     IOMMUNotify notify;
180     IOMMUNotifierFlag notifier_flags;
181     /* Notify for address space range start <= addr <= end */
182     hwaddr start;
183     hwaddr end;
184     int iommu_idx;
185     QLIST_ENTRY(IOMMUNotifier) node;
186 };
187 typedef struct IOMMUNotifier IOMMUNotifier;
188 
189 typedef struct IOMMUTLBEvent {
190     IOMMUNotifierFlag type;
191     IOMMUTLBEntry entry;
192 } IOMMUTLBEvent;
193 
194 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
195 #define RAM_PREALLOC   (1 << 0)
196 
197 /* RAM is mmap-ed with MAP_SHARED */
198 #define RAM_SHARED     (1 << 1)
199 
200 /* Only a portion of RAM (used_length) is actually used, and migrated.
201  * Resizing RAM while migrating can result in the migration being canceled.
202  */
203 #define RAM_RESIZEABLE (1 << 2)
204 
205 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
206  * zero the page and wake waiting processes.
207  * (Set during postcopy)
208  */
209 #define RAM_UF_ZEROPAGE (1 << 3)
210 
211 /* RAM can be migrated */
212 #define RAM_MIGRATABLE (1 << 4)
213 
214 /* RAM is a persistent kind memory */
215 #define RAM_PMEM (1 << 5)
216 
217 
218 /*
219  * UFFDIO_WRITEPROTECT is used on this RAMBlock to
220  * support 'write-tracking' migration type.
221  * Implies ram_state->ram_wt_enabled.
222  */
223 #define RAM_UF_WRITEPROTECT (1 << 6)
224 
225 /*
226  * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge
227  * pages if applicable) is skipped: will bail out if not supported. When not
228  * set, the OS will do the reservation, if supported for the memory type.
229  */
230 #define RAM_NORESERVE (1 << 7)
231 
232 /* RAM that isn't accessible through normal means. */
233 #define RAM_PROTECTED (1 << 8)
234 
235 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
236                                        IOMMUNotifierFlag flags,
237                                        hwaddr start, hwaddr end,
238                                        int iommu_idx)
239 {
240     n->notify = fn;
241     n->notifier_flags = flags;
242     n->start = start;
243     n->end = end;
244     n->iommu_idx = iommu_idx;
245 }
246 
247 /*
248  * Memory region callbacks
249  */
250 struct MemoryRegionOps {
251     /* Read from the memory region. @addr is relative to @mr; @size is
252      * in bytes. */
253     uint64_t (*read)(void *opaque,
254                      hwaddr addr,
255                      unsigned size);
256     /* Write to the memory region. @addr is relative to @mr; @size is
257      * in bytes. */
258     void (*write)(void *opaque,
259                   hwaddr addr,
260                   uint64_t data,
261                   unsigned size);
262 
263     MemTxResult (*read_with_attrs)(void *opaque,
264                                    hwaddr addr,
265                                    uint64_t *data,
266                                    unsigned size,
267                                    MemTxAttrs attrs);
268     MemTxResult (*write_with_attrs)(void *opaque,
269                                     hwaddr addr,
270                                     uint64_t data,
271                                     unsigned size,
272                                     MemTxAttrs attrs);
273 
274     enum device_endian endianness;
275     /* Guest-visible constraints: */
276     struct {
277         /* If nonzero, specify bounds on access sizes beyond which a machine
278          * check is thrown.
279          */
280         unsigned min_access_size;
281         unsigned max_access_size;
282         /* If true, unaligned accesses are supported.  Otherwise unaligned
283          * accesses throw machine checks.
284          */
285          bool unaligned;
286         /*
287          * If present, and returns #false, the transaction is not accepted
288          * by the device (and results in machine dependent behaviour such
289          * as a machine check exception).
290          */
291         bool (*accepts)(void *opaque, hwaddr addr,
292                         unsigned size, bool is_write,
293                         MemTxAttrs attrs);
294     } valid;
295     /* Internal implementation constraints: */
296     struct {
297         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
298          * will be rounded upwards and a partial result will be returned.
299          */
300         unsigned min_access_size;
301         /* If nonzero, specifies the maximum size implemented.  Larger sizes
302          * will be done as a series of accesses with smaller sizes.
303          */
304         unsigned max_access_size;
305         /* If true, unaligned accesses are supported.  Otherwise all accesses
306          * are converted to (possibly multiple) naturally aligned accesses.
307          */
308         bool unaligned;
309     } impl;
310 };
311 
312 typedef struct MemoryRegionClass {
313     /* private */
314     ObjectClass parent_class;
315 } MemoryRegionClass;
316 
317 
318 enum IOMMUMemoryRegionAttr {
319     IOMMU_ATTR_SPAPR_TCE_FD
320 };
321 
322 /*
323  * IOMMUMemoryRegionClass:
324  *
325  * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
326  * and provide an implementation of at least the @translate method here
327  * to handle requests to the memory region. Other methods are optional.
328  *
329  * The IOMMU implementation must use the IOMMU notifier infrastructure
330  * to report whenever mappings are changed, by calling
331  * memory_region_notify_iommu() (or, if necessary, by calling
332  * memory_region_notify_iommu_one() for each registered notifier).
333  *
334  * Conceptually an IOMMU provides a mapping from input address
335  * to an output TLB entry. If the IOMMU is aware of memory transaction
336  * attributes and the output TLB entry depends on the transaction
337  * attributes, we represent this using IOMMU indexes. Each index
338  * selects a particular translation table that the IOMMU has:
339  *
340  *   @attrs_to_index returns the IOMMU index for a set of transaction attributes
341  *
342  *   @translate takes an input address and an IOMMU index
343  *
344  * and the mapping returned can only depend on the input address and the
345  * IOMMU index.
346  *
347  * Most IOMMUs don't care about the transaction attributes and support
348  * only a single IOMMU index. A more complex IOMMU might have one index
349  * for secure transactions and one for non-secure transactions.
350  */
351 struct IOMMUMemoryRegionClass {
352     /* private: */
353     MemoryRegionClass parent_class;
354 
355     /* public: */
356     /**
357      * @translate:
358      *
359      * Return a TLB entry that contains a given address.
360      *
361      * The IOMMUAccessFlags indicated via @flag are optional and may
362      * be specified as IOMMU_NONE to indicate that the caller needs
363      * the full translation information for both reads and writes. If
364      * the access flags are specified then the IOMMU implementation
365      * may use this as an optimization, to stop doing a page table
366      * walk as soon as it knows that the requested permissions are not
367      * allowed. If IOMMU_NONE is passed then the IOMMU must do the
368      * full page table walk and report the permissions in the returned
369      * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
370      * return different mappings for reads and writes.)
371      *
372      * The returned information remains valid while the caller is
373      * holding the big QEMU lock or is inside an RCU critical section;
374      * if the caller wishes to cache the mapping beyond that it must
375      * register an IOMMU notifier so it can invalidate its cached
376      * information when the IOMMU mapping changes.
377      *
378      * @iommu: the IOMMUMemoryRegion
379      *
380      * @hwaddr: address to be translated within the memory region
381      *
382      * @flag: requested access permission
383      *
384      * @iommu_idx: IOMMU index for the translation
385      */
386     IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
387                                IOMMUAccessFlags flag, int iommu_idx);
388     /**
389      * @get_min_page_size:
390      *
391      * Returns minimum supported page size in bytes.
392      *
393      * If this method is not provided then the minimum is assumed to
394      * be TARGET_PAGE_SIZE.
395      *
396      * @iommu: the IOMMUMemoryRegion
397      */
398     uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
399     /**
400      * @notify_flag_changed:
401      *
402      * Called when IOMMU Notifier flag changes (ie when the set of
403      * events which IOMMU users are requesting notification for changes).
404      * Optional method -- need not be provided if the IOMMU does not
405      * need to know exactly which events must be notified.
406      *
407      * @iommu: the IOMMUMemoryRegion
408      *
409      * @old_flags: events which previously needed to be notified
410      *
411      * @new_flags: events which now need to be notified
412      *
413      * Returns 0 on success, or a negative errno; in particular
414      * returns -EINVAL if the new flag bitmap is not supported by the
415      * IOMMU memory region. In case of failure, the error object
416      * must be created
417      */
418     int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
419                                IOMMUNotifierFlag old_flags,
420                                IOMMUNotifierFlag new_flags,
421                                Error **errp);
422     /**
423      * @replay:
424      *
425      * Called to handle memory_region_iommu_replay().
426      *
427      * The default implementation of memory_region_iommu_replay() is to
428      * call the IOMMU translate method for every page in the address space
429      * with flag == IOMMU_NONE and then call the notifier if translate
430      * returns a valid mapping. If this method is implemented then it
431      * overrides the default behaviour, and must provide the full semantics
432      * of memory_region_iommu_replay(), by calling @notifier for every
433      * translation present in the IOMMU.
434      *
435      * Optional method -- an IOMMU only needs to provide this method
436      * if the default is inefficient or produces undesirable side effects.
437      *
438      * Note: this is not related to record-and-replay functionality.
439      */
440     void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
441 
442     /**
443      * @get_attr:
444      *
445      * Get IOMMU misc attributes. This is an optional method that
446      * can be used to allow users of the IOMMU to get implementation-specific
447      * information. The IOMMU implements this method to handle calls
448      * by IOMMU users to memory_region_iommu_get_attr() by filling in
449      * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
450      * the IOMMU supports. If the method is unimplemented then
451      * memory_region_iommu_get_attr() will always return -EINVAL.
452      *
453      * @iommu: the IOMMUMemoryRegion
454      *
455      * @attr: attribute being queried
456      *
457      * @data: memory to fill in with the attribute data
458      *
459      * Returns 0 on success, or a negative errno; in particular
460      * returns -EINVAL for unrecognized or unimplemented attribute types.
461      */
462     int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
463                     void *data);
464 
465     /**
466      * @attrs_to_index:
467      *
468      * Return the IOMMU index to use for a given set of transaction attributes.
469      *
470      * Optional method: if an IOMMU only supports a single IOMMU index then
471      * the default implementation of memory_region_iommu_attrs_to_index()
472      * will return 0.
473      *
474      * The indexes supported by an IOMMU must be contiguous, starting at 0.
475      *
476      * @iommu: the IOMMUMemoryRegion
477      * @attrs: memory transaction attributes
478      */
479     int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
480 
481     /**
482      * @num_indexes:
483      *
484      * Return the number of IOMMU indexes this IOMMU supports.
485      *
486      * Optional method: if this method is not provided, then
487      * memory_region_iommu_num_indexes() will return 1, indicating that
488      * only a single IOMMU index is supported.
489      *
490      * @iommu: the IOMMUMemoryRegion
491      */
492     int (*num_indexes)(IOMMUMemoryRegion *iommu);
493 
494     /**
495      * @iommu_set_page_size_mask:
496      *
497      * Restrict the page size mask that can be supported with a given IOMMU
498      * memory region. Used for example to propagate host physical IOMMU page
499      * size mask limitations to the virtual IOMMU.
500      *
501      * Optional method: if this method is not provided, then the default global
502      * page mask is used.
503      *
504      * @iommu: the IOMMUMemoryRegion
505      *
506      * @page_size_mask: a bitmask of supported page sizes. At least one bit,
507      * representing the smallest page size, must be set. Additional set bits
508      * represent supported block sizes. For example a host physical IOMMU that
509      * uses page tables with a page size of 4kB, and supports 2MB and 4GB
510      * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate
511      * block sizes is specified with mask 0xfffffffffffff000.
512      *
513      * Returns 0 on success, or a negative error. In case of failure, the error
514      * object must be created.
515      */
516      int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu,
517                                      uint64_t page_size_mask,
518                                      Error **errp);
519 };
520 
521 typedef struct RamDiscardListener RamDiscardListener;
522 typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl,
523                                  MemoryRegionSection *section);
524 typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl,
525                                  MemoryRegionSection *section);
526 
527 struct RamDiscardListener {
528     /*
529      * @notify_populate:
530      *
531      * Notification that previously discarded memory is about to get populated.
532      * Listeners are able to object. If any listener objects, already
533      * successfully notified listeners are notified about a discard again.
534      *
535      * @rdl: the #RamDiscardListener getting notified
536      * @section: the #MemoryRegionSection to get populated. The section
537      *           is aligned within the memory region to the minimum granularity
538      *           unless it would exceed the registered section.
539      *
540      * Returns 0 on success. If the notification is rejected by the listener,
541      * an error is returned.
