1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef MEMORY_H 15 #define MEMORY_H 16 17 #ifndef CONFIG_USER_ONLY 18 19 #include "exec/cpu-common.h" 20 #include "exec/hwaddr.h" 21 #include "exec/memattrs.h" 22 #include "exec/memop.h" 23 #include "exec/ramlist.h" 24 #include "qemu/bswap.h" 25 #include "qemu/queue.h" 26 #include "qemu/int128.h" 27 #include "qemu/notify.h" 28 #include "qom/object.h" 29 #include "qemu/rcu.h" 30 31 #define RAM_ADDR_INVALID (~(ram_addr_t)0) 32 33 #define MAX_PHYS_ADDR_SPACE_BITS 62 34 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 35 36 #define TYPE_MEMORY_REGION "memory-region" 37 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION, 38 TYPE_MEMORY_REGION) 39 40 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region" 41 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass; 42 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass, 43 IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION) 44 45 #define TYPE_RAM_DISCARD_MANAGER "qemu:ram-discard-manager" 46 typedef struct RamDiscardManagerClass RamDiscardManagerClass; 47 typedef struct RamDiscardManager RamDiscardManager; 48 DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass, 49 RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER); 50 51 #ifdef CONFIG_FUZZ 52 void fuzz_dma_read_cb(size_t addr, 53 size_t len, 54 MemoryRegion *mr); 55 #else 56 static inline void fuzz_dma_read_cb(size_t addr, 57 size_t len, 58 MemoryRegion *mr) 59 { 60 /* Do Nothing */ 61 } 62 #endif 63 64 /* Possible bits for global_dirty_log_{start|stop} */ 65 66 /* Dirty tracking enabled because migration is running */ 67 #define GLOBAL_DIRTY_MIGRATION (1U << 0) 68 69 /* Dirty tracking enabled because measuring dirty rate */ 70 #define GLOBAL_DIRTY_DIRTY_RATE (1U << 1) 71 72 /* Dirty tracking enabled because dirty limit */ 73 #define GLOBAL_DIRTY_LIMIT (1U << 2) 74 75 #define GLOBAL_DIRTY_MASK (0x7) 76 77 extern unsigned int global_dirty_tracking; 78 79 typedef struct MemoryRegionOps MemoryRegionOps; 80 81 struct ReservedRegion { 82 hwaddr low; 83 hwaddr high; 84 unsigned type; 85 }; 86 87 /** 88 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion 89 * 90 * @mr: the region, or %NULL if empty 91 * @fv: the flat view of the address space the region is mapped in 92 * @offset_within_region: the beginning of the section, relative to @mr's start 93 * @size: the size of the section; will not exceed @mr's boundaries 94 * @offset_within_address_space: the address of the first byte of the section 95 * relative to the region's address space 96 * @readonly: writes to this section are ignored 97 * @nonvolatile: this section is non-volatile 98 */ 99 struct MemoryRegionSection { 100 Int128 size; 101 MemoryRegion *mr; 102 FlatView *fv; 103 hwaddr offset_within_region; 104 hwaddr offset_within_address_space; 105 bool readonly; 106 bool nonvolatile; 107 }; 108 109 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 110 111 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 112 typedef enum { 113 IOMMU_NONE = 0, 114 IOMMU_RO = 1, 115 IOMMU_WO = 2, 116 IOMMU_RW = 3, 117 } IOMMUAccessFlags; 118 119 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0)) 120 121 struct IOMMUTLBEntry { 122 AddressSpace *target_as; 123 hwaddr iova; 124 hwaddr translated_addr; 125 hwaddr addr_mask; /* 0xfff = 4k translation */ 126 IOMMUAccessFlags perm; 127 }; 128 129 /* 130 * Bitmap for different IOMMUNotifier capabilities. Each notifier can 131 * register with one or multiple IOMMU Notifier capability bit(s). 132 * 133 * Normally there're two use cases for the notifiers: 134 * 135 * (1) When the device needs accurate synchronizations of the vIOMMU page 136 * tables, it needs to register with both MAP|UNMAP notifies (which 137 * is defined as IOMMU_NOTIFIER_IOTLB_EVENTS below). 138 * 139 * Regarding to accurate synchronization, it's when the notified 140 * device maintains a shadow page table and must be notified on each 141 * guest MAP (page table entry creation) and UNMAP (invalidation) 142 * events (e.g. VFIO). Both notifications must be accurate so that 143 * the shadow page table is fully in sync with the guest view. 144 * 145 * (2) When the device doesn't need accurate synchronizations of