542      */
543     NotifyRamPopulate notify_populate;
544 
545     /*
546      * @notify_discard:
547      *
548      * Notification that previously populated memory was discarded successfully
549      * and listeners should drop all references to such memory and prevent
550      * new population (e.g., unmap).
551      *
552      * @rdl: the #RamDiscardListener getting notified
553      * @section: the #MemoryRegionSection to get populated. The section
554      *           is aligned within the memory region to the minimum granularity
555      *           unless it would exceed the registered section.
556      */
557     NotifyRamDiscard notify_discard;
558 
559     /*
560      * @double_discard_supported:
561      *
562      * The listener suppors getting @notify_discard notifications that span
563      * already discarded parts.
564      */
565     bool double_discard_supported;
566 
567     MemoryRegionSection *section;
568     QLIST_ENTRY(RamDiscardListener) next;
569 };
570 
571 static inline void ram_discard_listener_init(RamDiscardListener *rdl,
572                                              NotifyRamPopulate populate_fn,
573                                              NotifyRamDiscard discard_fn,
574                                              bool double_discard_supported)
575 {
576     rdl->notify_populate = populate_fn;
577     rdl->notify_discard = discard_fn;
578     rdl->double_discard_supported = double_discard_supported;
579 }
580 
581 typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque);
582 typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque);
583 
584 /*
585  * RamDiscardManagerClass:
586  *
587  * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion
588  * regions are currently populated to be used/accessed by the VM, notifying
589  * after parts were discarded (freeing up memory) and before parts will be
590  * populated (consuming memory), to be used/accessed by the VM.
591  *
592  * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the
593  * #MemoryRegion isn't mapped yet; it cannot change while the #MemoryRegion is
594  * mapped.
595  *
596  * The #RamDiscardManager is intended to be used by technologies that are
597  * incompatible with discarding of RAM (e.g., VFIO, which may pin all
598  * memory inside a #MemoryRegion), and require proper coordination to only
599  * map the currently populated parts, to hinder parts that are expected to
600  * remain discarded from silently getting populated and consuming memory.
601  * Technologies that support discarding of RAM don't have to bother and can
602  * simply map the whole #MemoryRegion.
603  *
604  * An example #RamDiscardManager is virtio-mem, which logically (un)plugs
605  * memory within an assigned RAM #MemoryRegion, coordinated with the VM.
606  * Logically unplugging memory consists of discarding RAM. The VM agreed to not
607  * access unplugged (discarded) memory - especially via DMA. virtio-mem will
608  * properly coordinate with listeners before memory is plugged (populated),
609  * and after memory is unplugged (discarded).
610  *
611  * Listeners are called in multiples of the minimum granularity (unless it
612  * would exceed the registered range) and changes are aligned to the minimum
613  * granularity within the #MemoryRegion. Listeners have to prepare for memory
614  * becoming discarded in a different granularity than it was populated and the
615  * other way around.
616  */
617 struct RamDiscardManagerClass {
618     /* private */
619     InterfaceClass parent_class;
620 
621     /* public */
622 
623     /**
624      * @get_min_granularity:
625      *
626      * Get the minimum granularity in which listeners will get notified
627      * about changes within the #MemoryRegion via the #RamDiscardManager.
628      *
629      * @rdm: the #RamDiscardManager
630      * @mr: the #MemoryRegion
631      *
632      * Returns the minimum granularity.
633      */
634     uint64_t (*get_min_granularity)(const RamDiscardManager *rdm,
635                                     const MemoryRegion *mr);
636 
637     /**
638      * @is_populated:
639      *
640      * Check whether the given #MemoryRegionSection is completely populated
641      * (i.e., no parts are currently discarded) via the #RamDiscardManager.
642      * There are no alignment requirements.
643      *
644      * @rdm: the #RamDiscardManager
645      * @section: the #MemoryRegionSection
646      *
647      * Returns whether the given range is completely populated.
648      */
649     bool (*is_populated)(const RamDiscardManager *rdm,
650                          const MemoryRegionSection *section);
651 
652     /**
653      * @replay_populated:
654      *
655      * Call the #ReplayRamPopulate callback for all populated parts within the
656      * #MemoryRegionSection via the #RamDiscardManager.
657      *
658      * In case any call fails, no further calls are made.
659      *
660      * @rdm: the #RamDiscardManager
661      * @section: the #MemoryRegionSection
662      * @replay_fn: the #ReplayRamPopulate callback
663      * @opaque: pointer to forward to the callback
664      *
665      * Returns 0 on success, or a negative error if any notification failed.
666      */
667     int (*replay_populated)(const RamDiscardManager *rdm,
668                             MemoryRegionSection *section,
669                             ReplayRamPopulate replay_fn, void *opaque);
670 
671     /**
672      * @replay_discarded:
673      *
674      * Call the #ReplayRamDiscard callback for all discarded parts within the
675      * #MemoryRegionSection via the #RamDiscardManager.
676      *
677      * @rdm: the #RamDiscardManager
678      * @section: the #MemoryRegionSection
679      * @replay_fn: the #ReplayRamDiscard callback
680      * @opaque: pointer to forward to the callback
681      */
682     void (*replay_discarded)(const RamDiscardManager *rdm,
683                              MemoryRegionSection *section,
684                              ReplayRamDiscard replay_fn, void *opaque);
685 
686     /**
687      * @register_listener:
688      *
689      * Register a #RamDiscardListener for the given #MemoryRegionSection and
690      * immediately notify the #RamDiscardListener about all populated parts
691      * within the #MemoryRegionSection via the #RamDiscardManager.
692      *
693      * In case any notification fails, no further notifications are triggered
694      * and an error is logged.
695      *
696      * @rdm: the #RamDiscardManager
697      * @rdl: the #RamDiscardListener
698      * @section: the #MemoryRegionSection
699      */
700     void (*register_listener)(RamDiscardManager *rdm,
701                               RamDiscardListener *rdl,
702                               MemoryRegionSection *section);
703 
704     /**
705      * @unregister_listener:
706      *
707      * Unregister a previously registered #RamDiscardListener via the
708      * #RamDiscardManager after notifying the #RamDiscardListener about all
709      * populated parts becoming unpopulated within the registered
710      * #MemoryRegionSection.
711      *
712      * @rdm: the #RamDiscardManager
713      * @rdl: the #RamDiscardListener
714      */
715     void (*unregister_listener)(RamDiscardManager *rdm,
716                                 RamDiscardListener *rdl);
717 };
718 
719 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
720                                                  const MemoryRegion *mr);
721 
722 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
723                                       const MemoryRegionSection *section);
724 
725 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
726                                          MemoryRegionSection *section,
727                                          ReplayRamPopulate replay_fn,
728                                          void *opaque);
729 
730 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
731                                           MemoryRegionSection *section,
732                                           ReplayRamDiscard replay_fn,
733                                           void *opaque);
734 
735 void ram_discard_manager_register_listener(RamDiscardManager *rdm,
736                                            RamDiscardListener *rdl,
737                                            MemoryRegionSection *section);
738 
739 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
740                                              RamDiscardListener *rdl);
741 
742 bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr,
743                           ram_addr_t *ram_addr, bool *read_only,
744                           bool *mr_has_discard_manager);
745 
746 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
747 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
748 
749 /** MemoryRegion:
750  *
751  * A struct representing a memory region.
752  */
753 struct MemoryRegion {
754     Object parent_obj;
755 
756     /* private: */
757 
758     /* The following fields should fit in a cache line */
759     bool romd_mode;
760     bool ram;
761     bool subpage;
762     bool readonly; /* For RAM regions */
763     bool nonvolatile;
764     bool rom_device;
765     bool flush_coalesced_mmio;
766     uint8_t dirty_log_mask;
767     bool is_iommu;
768     RAMBlock *ram_block;
769     Object *owner;
770     /* owner as TYPE_DEVICE. Used for re-entrancy checks in MR access hotpath */
771     DeviceState *dev;
772 
773     const MemoryRegionOps *ops;
774     void *opaque;
775     MemoryRegion *container;
776     int mapped_via_alias; /* Mapped via an alias, container might be NULL */
777     Int128 size;
778     hwaddr addr;
779     void (*destructor)(MemoryRegion *mr);
780     uint64_t align;
781     bool terminates;
782     bool ram_device;
783     bool enabled;
784     bool warning_printed; /* For reservations */
785     uint8_t vga_logging_count;
786     MemoryRegion *alias;
787     hwaddr alias_offset;
788     int32_t priority;
789     QTAILQ_HEAD(, MemoryRegion) subregions;
790     QTAILQ_ENTRY(MemoryRegion) subregions_link;
791     QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
792     const char *name;
793     unsigned ioeventfd_nb;
794     MemoryRegionIoeventfd *ioeventfds;
795     RamDiscardManager *rdm; /* Only for RAM */
796 
797     /* For devices designed to perform re-entrant IO into their own IO MRs */
798     bool disable_reentrancy_guard;
799 };
800 
801 struct IOMMUMemoryRegion {
802     MemoryRegion parent_obj;
803 
804     QLIST_HEAD(, IOMMUNotifier) iommu_notify;
805     IOMMUNotifierFlag iommu_notify_flags;
806 };
807 
808 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
809     QLIST_FOREACH((n), &(mr)->iommu_notify, node)
810 
811 /**
812  * struct MemoryListener: callbacks structure for updates to the physical memory map
813  *
814  * Allows a component to adjust to changes in the guest-visible memory map.
815  * Use with memory_listener_register() and memory_listener_unregister().
816  */
817 struct MemoryListener {
818     /**
819      * @begin:
820      *
821      * Called at the beginning of an address space update transaction.
822      * Followed by calls to #MemoryListener.region_add(),
823      * #MemoryListener.region_del(), #MemoryListener.region_nop(),
824      * #MemoryListener.log_start() and #MemoryListener.log_stop() in
825      * increasing address order.
826      *
827      * @listener: The #MemoryListener.
828      */
829     void (*begin)(MemoryListener *listener);
830 
831     /**
832      * @commit:
833      *
834      * Called at the end of an address space update transaction,
835      * after the last call to #MemoryListener.region_add(),
836      * #MemoryListener.region_del() or #MemoryListener.region_nop(),
837      * #MemoryListener.log_start() and #MemoryListener.log_stop().
838      *
839      * @listener: The #MemoryListener.
840      */
841     void (*commit)(MemoryListener *listener);
842 
843     /**
844      * @region_add:
845      *
846      * Called during an address space update transaction,
847      * for a section of the address space that is new in this address space
848      * space since the last transaction.
849      *
850      * @listener: The #MemoryListener.
851      * @section: The new #MemoryRegionSection.
852      */
853     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
854 
855     /**
856      * @region_del:
857      *
858      * Called during an address space update transaction,
859      * for a section of the address space that has disappeared in the address
860      * space since the last transaction.
861      *
862      * @listener: The #MemoryListener.
863      * @section: The old #MemoryRegionSection.
864      */
865     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
866 
867     /**
868      * @region_nop:
869      *
870      * Called during an address space update transaction,
871      * for a section of the address space that is in the same place in the address
872      * space as in the last transaction.
873      *
874      * @listener: The #MemoryListener.
875      * @section: The #MemoryRegionSection.
876      */
877     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
878 
879     /**
880      * @log_start:
881      *
882      * Called during an address space update transaction, after
883      * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
884      * #MemoryListener.region_nop(), if dirty memory logging clients have
885      * become active since the last transaction.
886      *
887      * @listener: The #MemoryListener.
888      * @section: The #MemoryRegionSection.
889      * @old: A bitmap of dirty memory logging clients that were active in
890      * the previous transaction.
891      * @new: A bitmap of dirty memory logging clients that are active in
892      * the current transaction.
893      */
894     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
895                       int old, int new);
896 
897     /**
898      * @log_stop:
899      *
900      * Called during an address space update transaction, after
901      * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
902      * #MemoryListener.region_nop() and possibly after
903      * #MemoryListener.log_start(), if dirty memory logging clients have
904      * become inactive since the last transaction.
905      *
906      * @listener: The #MemoryListener.
907      * @section: The #MemoryRegionSection.
908      * @old: A bitmap of dirty memory logging clients that were active in
909      * the previous transaction.
910      * @new: A bitmap of dirty memory logging clients that are active in
911      * the current transaction.
912      */
913     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
914                      int old, int new);
915 
916     /**
917      * @log_sync:
918      *
919      * Called by memory_region_snapshot_and_clear_dirty() and
920      * memory_global_dirty_log_sync(), before accessing QEMU's "official"
921      * copy of the dirty memory bitmap for a #MemoryRegionSection.
922      *
923      * @listener: The #MemoryListener.
924      * @section: The #MemoryRegionSection.
925      */
926     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
927 
928     /**
929      * @log_sync_global:
930      *
931      * This is the global version of @log_sync when the listener does
932      * not have a way to synchronize the log with finer granularity.
933      * When the listener registers with @log_sync_global defined, then
934      * its @log_sync must be NULL.  Vice versa.
935      *
936      * @listener: The #MemoryListener.
937      * @last_stage: The last stage to synchronize the log during migration.
938      * The caller should gurantee that the synchronization with true for
939      * @last_stage is triggered for once after all VCPUs have been stopped.
940      */
941     void (*log_sync_global)(MemoryListener *listener, bool last_stage);
942 
943     /**
944      * @log_clear:
945      *
946      * Called before reading the dirty memory bitmap for a
947      * #MemoryRegionSection.
948      *
949      * @listener: The #MemoryListener.
950      * @section: The #MemoryRegionSection.
951      */
952     void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
953 
954     /**
955      * @log_global_start:
956      *
957      * Called by memory_global_dirty_log_start(), which
958      * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
959      * the address space.  #MemoryListener.log_global_start() is also
960      * called when a #MemoryListener is added, if global dirty logging is
961      * active at that time.
962      *
963      * @listener: The #MemoryListener.
964      */
965     void (*log_global_start)(MemoryListener *listener);
966 
967     /**
968      * @log_global_stop:
969      *
970      * Called by memory_global_dirty_log_stop(), which
971      * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
972      * the address space.
973      *
974      * @listener: The #MemoryListener.
975      */
976     void (*log_global_stop)(MemoryListener *listener);
977 
978     /**
979      * @log_global_after_sync:
980      *
981      * Called after reading the dirty memory bitmap
982      * for any #MemoryRegionSection.
983      *
984      * @listener: The #MemoryListener.
985      */
986     void (*log_global_after_sync)(MemoryListener *listener);
987 
988     /**
989      * @eventfd_add:
990      *
991      * Called during an address space update transaction,
992      * for a section of the address space that has had a new ioeventfd
993      * registration since the last transaction.
994      *
995      * @listener: The #MemoryListener.
996      * @section: The new #MemoryRegionSection.
997      * @match_data: The @match_data parameter for the new ioeventfd.
998      * @data: The @data parameter for the new ioeventfd.
999      * @e: The #EventNotifier parameter for the new ioeventfd.
1000      */
1001     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
1002                         bool match_data, uint64_t data, EventNotifier *e);
1003 
1004     /**
1005      * @eventfd_del:
1006      *
1007      * Called during an address space update transaction,
1008      * for a section of the address space that has dropped an ioeventfd
1009      * registration since the last transaction.
1010      *
1011      * @listener: The #MemoryListener.
1012      * @section: The new #MemoryRegionSection.
1013      * @match_data: The @match_data parameter for the dropped ioeventfd.
1014      * @data: The @data parameter for the dropped ioeventfd.
1015      * @e: The #EventNotifier parameter for the dropped ioeventfd.
1016      */
1017     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
1018                         bool match_data, uint64_t data, EventNotifier *e);
1019 
1020     /**
1021      * @coalesced_io_add:
1022      *
1023      * Called during an address space update transaction,
1024      * for a section of the address space that has had a new coalesced
1025      * MMIO range registration since the last transaction.
1026      *
1027      * @listener: The #MemoryListener.
1028      * @section: The new #MemoryRegionSection.
1029      * @addr: The starting address for the coalesced MMIO range.
1030      * @len: The length of the coalesced MMIO range.
1031      */
1032     void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
1033                                hwaddr addr, hwaddr len);
1034 
1035     /**
1036      * @coalesced_io_del:
1037      *
1038      * Called during an address space update transaction,
1039      * for a section of the address space that has dropped a coalesced
1040      * MMIO range since the last transaction.
1041      *
1042      * @listener: The #MemoryListener.
1043      * @section: The new #MemoryRegionSection.
1044      * @addr: The starting address for the coalesced MMIO range.
1045      * @len: The length of the coalesced MMIO range.
1046      */
1047     void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
1048                                hwaddr addr, hwaddr len);
1049     /**
1050      * @priority:
1051      *
1052      * Govern the order in which memory listeners are invoked. Lower priorities
1053      * are invoked earlier for "add" or "start" callbacks, and later for "delete"
1054      * or "stop" callbacks.
1055      */
1056     unsigned priority;
1057 
1058     /**
1059      * @name:
1060      *
1061      * Name of the listener.  It can be used in contexts where we'd like to
1062      * identify one memory listener with the rest.
1063      */
1064     const char *name;
1065 
1066     /* private: */
1067     AddressSpace *address_space;
1068     QTAILQ_ENTRY(MemoryListener) link;
1069     QTAILQ_ENTRY(MemoryListener) link_as;
1070 };
1071 
1072 /**
1073  * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects
1074  */
1075 struct AddressSpace {
1076     /* private: */
1077     struct rcu_head rcu;
1078     char *name;
1079     MemoryRegion *root;
1080 
1081     /* Accessed via RCU.  */
1082     struct FlatView *current_map;
1083 
1084     int ioeventfd_nb;
1085     struct MemoryRegionIoeventfd *ioeventfds;
1086     QTAILQ_HEAD(, MemoryListener) listeners;
1087     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
1088 };
1089 
1090 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
1091 typedef struct FlatRange FlatRange;
1092 
1093 /* Flattened global view of current active memory hierarchy.  Kept in sorted
1094  * order.
1095  */
1096 struct FlatView {
1097     struct rcu_head rcu;
1098     unsigned ref;
1099     FlatRange *ranges;
1100     unsigned nr;
1101     unsigned nr_allocated;
1102     struct AddressSpaceDispatch *dispatch;
1103     MemoryRegion *root;
1104 };
1105 
1106 static inline FlatView *address_space_to_flatview(AddressSpace *as)
1107 {
1108     return qatomic_rcu_read(&as->current_map);
1109 }
1110 
1111 /**
1112  * typedef flatview_cb: callback for flatview_for_each_range()
1113  *
1114  * @start: start address of the range within the FlatView
1115  * @len: length of the range in bytes
1116  * @mr: MemoryRegion covering this range
1117  * @offset_in_region: offset of the first byte of the range within @mr
1118  * @opaque: data pointer passed to flatview_for_each_range()
1119  *
1120  * Returns: true to stop the iteration, false to keep going.
1121  */
1122 typedef bool (*flatview_cb)(Int128 start,
1123                             Int128 len,
1124                             const MemoryRegion *mr,
1125                             hwaddr offset_in_region,
1126                             void *opaque);
1127 
1128 /**
1129  * flatview_for_each_range: Iterate through a FlatView
1130  * @fv: the FlatView to iterate through
1131  * @cb: function to call for each range
1132  * @opaque: opaque data pointer to pass to @cb
1133  *
1134  * A FlatView is made up of a list of non-overlapping ranges, each of
1135  * which is a slice of a MemoryRegion. This function iterates through
1136  * each range in @fv, calling @cb. The callback function can terminate
1137  * iteration early by returning 'true'.
1138  */
1139 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque);
1140 
1141 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
1142                                           MemoryRegionSection *b)
1143 {
1144     return a->mr == b->mr &&
1145            a->fv == b->fv &&
1146            a->offset_within_region == b->offset_within_region &&
1147            a->offset_within_address_space == b->offset_within_address_space &&
1148            int128_eq(a->size, b->size) &&
1149            a->readonly == b->readonly &&
1150            a->nonvolatile == b->nonvolatile;
1151 }
1152 
1153 /**
1154  * memory_region_section_new_copy: Copy a memory region section
1155  *
1156  * Allocate memory for a new copy, copy the memory region section, and
1157  * properly take a reference on all relevant members.
1158  *
1159  * @s: the #MemoryRegionSection to copy
1160  */
1161 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s);
1162 
1163 /**
1164  * memory_region_section_new_copy: Free a copied memory region section
1165  *
1166  * Free a copy of a memory section created via memory_region_section_new_copy().
1167  * properly dropping references on all relevant members.
1168  *
1169  * @s: the #MemoryRegionSection to copy
1170  */
1171 void memory_region_section_free_copy(MemoryRegionSection *s);
1172 
1173 /**
1174  * memory_region_init: Initialize a memory region
1175  *
1176  * The region typically acts as a container for other memory regions.  Use
1177  * memory_region_add_subregion() to add subregions.
1178  *
1179  * @mr: the #MemoryRegion to be initialized
1180  * @owner: the object that tracks the region's reference count
1181  * @name: used for debugging; not visible to the user or ABI
1182  * @size: size of the region; any subregions beyond this size will be clipped
1183  */
1184 void memory_region_init(MemoryRegion *mr,
1185                         Object *owner,
1186                         const char *name,
1187                         uint64_t size);
1188 
1189 /**
1190  * memory_region_ref: Add 1 to a memory region's reference count
1191  *
1192  * Whenever memory regions are accessed outside the BQL, they need to be
1193  * preserved against hot-unplug.  MemoryRegions actually do not have their
1194  * own reference count; they piggyback on a QOM object, their "owner".
1195  * This function adds a reference to the owner.
1196  *
1197  * All MemoryRegions must have an owner if they can disappear, even if the
1198  * device they belong to operates exclusively under the BQL.  This is because
1199  * the region could be returned at any time by memory_region_find, and this
1200  * is usually under guest control.
1201  *
1202  * @mr: the #MemoryRegion
1203  */
1204 void memory_region_ref(MemoryRegion *mr);
1205 
1206 /**
1207  * memory_region_unref: Remove 1 to a memory region's reference count
1208  *
1209  * Whenever memory regions are accessed outside the BQL, they need to be
1210  * preserved against hot-unplug.  MemoryRegions actually do not have their
1211  * own reference count; they piggyback on a QOM object, their "owner".
1212  * This function removes a reference to the owner and possibly destroys it.
1213  *
1214  * @mr: the #MemoryRegion
1215  */
1216 void memory_region_unref(MemoryRegion *mr);
1217 
1218 /**
1219  * memory_region_init_io: Initialize an I/O memory region.
1220  *
1221  * Accesses into the region will cause the callbacks in @ops to be called.
1222  * if @size is nonzero, subregions will be clipped to @size.
1223  *
1224  * @mr: the #MemoryRegion to be initialized.
1225  * @owner: the object that tracks the region's reference count
1226  * @ops: a structure containing read and write callbacks to be used when
1227  *       I/O is performed on the region.
1228  * @opaque: passed to the read and write callbacks of the @ops structure.
1229  * @name: used for debugging; not visible to the user or ABI
1230  * @size: size of the region.
1231  */
1232 void memory_region_init_io(MemoryRegion *mr,
1233                            Object *owner,
1234                            const MemoryRegionOps *ops,
1235                            void *opaque,
1236                            const char *name,
1237                            uint64_t size);
1238 
1239 /**
1240  * memory_region_init_ram_nomigrate:  Initialize RAM memory region.  Accesses
1241  *                                    into the region will modify memory
1242  *                                    directly.
1243  *
1244  * @mr: the #MemoryRegion to be initialized.
1245  * @owner: the object that tracks the region's reference count
1246  * @name: Region name, becomes part of RAMBlock name used in migration stream
1247  *        must be unique within any device
1248  * @size: size of the region.
1249  * @errp: pointer to Error*, to store an error if it happens.
1250  *
1251  * Note that this function does not do anything to cause the data in the
1252  * RAM memory region to be migrated; that is the responsibility of the caller.
1253  */
1254 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1255                                       Object *owner,
1256                                       const char *name,
1257                                       uint64_t size,
1258                                       Error **errp);
1259 
1260 /**
1261  * memory_region_init_ram_flags_nomigrate:  Initialize RAM memory region.
1262  *                                          Accesses into the region will
1263  *                                          modify memory directly.
1264  *
1265  * @mr: the #MemoryRegion to be initialized.
1266  * @owner: the object that tracks the region's reference count
1267  * @name: Region name, becomes part of RAMBlock name used in migration stream
1268  *        must be unique within any device
1269  * @size: size of the region.
1270  * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE.
1271  * @errp: pointer to Error*, to store an error if it happens.
1272  *
1273  * Note that this function does not do anything to cause the data in the
1274  * RAM memory region to be migrated; that is the responsibility of the caller.
1275  */
1276 void memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1277                                             Object *owner,
1278                                             const char *name,
1279                                             uint64_t size,
1280                                             uint32_t ram_flags,
1281                                             Error **errp);
1282 
1283 /**
1284  * memory_region_init_resizeable_ram:  Initialize memory region with resizable
1285  *                                     RAM.  Accesses into the region will
1286  *                                     modify memory directly.  Only an initial
1287  *                                     portion of this RAM is actually used.
1288  *                                     Changing the size while migrating
1289  *                                     can result in the migration being
1290  *                                     canceled.
1291  *
1292  * @mr: the #MemoryRegion to be initialized.
1293  * @owner: the object that tracks the region's reference count
1294  * @name: Region name, becomes part of RAMBlock name used in migration stream
1295  *        must be unique within any device
1296  * @size: used size of the region.
1297  * @max_size: max size of the region.
1298  * @resized: callback to notify owner about used size change.
1299  * @errp: pointer to Error*, to store an error if it happens.
1300  *
1301  * Note that this function does not do anything to cause the data in the
1302  * RAM memory region to be migrated; that is the responsibility of the caller.
1303  */
1304 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1305                                        Object *owner,
1306                                        const char *name,
1307                                        uint64_t size,
1308                                        uint64_t max_size,
1309                                        void (*resized)(const char*,
1310                                                        uint64_t length,
1311                                                        void *host),
1312                                        Error **errp);
1313 #ifdef CONFIG_POSIX
1314 
1315 /**
1316  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
1317  *                                    mmap-ed backend.
1318  *
1319  * @mr: the #MemoryRegion to be initialized.
1320  * @owner: the object that tracks the region's reference count
1321  * @name: Region name, becomes part of RAMBlock name used in migration stream
1322  *        must be unique within any device
1323  * @size: size of the region.
1324  * @align: alignment of the region base address; if 0, the default alignment
1325  *         (getpagesize()) will be used.
1326  * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1327  *             RAM_NORESERVE,
1328  * @path: the path in which to allocate the RAM.
1329  * @offset: offset within the file referenced by path
1330  * @readonly: true to open @path for reading, false for read/write.
1331  * @errp: pointer to Error*, to store an error if it happens.
1332  *
1333  * Note that this function does not do anything to cause the data in the
1334  * RAM memory region to be migrated; that is the responsibility of the caller.
1335  */
1336 void memory_region_init_ram_from_file(MemoryRegion *mr,
1337                                       Object *owner,
1338                                       const char *name,
1339                                       uint64_t size,
1340                                       uint64_t align,
1341                                       uint32_t ram_flags,
1342                                       const char *path,
1343                                       ram_addr_t offset,
1344                                       bool readonly,
1345                                       Error **errp);
1346 
1347 /**
1348  * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
1349  *                                  mmap-ed backend.
1350  *
1351  * @mr: the #MemoryRegion to be initialized.
1352  * @owner: the object that tracks the region's reference count
1353  * @name: the name of the region.
1354  * @size: size of the region.
1355  * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1356  *             RAM_NORESERVE, RAM_PROTECTED.
1357  * @fd: the fd to mmap.
1358  * @offset: offset within the file referenced by fd
1359  * @errp: pointer to Error*, to store an error if it happens.
1360  *
1361  * Note that this function does not do anything to cause the data in the
1362  * RAM memory region to be migrated; that is the responsibility of the caller.
1363  */
1364 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1365                                     Object *owner,
1366                                     const char *name,
1367                                     uint64_t size,
1368                                     uint32_t ram_flags,
1369                                     int fd,
1370                                     ram_addr_t offset,
1371                                     Error **errp);
1372 #endif
1373 
1374 /**
1375  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
1376  *                              user-provided pointer.  Accesses into the
1377  *                              region will modify memory directly.
1378  *
1379  * @mr: the #MemoryRegion to be initialized.
1380  * @owner: the object that tracks the region's reference count
1381  * @name: Region name, becomes part of RAMBlock name used in migration stream
1382  *        must be unique within any device
1383  * @size: size of the region.
1384  * @ptr: memory to be mapped; must contain at least @size bytes.
1385  *
1386  * Note that this function does not do anything to cause the data in the
1387  * RAM memory region to be migrated; that is the responsibility of the caller.
1388  */
1389 void memory_region_init_ram_ptr(MemoryRegion *mr,
1390                                 Object *owner,
1391                                 const char *name,
1392                                 uint64_t size,
1393                                 void *ptr);
1394 
1395 /**
1396  * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
1397  *                                     a user-provided pointer.
1398  *
1399  * A RAM device represents a mapping to a physical device, such as to a PCI
1400  * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
1401  * into the VM address space and access to the region will modify memory
1402  * directly.  However, the memory region should not be included in a memory
1403  * dump (device may not be enabled/mapped at the time of the dump), and
1404  * operations incompatible with manipulating MMIO should be avoided.  Replaces
1405  * skip_dump flag.
1406  *
1407  * @mr: the #MemoryRegion to be initialized.
1408  * @owner: the object that tracks the region's reference count
1409  * @name: the name of the region.
1410  * @size: size of the region.
1411  * @ptr: memory to be mapped; must contain at least @size bytes.
1412  *
1413  * Note that this function does not do anything to cause the data in the
1414  * RAM memory region to be migrated; that is the responsibility of the caller.
1415  * (For RAM device memory regions, migrating the contents rarely makes sense.)
1416  */
1417 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1418                                        Object *owner,
1419                                        const char *name,
1420                                        uint64_t size,
1421                                        void *ptr);
1422 
1423 /**
1424  * memory_region_init_alias: Initialize a memory region that aliases all or a
1425  *                           part of another memory region.
1426  *
1427  * @mr: the #MemoryRegion to be initialized.
1428  * @owner: the object that tracks the region's reference count
1429  * @name: used for debugging; not visible to the user or ABI
1430  * @orig: the region to be referenced; @mr will be equivalent to
1431  *        @orig between @offset and @offset + @size - 1.
1432  * @offset: start of the section in @orig to be referenced.
1433  * @size: size of the region.
1434  */
1435 void memory_region_init_alias(MemoryRegion *mr,
1436                               Object *owner,
1437                               const char *name,
1438                               MemoryRegion *orig,
1439                               hwaddr offset,
1440                               uint64_t size);
1441 
1442 /**
1443  * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
1444  *
1445  * This has the same effect as calling memory_region_init_ram_nomigrate()
1446  * and then marking the resulting region read-only with
1447  * memory_region_set_readonly().
1448  *
1449  * Note that this function does not do anything to cause the data in the
1450  * RAM side of the memory region to be migrated; that is the responsibility
1451  * of the caller.
1452  *
1453  * @mr: the #MemoryRegion to be initialized.
1454  * @owner: the object that tracks the region's reference count
1455  * @name: Region name, becomes part of RAMBlock name used in migration stream
1456  *        must be unique within any device
1457  * @size: size of the region.
1458  * @errp: pointer to Error*, to store an error if it happens.
1459  */
1460 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1461                                       Object *owner,
1462                                       const char *name,
1463                                       uint64_t size,
1464                                       Error **errp);
1465 
1466 /**
1467  * memory_region_init_rom_device_nomigrate:  Initialize a ROM memory region.
1468  *                                 Writes are handled via callbacks.
1469  *
1470  * Note that this function does not do anything to cause the data in the
1471  * RAM side of the memory region to be migrated; that is the responsibility
1472  * of the caller.
1473  *
1474  * @mr: the #MemoryRegion to be initialized.
1475  * @owner: the object that tracks the region's reference count
1476  * @ops: callbacks for write access handling (must not be NULL).
1477  * @opaque: passed to the read and write callbacks of the @ops structure.
1478  * @name: Region name, becomes part of RAMBlock name used in migration stream
1479  *        must be unique within any device
1480  * @size: size of the region.
1481  * @errp: pointer to Error*, to store an error if it happens.
1482  */
1483 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1484                                              Object *owner,
1485                                              const MemoryRegionOps *ops,
1486                                              void *opaque,
1487                                              const char *name,
1488                                              uint64_t size,
1489                                              Error **errp);
1490 
1491 /**
1492  * memory_region_init_iommu: Initialize a memory region of a custom type
1493  * that translates addresses
1494  *
1495  * An IOMMU region translates addresses and forwards accesses to a target
1496  * memory region.
1497  *
1498  * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
1499  * @_iommu_mr should be a pointer to enough memory for an instance of
1500  * that subclass, @instance_size is the size of that subclass, and
1501  * @mrtypename is its name. This function will initialize @_iommu_mr as an
1502  * instance of the subclass, and its methods will then be called to handle
1503  * accesses to the memory region. See the documentation of
1504  * #IOMMUMemoryRegionClass for further details.
1505  *
1506  * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
1507  * @instance_size: the IOMMUMemoryRegion subclass instance size
1508  * @mrtypename: the type name of the #IOMMUMemoryRegion
1509  * @owner: the object that tracks the region's reference count
1510  * @name: used for debugging; not visible to the user or ABI
1511  * @size: size of the region.
1512  */
1513 void memory_region_init_iommu(void *_iommu_mr,
1514                               size_t instance_size,
1515                               const char *mrtypename,
1516                               Object *owner,
1517                               const char *name,
1518                               uint64_t size);
1519 
1520 /**
1521  * memory_region_init_ram - Initialize RAM memory region.  Accesses into the
1522  *                          region will modify memory directly.
1523  *
1524  * @mr: the #MemoryRegion to be initialized
1525  * @owner: the object that tracks the region's reference count (must be
1526  *         TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
1527  * @name: name of the memory region
1528  * @size: size of the region in bytes
1529  * @errp: pointer to Error*, to store an error if it happens.
1530  *
1531  * This function allocates RAM for a board model or device, and
1532  * arranges for it to be migrated (by calling vmstate_register_ram()
1533  * if @owner is a DeviceState, or vmstate_register_ram_global() if
1534  * @owner is NULL).
1535  *
1536  * TODO: Currently we restrict @owner to being either NULL (for
1537  * global RAM regions with no owner) or devices, so that we can
1538  * give the RAM block a unique name for migration purposes.
1539  * We should lift this restriction and allow arbitrary Objects.
1540  * If you pass a non-NULL non-device @owner then we will assert.
1541  */
1542 void memory_region_init_ram(MemoryRegion *mr,
1543                             Object *owner,
1544                             const char *name,
1545                             uint64_t size,
1546                             Error **errp);
1547 
1548 /**
1549  * memory_region_init_rom: Initialize a ROM memory region.
1550  *
1551  * This has the same effect as calling memory_region_init_ram()
1552  * and then marking the resulting region read-only with
1553  * memory_region_set_readonly(). This includes arranging for the
1554  * contents to be migrated.
1555  *
1556  * TODO: Currently we restrict @owner to being either NULL (for
1557  * global RAM regions with no owner) or devices, so that we can
1558  * give the RAM block a unique name for migration purposes.
1559  * We should lift this restriction and allow arbitrary Objects.
1560  * If you pass a non-NULL non-device @owner then we will assert.
1561  *
1562  * @mr: the #MemoryRegion to be initialized.
1563  * @owner: the object that tracks the region's reference count
1564  * @name: Region name, becomes part of RAMBlock name used in migration stream
1565  *        must be unique within any device
1566  * @size: size of the region.
1567  * @errp: pointer to Error*, to store an error if it happens.
1568  */
1569 void memory_region_init_rom(MemoryRegion *mr,
1570                             Object *owner,
1571                             const char *name,
1572                             uint64_t size,
1573                             Error **errp);
1574 
1575 /**
1576  * memory_region_init_rom_device:  Initialize a ROM memory region.
1577  *                                 Writes are handled via callbacks.
1578  *
1579  * This function initializes a memory region backed by RAM for reads
1580  * and callbacks for writes, and arranges for the RAM backing to
1581  * be migrated (by calling vmstate_register_ram()
1582  * if @owner is a DeviceState, or vmstate_register_ram_global() if
1583  * @owner is NULL).
1584  *
1585  * TODO: Currently we restrict @owner to being either NULL (for
1586  * global RAM regions with no owner) or devices, so that we can
1587  * give the RAM block a unique name for migration purposes.
1588  * We should lift this restriction and allow arbitrary Objects.
1589  * If you pass a non-NULL non-device @owner then we will assert.
1590  *
1591  * @mr: the #MemoryRegion to be initialized.
1592  * @owner: the object that tracks the region's reference count
1593  * @ops: callbacks for write access handling (must not be NULL).
1594  * @opaque: passed to the read and write callbacks of the @ops structure.
1595  * @name: Region name, becomes part of RAMBlock name used in migration stream
1596  *        must be unique within any device
1597  * @size: size of the region.
1598  * @errp: pointer to Error*, to store an error if it happens.
1599  */
1600 void memory_region_init_rom_device(MemoryRegion *mr,
1601                                    Object *owner,
1602                                    const MemoryRegionOps *ops,
1603                                    void *opaque,
1604                                    const char *name,
1605                                    uint64_t size,
1606                                    Error **errp);
1607 
1608 
1609 /**
1610  * memory_region_owner: get a memory region's owner.
1611  *
1612  * @mr: the memory region being queried.
1613  */
1614 Object *memory_region_owner(MemoryRegion *mr);
1615 
1616 /**
1617  * memory_region_size: get a memory region's size.
1618  *
1619  * @mr: the memory region being queried.
1620  */
1621 uint64_t memory_region_size(MemoryRegion *mr);
1622 
1623 /**
1624  * memory_region_is_ram: check whether a memory region is random access
1625  *
1626  * Returns %true if a memory region is random access.
1627  *
1628  * @mr: the memory region being queried
1629  */
1630 static inline bool memory_region_is_ram(MemoryRegion *mr)
1631 {
1632     return mr->ram;
1633 }
1634 
1635 /**
1636  * memory_region_is_ram_device: check whether a memory region is a ram device
1637  *
1638  * Returns %true if a memory region is a device backed ram region
1639  *
1640  * @mr: the memory region being queried
1641  */
1642 bool memory_region_is_ram_device(MemoryRegion *mr);
1643 
1644 /**
1645  * memory_region_is_romd: check whether a memory region is in ROMD mode
1646  *
1647  * Returns %true if a memory region is a ROM device and currently set to allow
1648  * direct reads.
1649  *
1650  * @mr: the memory region being queried
1651  */
1652 static inline bool memory_region_is_romd(MemoryRegion *mr)
1653 {
1654     return mr->rom_device && mr->romd_mode;
1655 }
1656 
1657 /**
1658  * memory_region_is_protected: check whether a memory region is protected
1659  *
1660  * Returns %true if a memory region is protected RAM and cannot be accessed
1661  * via standard mechanisms, e.g. DMA.
1662  *
1663  * @mr: the memory region being queried
1664  */
1665 bool memory_region_is_protected(MemoryRegion *mr);
1666 
1667 /**
1668  * memory_region_get_iommu: check whether a memory region is an iommu
1669  *
1670  * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1671  * otherwise NULL.
1672  *
1673  * @mr: the memory region being queried
1674  */
1675 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1676 {
1677     if (mr->alias) {
1678         return memory_region_get_iommu(mr->alias);
1679     }
1680     if (mr->is_iommu) {
1681         return (IOMMUMemoryRegion *) mr;
1682     }
1683     return NULL;
1684 }
1685 
1686 /**
1687  * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1688  *   if an iommu or NULL if not
1689  *
1690  * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1691  * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1692  *
1693  * @iommu_mr: the memory region being queried
1694  */
1695 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1696         IOMMUMemoryRegion *iommu_mr)
1697 {
1698     return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1699 }
1700 
1701 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1702 
1703 /**
1704  * memory_region_iommu_get_min_page_size: get minimum supported page size
1705  * for an iommu
1706  *
1707  * Returns minimum supported page size for an iommu.
1708  *
1709  * @iommu_mr: the memory region being queried
1710  */
1711 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1712 
1713 /**
1714  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1715  *
1716  * Note: for any IOMMU implementation, an in-place mapping change
1717  * should be notified with an UNMAP followed by a MAP.
1718  *
1719  * @iommu_mr: the memory region that was changed
1720  * @iommu_idx: the IOMMU index for the translation table which has changed
1721  * @event: TLB event with the new entry in the IOMMU translation table.
1722  *         The entry replaces all old entries for the same virtual I/O address
1723  *         range.
1724  */
1725 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1726                                 int iommu_idx,
1727                                 IOMMUTLBEvent event);
1728 
1729 /**
1730  * memory_region_notify_iommu_one: notify a change in an IOMMU translation
1731  *                           entry to a single notifier
1732  *
1733  * This works just like memory_region_notify_iommu(), but it only
1734  * notifies a specific notifier, not all of them.
1735  *
1736  * @notifier: the notifier to be notified
1737  * @event: TLB event with the new entry in the IOMMU translation table.
1738  *         The entry replaces all old entries for the same virtual I/O address
1739  *         range.
1740  */
1741 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1742                                     IOMMUTLBEvent *event);
1743 
1744 /**
1745  * memory_region_unmap_iommu_notifier_range: notify a unmap for an IOMMU
1746  *                                           translation that covers the
1747  *                                           range of a notifier
1748  *
1749  * @notifier: the notifier to be notified
1750  */
1751 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier);
1752 
1753 
1754 /**
1755  * memory_region_register_iommu_notifier: register a notifier for changes to
1756  * IOMMU translation entries.
1757  *
1758  * Returns 0 on success, or a negative errno otherwise. In particular,
1759  * -EINVAL indicates that at least one of the attributes of the notifier
1760  * is not supported (flag/range) by the IOMMU memory region. In case of error
1761  * the error object must be created.
1762  *
1763  * @mr: the memory region to observe
1764  * @n: the IOMMUNotifier to be added; the notify callback receives a
1765  *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1766  *     ceases to be valid on exit from the notifier.
1767  * @errp: pointer to Error*, to store an error if it happens.
1768  */
1769 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1770                                           IOMMUNotifier *n, Error **errp);
1771 
1772 /**
1773  * memory_region_iommu_replay: replay existing IOMMU translations to
1774  * a notifier with the minimum page granularity returned by
1775  * mr->iommu_ops->get_page_size().
1776  *
1777  * Note: this is not related to record-and-replay functionality.
1778  *
1779  * @iommu_mr: the memory region to observe
1780  * @n: the notifier to which to replay iommu mappings
1781  */
1782 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1783 
1784 /**
1785  * memory_region_unregister_iommu_notifier: unregister a notifier for
1786  * changes to IOMMU translation entries.
1787  *
1788  * @mr: the memory region which was observed and for which notity_stopped()
1789  *      needs to be called
1790  * @n: the notifier to be removed.
1791  */
1792 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1793                                              IOMMUNotifier *n);
1794 
1795 /**
1796  * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1797  * defined on the IOMMU.
1798  *
1799  * Returns 0 on success, or a negative errno otherwise. In particular,
1800  * -EINVAL indicates that the IOMMU does not support the requested
1801  * attribute.
1802  *
1803  * @iommu_mr: the memory region
1804  * @attr: the requested attribute
1805  * @data: a pointer to the requested attribute data
1806  */
1807 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1808                                  enum IOMMUMemoryRegionAttr attr,
1809                                  void *data);
1810 
1811 /**
1812  * memory_region_iommu_attrs_to_index: return the IOMMU index to
1813  * use for translations with the given memory transaction attributes.
1814  *
1815  * @iommu_mr: the memory region
1816  * @attrs: the memory transaction attributes
1817  */
1818 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1819                                        MemTxAttrs attrs);
1820 
1821 /**
1822  * memory_region_iommu_num_indexes: return the total number of IOMMU
1823  * indexes that this IOMMU supports.
1824  *
1825  * @iommu_mr: the memory region
1826  */
1827 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1828 
1829 /**
1830  * memory_region_iommu_set_page_size_mask: set the supported page
1831  * sizes for a given IOMMU memory region
1832  *
1833  * @iommu_mr: IOMMU memory region
1834  * @page_size_mask: supported page size mask
1835  * @errp: pointer to Error*, to store an error if it happens.
1836  */
1837 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1838                                            uint64_t page_size_mask,
1839                                            Error **errp);
1840 
1841 /**
1842  * memory_region_name: get a memory region's name
1843  *
1844  * Returns the string that was used to initialize the memory region.
1845  *
1846  * @mr: the memory region being queried
1847  */
1848 const char *memory_region_name(const MemoryRegion *mr);
1849 
1850 /**
1851  * memory_region_is_logging: return whether a memory region is logging writes
1852  *
1853  * Returns %true if the memory region is logging writes for the given client
1854  *
1855  * @mr: the memory region being queried
1856  * @client: the client being queried
1857  */
1858 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1859 
1860 /**
1861  * memory_region_get_dirty_log_mask: return the clients for which a
1862  * memory region is logging writes.
1863  *
1864  * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1865  * are the bit indices.
1866  *
1867  * @mr: the memory region being queried
1868  */
1869 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1870 
1871 /**
1872  * memory_region_is_rom: check whether a memory region is ROM
1873  *
1874  * Returns %true if a memory region is read-only memory.
1875  *
1876  * @mr: the memory region being queried
1877  */
1878 static inline bool memory_region_is_rom(MemoryRegion *mr)
1879 {
1880     return mr->ram && mr->readonly;
1881 }
1882 
1883 /**
1884  * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1885  *
1886  * Returns %true is a memory region is non-volatile memory.
1887  *
1888  * @mr: the memory region being queried
1889  */
1890 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1891 {
1892     return mr->nonvolatile;
1893 }
1894 
1895 /**
1896  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1897  *
1898  * Returns a file descriptor backing a file-based RAM memory region,
1899  * or -1 if the region is not a file-based RAM memory region.
1900  *
1901  * @mr: the RAM or alias memory region being queried.
1902  */
1903 int memory_region_get_fd(MemoryRegion *mr);
1904 
1905 /**
1906  * memory_region_from_host: Convert a pointer into a RAM memory region
1907  * and an offset within it.
1908  *
1909  * Given a host pointer inside a RAM memory region (created with
1910  * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1911  * the MemoryRegion and the offset within it.
1912  *
1913  * Use with care; by the time this function returns, the returned pointer is
1914  * not protected by RCU anymore.  If the caller is not within an RCU critical
1915  * section and does not hold the iothread lock, it must have other means of
1916  * protecting the pointer, such as a reference to the region that includes
1917  * the incoming ram_addr_t.
1918  *
1919  * @ptr: the host pointer to be converted
1920  * @offset: the offset within memory region
1921  */
1922 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1923 
1924 /**
1925  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1926  *
1927  * Returns a host pointer to a RAM memory region (created with
1928  * memory_region_init_ram() or memory_region_init_ram_ptr()).
1929  *
1930  * Use with care; by the time this function returns, the returned pointer is
1931  * not protected by RCU anymore.  If the caller is not within an RCU critical
1932  * section and does not hold the iothread lock, it must have other means of
1933  * protecting the pointer, such as a reference to the region that includes
1934  * the incoming ram_addr_t.
1935  *
1936  * @mr: the memory region being queried.
1937  */
1938 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1939 
1940 /* memory_region_ram_resize: Resize a RAM region.
1941  *
1942  * Resizing RAM while migrating can result in the migration being canceled.
1943  * Care has to be taken if the guest might have already detected the memory.
1944  *
1945  * @mr: a memory region created with @memory_region_init_resizeable_ram.
1946  * @newsize: the new size the region
1947  * @errp: pointer to Error*, to store an error if it happens.
1948  */
1949 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1950                               Error **errp);
1951 
1952 /**
1953  * memory_region_msync: Synchronize selected address range of
1954  * a memory mapped region
1955  *
1956  * @mr: the memory region to be msync
1957  * @addr: the initial address of the range to be sync
1958  * @size: the size of the range to be sync
1959  */
1960 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
1961 
1962 /**
1963  * memory_region_writeback: Trigger cache writeback for
1964  * selected address range
1965  *
1966  * @mr: the memory region to be updated
1967  * @addr: the initial address of the range to be written back
1968  * @size: the size of the range to be written back
1969  */
1970 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
1971 
1972 /**
1973  * memory_region_set_log: Turn dirty logging on or off for a region.
1974  *
1975  * Turns dirty logging on or off for a specified client (display, migration).
1976  * Only meaningful for RAM regions.
1977  *
1978  * @mr: the memory region being updated.
1979  * @log: whether dirty logging is to be enabled or disabled.
1980  * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1981  */
1982 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1983 
1984 /**
1985  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1986  *
1987  * Marks a range of bytes as dirty, after it has been dirtied outside
1988  * guest code.
1989  *
1990  * @mr: the memory region being dirtied.
1991  * @addr: the address (relative to the start of the region) being dirtied.
1992  * @size: size of the range being dirtied.
1993  */
1994 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1995                              hwaddr size);
1996 
1997 /**
1998  * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
1999  *
2000  * This function is called when the caller wants to clear the remote
2001  * dirty bitmap of a memory range within the memory region.  This can
2002  * be used by e.g. KVM to manually clear dirty log when
2003  * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
2004  * kernel.
2005  *
2006  * @mr:     the memory region to clear the dirty log upon
2007  * @start:  start address offset within the memory region
2008  * @len:    length of the memory region to clear dirty bitmap
2009  */
2010 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2011                                       hwaddr len);
2012 
2013 /**
2014  * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
2015  *                                         bitmap and clear it.
2016  *
2017  * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
2018  * returns the snapshot.  The snapshot can then be used to query dirty
2019  * status, using memory_region_snapshot_get_dirty.  Snapshotting allows
2020  * querying the same page multiple times, which is especially useful for
2021  * display updates where the scanlines often are not page aligned.
2022  *
2023  * The dirty bitmap region which gets copied into the snapshot (and
2024  * cleared afterwards) can be larger than requested.  The boundaries
2025  * are rounded up/down so complete bitmap longs (covering 64 pages on
2026  * 64bit hosts) can be copied over into the bitmap snapshot.  Which
2027  * isn't a problem for display updates as the extra pages are outside
2028  * the visible area, and in case the visible area changes a full
2029  * display redraw is due anyway.  Should other use cases for this
2030  * function emerge we might have to revisit this implementation
2031  * detail.
2032  *
2033  * Use g_free to release DirtyBitmapSnapshot.
2034  *
2035  * @mr: the memory region being queried.
2036  * @addr: the address (relative to the start of the region) being queried.
2037  * @size: the size of the range being queried.
2038  * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
2039  */
2040 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2041                                                             hwaddr addr,
2042                                                             hwaddr size,
2043                                                             unsigned client);
2044 
2045 /**
2046  * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
2047  *                                   in the specified dirty bitmap snapshot.
2048  *
2049  * @mr: the memory region being queried.
2050  * @snap: the dirty bitmap snapshot
2051  * @addr: the address (relative to the start of the region) being queried.
2052  * @size: the size of the range being queried.
2053  */
2054 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
2055                                       DirtyBitmapSnapshot *snap,
2056                                       hwaddr addr, hwaddr size);
2057 
2058 /**
2059  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
2060  *                            client.
2061  *
2062  * Marks a range of pages as no longer dirty.
2063  *
2064  * @mr: the region being updated.
2065  * @addr: the start of the subrange being cleaned.
2066  * @size: the size of the subrange being cleaned.
2067  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
2068  *          %DIRTY_MEMORY_VGA.
2069  */
2070 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2071                                hwaddr size, unsigned client);
2072 
2073 /**
2074  * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
2075  *                                 TBs (for self-modifying code).
2076  *
2077  * The MemoryRegionOps->write() callback of a ROM device must use this function
2078  * to mark byte ranges that have been modified internally, such as by directly
2079  * accessing the memory returned by memory_region_get_ram_ptr().
2080  *
2081  * This function marks the range dirty and invalidates TBs so that TCG can
2082  * detect self-modifying code.
2083  *
2084  * @mr: the region being flushed.
2085  * @addr: the start, relative to the start of the region, of the range being
2086  *        flushed.
2087  * @size: the size, in bytes, of the range being flushed.
2088  */
2089 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
2090 
2091 /**
2092  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
2093  *
2094  * Allows a memory region to be marked as read-only (turning it into a ROM).
2095  * only useful on RAM regions.
2096  *
2097  * @mr: the region being updated.
2098  * @readonly: whether rhe region is to be ROM or RAM.
2099  */
2100 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
2101 
2102 /**
2103  * memory_region_set_nonvolatile: Turn a memory region non-volatile
2104  *
2105  * Allows a memory region to be marked as non-volatile.
2106  * only useful on RAM regions.
2107  *
2108  * @mr: the region being updated.
2109  * @nonvolatile: whether rhe region is to be non-volatile.
2110  */
2111 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
2112 
2113 /**
2114  * memory_region_rom_device_set_romd: enable/disable ROMD mode
2115  *
2116  * Allows a ROM device (initialized with memory_region_init_rom_device() to
2117  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
2118  * device is mapped to guest memory and satisfies read access directly.
2119  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
2120  * Writes are always handled by the #MemoryRegion.write function.
2121  *
2122  * @mr: the memory region to be updated
2123  * @romd_mode: %true to put the region into ROMD mode
2124  */
2125 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
2126 
2127 /**
2128  * memory_region_set_coalescing: Enable memory coalescing for the region.
2129  *
2130  * Enabled writes to a region to be queued for later processing. MMIO ->write
2131  * callbacks may be delayed until a non-coalesced MMIO is issued.
2132  * Only useful for IO regions.  Roughly similar to write-combining hardware.
2133  *
2134  * @mr: the memory region to be write coalesced
2135  */
2136 void memory_region_set_coalescing(MemoryRegion *mr);
2137 
2138 /**
2139  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
2140  *                               a region.
2141  *
2142  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
2143  * Multiple calls can be issued coalesced disjoint ranges.
2144  *
2145  * @mr: the memory region to be updated.
2146  * @offset: the start of the range within the region to be coalesced.
2147  * @size: the size of the subrange to be coalesced.
2148  */
2149 void memory_region_add_coalescing(MemoryRegion *mr,
2150                                   hwaddr offset,
2151                                   uint64_t size);
2152 
2153 /**
2154  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
2155  *
2156  * Disables any coalescing caused by memory_region_set_coalescing() or
2157  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
2158  * hardware.
2159  *
2160  * @mr: the memory region to be updated.
2161  */
2162 void memory_region_clear_coalescing(MemoryRegion *mr);
2163 
2164 /**
2165  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
2166  *                                    accesses.
2167  *
2168  * Ensure that pending coalesced MMIO request are flushed before the memory
2169  * region is accessed. This property is automatically enabled for all regions
2170  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
2171  *
2172  * @mr: the memory region to be updated.
2173  */
2174 void memory_region_set_flush_coalesced(MemoryRegion *mr);
2175 
2176 /**
2177  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
2178  *                                      accesses.
2179  *
2180  * Clear the automatic coalesced MMIO flushing enabled via
2181  * memory_region_set_flush_coalesced. Note that this service has no effect on
2182  * memory regions that have MMIO coalescing enabled for themselves. For them,
2183  * automatic flushing will stop once coalescing is disabled.
2184  *
2185  * @mr: the memory region to be updated.
2186  */
2187 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
2188 
2189 /**
2190  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
2191  *                            is written to a location.
2192  *
2193  * Marks a word in an IO region (initialized with memory_region_init_io())
2194  * as a trigger for an eventfd event.  The I/O callback will not be called.
2195  * The caller must be prepared to handle failure (that is, take the required
2196  * action if the callback _is_ called).
2197  *
2198  * @mr: the memory region being updated.
2199  * @addr: the address within @mr that is to be monitored
2200  * @size: the size of the access to trigger the eventfd
2201  * @match_data: whether to match against @data, instead of just @addr
2202  * @data: the data to match against the guest write
2203  * @e: event notifier to be triggered when @addr, @size, and @data all match.
2204  **/
2205 void memory_region_add_eventfd(MemoryRegion *mr,
2206                                hwaddr addr,
2207                                unsigned size,
2208                                bool match_data,
2209                                uint64_t data,
2210                                EventNotifier *e);
2211 
2212 /**
2213  * memory_region_del_eventfd: Cancel an eventfd.
2214  *
2215  * Cancels an eventfd trigger requested by a previous
2216  * memory_region_add_eventfd() call.
2217  *
2218  * @mr: the memory region being updated.
2219  * @addr: the address within @mr that is to be monitored
2220  * @size: the size of the access to trigger the eventfd
2221  * @match_data: whether to match against @data, instead of just @addr
2222  * @data: the data to match against the guest write
2223  * @e: event notifier to be triggered when @addr, @size, and @data all match.
2224  */
2225 void memory_region_del_eventfd(MemoryRegion *mr,
2226                                hwaddr addr,
2227                                unsigned size,
2228                                bool match_data,
2229                                uint64_t data,
2230                                EventNotifier *e);
2231 
2232 /**
2233  * memory_region_add_subregion: Add a subregion to a container.
2234  *
2235  * Adds a subregion at @offset.  The subregion may not overlap with other
2236  * subregions (except for those explicitly marked as overlapping).  A region
2237  * may only be added once as a subregion (unless removed with
2238  * memory_region_del_subregion()); use memory_region_init_alias() if you
2239  * want a region to be a subregion in multiple locations.
2240  *
2241  * @mr: the region to contain the new subregion; must be a container
2242  *      initialized with memory_region_init().
2243  * @offset: the offset relative to @mr where @subregion is added.
2244  * @subregion: the subregion to be added.
2245  */
2246 void memory_region_add_subregion(MemoryRegion *mr,
2247                                  hwaddr offset,
2248                                  MemoryRegion *subregion);
2249 /**
2250  * memory_region_add_subregion_overlap: Add a subregion to a container
2251  *                                      with overlap.
2252  *
2253  * Adds a subregion at @offset.  The subregion may overlap with other
2254  * subregions.  Conflicts are resolved by having a higher @priority hide a
2255  * lower @priority. Subregions without priority are taken as @priority 0.
2256  * A region may only be added once as a subregion (unless removed with
2257  * memory_region_del_subregion()); use memory_region_init_alias() if you
2258  * want a region to be a subregion in multiple locations.
2259  *
2260  * @mr: the region to contain the new subregion; must be a container
2261  *      initialized with memory_region_init().
2262  * @offset: the offset relative to @mr where @subregion is added.
2263  * @subregion: the subregion to be added.
2264  * @priority: used for resolving overlaps; highest priority wins.
2265  */
2266 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2267                                          hwaddr offset,
2268                                          MemoryRegion *subregion,
2269                                          int priority);
2270 
2271 /**
2272  * memory_region_get_ram_addr: Get the ram address associated with a memory
2273  *                             region
2274  *
2275  * @mr: the region to be queried
2276  */
2277 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
2278 
2279 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
2280 /**
2281  * memory_region_del_subregion: Remove a subregion.
2282  *
2283  * Removes a subregion from its container.
2284  *
2285  * @mr: the container to be updated.
2286  * @subregion: the region being removed; must be a current subregion of @mr.
2287  */
2288 void memory_region_del_subregion(MemoryRegion *mr,
2289                                  MemoryRegion *subregion);
2290 
2291 /*
2292  * memory_region_set_enabled: dynamically enable or disable a region
2293  *
2294  * Enables or disables a memory region.  A disabled memory region
2295  * ignores all accesses to itself and its subregions.  It does not
2296  * obscure sibling subregions with lower priority - it simply behaves as
2297  * if it was removed from the hierarchy.
2298  *
2299  * Regions default to being enabled.
2300  *
2301  * @mr: the region to be updated
2302  * @enabled: whether to enable or disable the region
2303  */
2304 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
2305 
2306 /*
2307  * memory_region_set_address: dynamically update the address of a region
2308  *
2309  * Dynamically updates the address of a region, relative to its container.
2310  * May be used on regions are currently part of a memory hierarchy.
2311  *
2312  * @mr: the region to be updated
2313  * @addr: new address, relative to container region
2314  */
2315 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
2316 
2317 /*
2318  * memory_region_set_size: dynamically update the size of a region.
2319  *
2320  * Dynamically updates the size of a region.
2321  *
2322  * @mr: the region to be updated
2323  * @size: used size of the region.
2324  */
2325 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
2326 
2327 /*
2328  * memory_region_set_alias_offset: dynamically update a memory alias's offset
2329  *
2330  * Dynamically updates the offset into the target region that an alias points
2331  * to, as if the fourth argument to memory_region_init_alias() has changed.
2332  *
2333  * @mr: the #MemoryRegion to be updated; should be an alias.
2334  * @offset: the new offset into the target memory region
2335  */
2336 void memory_region_set_alias_offset(MemoryRegion *mr,
2337                                     hwaddr offset);
2338 
2339 /**
2340  * memory_region_present: checks if an address relative to a @container
2341  * translates into #MemoryRegion within @container
2342  *
2343  * Answer whether a #MemoryRegion within @container covers the address
2344  * @addr.
2345  *
2346  * @container: a #MemoryRegion within which @addr is a relative address
2347  * @addr: the area within @container to be searched
2348  */
2349 bool memory_region_present(MemoryRegion *container, hwaddr addr);
2350 
2351 /**
2352  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
2353  * into another memory region, which does not necessarily imply that it is
2354  * mapped into an address space.
2355  *
2356  * @mr: a #MemoryRegion which should be checked if it's mapped
2357  */
2358 bool memory_region_is_mapped(MemoryRegion *mr);
2359 
2360 /**
2361  * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a
2362  * #MemoryRegion
2363  *
2364  * The #RamDiscardManager cannot change while a memory region is mapped.
2365  *
2366  * @mr: the #MemoryRegion
2367  */
2368 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr);
2369 
2370 /**
2371  * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a
2372  * #RamDiscardManager assigned
2373  *
2374  * @mr: the #MemoryRegion
2375  */
2376 static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr)
2377 {
2378     return !!memory_region_get_ram_discard_manager(mr);
2379 }
2380 
2381 /**
2382  * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a
2383  * #MemoryRegion
2384  *
2385  * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion
2386  * that does not cover RAM, or a #MemoryRegion that already has a
2387  * #RamDiscardManager assigned.
2388  *
2389  * @mr: the #MemoryRegion
2390  * @rdm: #RamDiscardManager to set
2391  */
2392 void memory_region_set_ram_discard_manager(MemoryRegion *mr,
2393                                            RamDiscardManager *rdm);
2394 
2395 /**
2396  * memory_region_find: translate an address/size relative to a
2397  * MemoryRegion into a #MemoryRegionSection.
2398  *
2399  * Locates the first #MemoryRegion within @mr that overlaps the range
2400  * given by @addr and @size.
2401  *
2402  * Returns a #MemoryRegionSection that describes a contiguous overlap.
2403  * It will have the following characteristics:
2404  * - @size = 0 iff no overlap was found
2405  * - @mr is non-%NULL iff an overlap was found
2406  *
2407  * Remember that in the return value the @offset_within_region is
2408  * relative to the returned region (in the .@mr field), not to the
2409  * @mr argument.
2410  *
2411  * Similarly, the .@offset_within_address_space is relative to the
2412  * address space that contains both regions, the passed and the
2413  * returned one.  However, in the special case where the @mr argument
2414  * has no container (and thus is the root of the address space), the
2415  * following will hold:
2416  * - @offset_within_address_space >= @addr
2417  * - @offset_within_address_space + .@size <= @addr + @size
2418  *
2419  * @mr: a MemoryRegion within which @addr is a relative address
2420  * @addr: start of the area within @as to be searched
2421  * @size: size of the area to be searched
2422  */
2423 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2424                                        hwaddr addr, uint64_t size);
2425 
2426 /**
2427  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2428  *
2429  * Synchronizes the dirty page log for all address spaces.
2430  *
2431  * @last_stage: whether this is the last stage of live migration
2432  */
2433 void memory_global_dirty_log_sync(bool last_stage);
2434 
2435 /**
2436  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2437  *
2438  * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
2439  * This function must be called after the dirty log bitmap is cleared, and
2440  * before dirty guest memory pages are read.  If you are using
2441  * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
2442  * care of doing this.
2443  */
2444 void memory_global_after_dirty_log_sync(void);
2445 
2446 /**
2447  * memory_region_transaction_begin: Start a transaction.
2448  *
2449  * During a transaction, changes will be accumulated and made visible
2450  * only when the transaction ends (is committed).
2451  */
2452 void memory_region_transaction_begin(void);
2453 
2454 /**
2455  * memory_region_transaction_commit: Commit a transaction and make changes
2456  *                                   visible to the guest.
2457  */
2458 void memory_region_transaction_commit(void);
2459 
2460 /**
2461  * memory_listener_register: register callbacks to be called when memory
2462  *                           sections are mapped or unmapped into an address
2463  *                           space
2464  *
2465  * @listener: an object containing the callbacks to be called
2466  * @filter: if non-%NULL, only regions in this address space will be observed
2467  */
2468 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
2469 
2470 /**
2471  * memory_listener_unregister: undo the effect of memory_listener_register()
2472  *
2473  * @listener: an object containing the callbacks to be removed
2474  */
2475 void memory_listener_unregister(MemoryListener *listener);
2476 
2477 /**
2478  * memory_global_dirty_log_start: begin dirty logging for all regions
2479  *
2480  * @flags: purpose of starting dirty log, migration or dirty rate
2481  */
2482 void memory_global_dirty_log_start(unsigned int flags);
2483 
2484 /**
2485  * memory_global_dirty_log_stop: end dirty logging for all regions
2486  *
2487  * @flags: purpose of stopping dirty log, migration or dirty rate
2488  */
2489 void memory_global_dirty_log_stop(unsigned int flags);
2490 
2491 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled);
2492 
2493 bool memory_region_access_valid(MemoryRegion *mr, hwaddr addr,
2494                                 unsigned size, bool is_write,
2495                                 MemTxAttrs attrs);
2496 
2497 /**
2498  * memory_region_dispatch_read: perform a read directly to the specified
2499  * MemoryRegion.
2500  *
2501  * @mr: #MemoryRegion to access
2502  * @addr: address within that region
2503  * @pval: pointer to uint64_t which the data is written to
2504  * @op: size, sign, and endianness of the memory operation
2505  * @attrs: memory transaction attributes to use for the access
2506  */
2507 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
2508                                         hwaddr addr,
2509                                         uint64_t *pval,
2510                                         MemOp op,
2511                                         MemTxAttrs attrs);
2512 /**
2513  * memory_region_dispatch_write: perform a write directly to the specified
2514  * MemoryRegion.
2515  *
2516  * @mr: #MemoryRegion to access
2517  * @addr: address within that region
2518  * @data: data to write
2519  * @op: size, sign, and endianness of the memory operation
2520  * @attrs: memory transaction attributes to use for the access
2521  */
2522 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
2523                                          hwaddr addr,
2524                                          uint64_t data,
2525                                          MemOp op,
2526                                          MemTxAttrs attrs);
2527 
2528 /**
2529  * address_space_init: initializes an address space
2530  *
2531  * @as: an uninitialized #AddressSpace
2532  * @root: a #MemoryRegion that routes addresses for the address space
2533  * @name: an address space name.  The name is only used for debugging
2534  *        output.
2535  */
2536 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
2537 
2538 /**
2539  * address_space_destroy: destroy an address space
2540  *
2541  * Releases all resources associated with an address space.  After an address space
2542  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
2543  * as well.
2544  *
2545  * @as: address space to be destroyed
2546  */
2547 void address_space_destroy(AddressSpace *as);
2548 
2549 /**
2550  * address_space_remove_listeners: unregister all listeners of an address space
2551  *
2552  * Removes all callbacks previously registered with memory_listener_register()
2553  * for @as.
2554  *
2555  * @as: an initialized #AddressSpace
2556  */
2557 void address_space_remove_listeners(AddressSpace *as);
2558 
2559 /**
2560  * address_space_rw: read from or write to an address space.
2561  *
2562  * Return a MemTxResult indicating whether the operation succeeded
2563  * or failed (eg unassigned memory, device rejected the transaction,
2564  * IOMMU fault).
2565  *
2566  * @as: #AddressSpace to be accessed
2567  * @addr: address within that address space
2568  * @attrs: memory transaction attributes
2569  * @buf: buffer with the data transferred
2570  * @len: the number of bytes to read or write
2571  * @is_write: indicates the transfer direction
2572  */
2573 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
2574                              MemTxAttrs attrs, void *buf,
2575                              hwaddr len, bool is_write);
2576 
2577 /**
2578  * address_space_write: write to address space.
2579  *
2580  * Return a MemTxResult indicating whether the operation succeeded
2581  * or failed (eg unassigned memory, device rejected the transaction,
2582  * IOMMU fault).
2583  *
2584  * @as: #AddressSpace to be accessed
2585  * @addr: address within that address space
2586  * @attrs: memory transaction attributes
2587  * @buf: buffer with the data transferred
2588  * @len: the number of bytes to write
2589  */
2590 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2591                                 MemTxAttrs attrs,
2592                                 const void *buf, hwaddr len);
2593 
2594 /**
2595  * address_space_write_rom: write to address space, including ROM.
2596  *
2597  * This function writes to the specified address space, but will
2598  * write data to both ROM and RAM. This is used for non-guest
2599  * writes like writes from the gdb debug stub or initial loading
2600  * of ROM contents.
2601  *
2602  * Note that portions of the write which attempt to write data to
2603  * a device will be silently ignored -- only real RAM and ROM will
2604  * be written to.
2605  *
2606  * Return a MemTxResult indicating whether the operation succeeded
2607  * or failed (eg unassigned memory, device rejected the transaction,
2608  * IOMMU fault).
2609  *
2610  * @as: #AddressSpace to be accessed
2611  * @addr: address within that address space
2612  * @attrs: memory transaction attributes
2613  * @buf: buffer with the data transferred
2614  * @len: the number of bytes to write
2615  */
2616 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2617                                     MemTxAttrs attrs,
2618                                     const void *buf, hwaddr len);
2619 
2620 /* address_space_ld*: load from an address space
2621  * address_space_st*: store to an address space
2622  *
2623  * These functions perform a load or store of the byte, word,
2624  * longword or quad to the specified address within the AddressSpace.
2625  * The _le suffixed functions treat the data as little endian;
2626  * _be indicates big endian; no suffix indicates "same endianness
2627  * as guest CPU".
2628  *
2629  * The "guest CPU endianness" accessors are deprecated for use outside
2630  * target-* code; devices should be CPU-agnostic and use either the LE
2631  * or the BE accessors.
2632  *
2633  * @as #AddressSpace to be accessed
2634  * @addr: address within that address space
2635  * @val: data value, for stores
2636  * @attrs: memory transaction attributes
2637  * @result: location to write the success/failure of the transaction;
2638  *   if NULL, this information is discarded
2639  */
2640 
2641 #define SUFFIX
2642 #define ARG1         as
2643 #define ARG1_DECL    AddressSpace *as
2644 #include "exec/memory_ldst.h.inc"
2645 
2646 #define SUFFIX
2647 #define ARG1         as
2648 #define ARG1_DECL    AddressSpace *as
2649 #include "exec/memory_ldst_phys.h.inc"
2650 
2651 struct MemoryRegionCache {
2652     void *ptr;
2653     hwaddr xlat;
2654     hwaddr len;
2655     FlatView *fv;
2656     MemoryRegionSection mrs;
2657     bool is_write;
2658 };
2659 
2660 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
2661 
2662 
2663 /* address_space_ld*_cached: load from a cached #MemoryRegion
2664  * address_space_st*_cached: store into a cached #MemoryRegion
2665  *
2666  * These functions perform a load or store of the byte, word,
2667  * longword or quad to the specified address.  The address is
2668  * a physical address in the AddressSpace, but it must lie within
2669  * a #MemoryRegion that was mapped with address_space_cache_init.
2670  *
2671  * The _le suffixed functions treat the data as little endian;
2672  * _be indicates big endian; no suffix indicates "same endianness
2673  * as guest CPU".
2674  *
2675  * The "guest CPU endianness" accessors are deprecated for use outside
2676  * target-* code; devices should be CPU-agnostic and use either the LE
2677  * or the BE accessors.
2678  *
2679  * @cache: previously initialized #MemoryRegionCache to be accessed
2680  * @addr: address within the address space
2681  * @val: data value, for stores
2682  * @attrs: memory transaction attributes
2683  * @result: location to write the success/failure of the transaction;
2684  *   if NULL, this information is discarded
2685  */
2686 
2687 #define SUFFIX       _cached_slow
2688 #define ARG1         cache
2689 #define ARG1_DECL    MemoryRegionCache *cache
2690 #include "exec/memory_ldst.h.inc"
2691 
2692 /* Inline fast path for direct RAM access.  */
2693 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
2694     hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
2695 {
2696     assert(addr < cache->len);
2697     if (likely(cache->ptr)) {
2698         return ldub_p(cache->ptr + addr);
2699     } else {
2700         return address_space_ldub_cached_slow(cache, addr, attrs, result);
2701     }
2702 }
2703 
2704 static inline void address_space_stb_cached(MemoryRegionCache *cache,
2705     hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result)
2706 {
2707     assert(addr < cache->len);
2708     if (likely(cache->ptr)) {
2709         stb_p(cache->ptr + addr, val);
2710     } else {
2711         address_space_stb_cached_slow(cache, addr, val, attrs, result);
2712     }
2713 }
2714 
2715 #define ENDIANNESS   _le
2716 #include "exec/memory_ldst_cached.h.inc"
2717 
2718 #define ENDIANNESS   _be
2719 #include "exec/memory_ldst_cached.h.inc"
2720 
2721 #define SUFFIX       _cached
2722 #define ARG1         cache
2723 #define ARG1_DECL    MemoryRegionCache *cache
2724 #include "exec/memory_ldst_phys.h.inc"
2725 
2726 /* address_space_cache_init: prepare for repeated access to a physical
2727  * memory region
2728  *
2729  * @cache: #MemoryRegionCache to be filled
2730  * @as: #AddressSpace to be accessed
2731  * @addr: address within that address space
2732  * @len: length of buffer
2733  * @is_write: indicates the transfer direction
2734  *
2735  * Will only work with RAM, and may map a subset of the requested range by
2736  * returning a value that is less than @len.  On failure, return a negative
2737  * errno value.
2738  *
2739  * Because it only works with RAM, this function can be used for
2740  * read-modify-write operations.  In this case, is_write should be %true.
2741  *
2742  * Note that addresses passed to the address_space_*_cached functions
2743  * are relative to @addr.
2744  */
2745 int64_t address_space_cache_init(MemoryRegionCache *cache,
2746                                  AddressSpace *as,
2747                                  hwaddr addr,
2748                                  hwaddr len,
2749                                  bool is_write);
2750 
2751 /**
2752  * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2753  *
2754  * @cache: The #MemoryRegionCache to operate on.
2755  * @addr: The first physical address that was written, relative to the
2756  * address that was passed to @address_space_cache_init.
2757  * @access_len: The number of bytes that were written starting at @addr.
2758  */
2759 void address_space_cache_invalidate(MemoryRegionCache *cache,
2760                                     hwaddr addr,
2761                                     hwaddr access_len);
2762 
2763 /**
2764  * address_space_cache_destroy: free a #MemoryRegionCache
2765  *
2766  * @cache: The #MemoryRegionCache whose memory should be released.
2767  */
2768 void address_space_cache_destroy(MemoryRegionCache *cache);
2769 
2770 /* address_space_get_iotlb_entry: translate an address into an IOTLB
2771  * entry. Should be called from an RCU critical section.
2772  */
2773 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2774                                             bool is_write, MemTxAttrs attrs);
2775 
2776 /* address_space_translate: translate an address range into an address space
2777  * into a MemoryRegion and an address range into that section.  Should be
2778  * called from an RCU critical section, to avoid that the last reference
2779  * to the returned region disappears after address_space_translate returns.
2780  *
2781  * @fv: #FlatView to be accessed
2782  * @addr: address within that address space
2783  * @xlat: pointer to address within the returned memory region section's
2784  * #MemoryRegion.
2785  * @len: pointer to length
2786  * @is_write: indicates the transfer direction
2787  * @attrs: memory attributes
2788  */
2789 MemoryRegion *flatview_translate(FlatView *fv,
2790                                  hwaddr addr, hwaddr *xlat,
2791                                  hwaddr *len, bool is_write,
2792                                  MemTxAttrs attrs);
2793 
2794 static inline MemoryRegion *address_space_translate(AddressSpace *as,
2795                                                     hwaddr addr, hwaddr *xlat,
2796                                                     hwaddr *len, bool is_write,
2797                                                     MemTxAttrs attrs)
2798 {
2799     return flatview_translate(address_space_to_flatview(as),
2800                               addr, xlat, len, is_write, attrs);
2801 }
2802 
2803 /* address_space_access_valid: check for validity of accessing an address
2804  * space range
2805  *
2806  * Check whether memory is assigned to the given address space range, and
2807  * access is permitted by any IOMMU regions that are active for the address
2808  * space.
2809  *
2810  * For now, addr and len should be aligned to a page size.  This limitation
2811  * will be lifted in the future.
2812  *
2813  * @as: #AddressSpace to be accessed
2814  * @addr: address within that address space
2815  * @len: length of the area to be checked
2816  * @is_write: indicates the transfer direction
2817  * @attrs: memory attributes
2818  */
2819 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2820                                 bool is_write, MemTxAttrs attrs);
2821 
2822 /* address_space_map: map a physical memory region into a host virtual address
2823  *
2824  * May map a subset of the requested range, given by and returned in @plen.
2825  * May return %NULL and set *@plen to zero(0), if resources needed to perform
2826  * the mapping are exhausted.
2827  * Use only for reads OR writes - not for read-modify-write operations.
2828  * Use cpu_register_map_client() to know when retrying the map operation is
2829  * likely to succeed.
2830  *
2831  * @as: #AddressSpace to be accessed
2832  * @addr: address within that address space
2833  * @plen: pointer to length of buffer; updated on return
2834  * @is_write: indicates the transfer direction
2835  * @attrs: memory attributes
2836  */
2837 void *address_space_map(AddressSpace *as, hwaddr addr,
2838                         hwaddr *plen, bool is_write, MemTxAttrs attrs);
2839 
2840 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2841  *
2842  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
2843  * the amount of memory that was actually read or written by the caller.
2844  *
2845  * @as: #AddressSpace used
2846  * @buffer: host pointer as returned by address_space_map()
2847  * @len: buffer length as returned by address_space_map()
2848  * @access_len: amount of data actually transferred
2849  * @is_write: indicates the transfer direction
2850  */
2851 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2852                          bool is_write, hwaddr access_len);
2853 
2854 
2855 /* Internal functions, part of the implementation of address_space_read.  */
2856 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2857                                     MemTxAttrs attrs, void *buf, hwaddr len);
2858 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2859                                    MemTxAttrs attrs, void *buf,
2860                                    hwaddr len, hwaddr addr1, hwaddr l,
2861                                    MemoryRegion *mr);
2862 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2863 
2864 /* Internal functions, part of the implementation of address_space_read_cached
2865  * and address_space_write_cached.  */
2866 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache,
2867                                            hwaddr addr, void *buf, hwaddr len);
2868 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
2869                                             hwaddr addr, const void *buf,
2870                                             hwaddr len);
2871 
2872 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr);
2873 bool prepare_mmio_access(MemoryRegion *mr);
2874 
2875 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2876 {
2877     if (is_write) {
2878         return memory_region_is_ram(mr) && !mr->readonly &&
2879                !mr->rom_device && !memory_region_is_ram_device(mr);
2880     } else {
2881         return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2882                memory_region_is_romd(mr);
2883     }
2884 }
2885 
2886 /**
2887  * address_space_read: read from an address space.
2888  *
2889  * Return a MemTxResult indicating whether the operation succeeded
2890  * or failed (eg unassigned memory, device rejected the transaction,
2891  * IOMMU fault).  Called within RCU critical section.
2892  *
2893  * @as: #AddressSpace to be accessed
2894  * @addr: address within that address space
2895  * @attrs: memory transaction attributes
2896  * @buf: buffer with the data transferred
2897  * @len: length of the data transferred
2898  */
2899 static inline __attribute__((__always_inline__))
2900 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
2901                                MemTxAttrs attrs, void *buf,
2902                                hwaddr len)
2903 {
2904     MemTxResult result = MEMTX_OK;
2905     hwaddr l, addr1;
2906     void *ptr;
2907     MemoryRegion *mr;
2908     FlatView *fv;
2909 
2910     if (__builtin_constant_p(len)) {
2911         if (len) {
2912             RCU_READ_LOCK_GUARD();
2913             fv = address_space_to_flatview(as);
2914             l = len;
2915             mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2916             if (len == l && memory_access_is_direct(mr, false)) {
2917                 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2918                 memcpy(buf, ptr, len);
2919             } else {
2920                 result = flatview_read_continue(fv, addr, attrs, buf, len,
2921                                                 addr1, l, mr);
2922             }
2923         }
2924     } else {
2925         result = address_space_read_full(as, addr, attrs, buf, len);
2926     }
2927     return result;
2928 }
2929 
2930 /**
2931  * address_space_read_cached: read from a cached RAM region
2932  *
2933  * @cache: Cached region to be addressed
2934  * @addr: address relative to the base of the RAM region
2935  * @buf: buffer with the data transferred
2936  * @len: length of the data transferred
2937  */
2938 static inline MemTxResult
2939 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
2940                           void *buf, hwaddr len)
2941 {
2942     assert(addr < cache->len && len <= cache->len - addr);
2943     fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr);
2944     if (likely(cache->ptr)) {
2945         memcpy(buf, cache->ptr + addr, len);
2946         return MEMTX_OK;
2947     } else {
2948         return address_space_read_cached_slow(cache, addr, buf, len);
2949     }
2950 }
2951 
2952 /**
2953  * address_space_write_cached: write to a cached RAM region
2954  *
2955  * @cache: Cached region to be addressed
2956  * @addr: address relative to the base of the RAM region
2957  * @buf: buffer with the data transferred
2958  * @len: length of the data transferred
2959  */
2960 static inline MemTxResult
2961 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2962                            const void *buf, hwaddr len)
2963 {
2964     assert(addr < cache->len && len <= cache->len - addr);
2965     if (likely(cache->ptr)) {
2966         memcpy(cache->ptr + addr, buf, len);
2967         return MEMTX_OK;
2968     } else {
2969         return address_space_write_cached_slow(cache, addr, buf, len);
2970     }
2971 }
2972 
2973 /**
2974  * address_space_set: Fill address space with a constant byte.
2975  *
2976  * Return a MemTxResult indicating whether the operation succeeded
2977  * or failed (eg unassigned memory, device rejected the transaction,
2978  * IOMMU fault).
2979  *
2980  * @as: #AddressSpace to be accessed
2981  * @addr: address within that address space
2982  * @c: constant byte to fill the memory
2983  * @len: the number of bytes to fill with the constant byte
2984  * @attrs: memory transaction attributes
2985  */
2986 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2987                               uint8_t c, hwaddr len, MemTxAttrs attrs);
2988 
2989 #ifdef NEED_CPU_H
2990 /* enum device_endian to MemOp.  */
2991 static inline MemOp devend_memop(enum device_endian end)
2992 {
2993     QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
2994                       DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
2995 
2996 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
2997     /* Swap if non-host endianness or native (target) endianness */
2998     return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
2999 #else
3000     const int non_host_endianness =
3001         DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
3002 
3003     /* In this case, native (target) endianness needs no swap.  */
3004     return (end == non_host_endianness) ? MO_BSWAP : 0;
3005 #endif
3006 }
3007 #endif
3008 
3009 /*
3010  * Inhibit technologies that require discarding of pages in RAM blocks, e.g.,
3011  * to manage the actual amount of memory consumed by the VM (then, the memory
3012  * provided by RAM blocks might be bigger than the desired memory consumption).
3013  * This *must* be set if:
3014  * - Discarding parts of a RAM blocks does not result in the change being
3015  *   reflected in the VM and the pages getting freed.
3016  * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous
3017  *   discards blindly.
3018  * - Discarding parts of a RAM blocks will result in integrity issues (e.g.,
3019  *   encrypted VMs).
3020  * Technologies that only temporarily pin the current working set of a
3021  * driver are fine, because we don't expect such pages to be discarded
3022  * (esp. based on guest action like balloon inflation).
3023  *
3024  * This is *not* to be used to protect from concurrent discards (esp.,
3025  * postcopy).
3026  *
3027  * Returns 0 if successful. Returns -EBUSY if a technology that relies on
3028  * discards to work reliably is active.
3029  */
3030 int ram_block_discard_disable(bool state);
3031 
3032 /*
3033  * See ram_block_discard_disable(): only disable uncoordinated discards,
3034  * keeping coordinated discards (via the RamDiscardManager) enabled.
3035  */
3036 int ram_block_uncoordinated_discard_disable(bool state);
3037 
3038 /*
3039  * Inhibit technologies that disable discarding of pages in RAM blocks.
3040  *
3041  * Returns 0 if successful. Returns -EBUSY if discards are already set to
3042  * broken.
3043  */
3044 int ram_block_discard_require(bool state);
3045 
3046 /*
3047  * See ram_block_discard_require(): only inhibit technologies that disable
3048  * uncoordinated discarding of pages in RAM blocks, allowing co-existance with
3049  * technologies that only inhibit uncoordinated discards (via the
3050  * RamDiscardManager).
3051  */
3052 int ram_block_coordinated_discard_require(bool state);
3053 
3054 /*
3055  * Test if any discarding of memory in ram blocks is disabled.
3056  */
3057 bool ram_block_discard_is_disabled(void);
3058 
3059 /*
3060  * Test if any discarding of memory in ram blocks is required to work reliably.
3061  */
3062 bool ram_block_discard_is_required(void);
3063 
3064 #endif
3065 
3066 #endif
3067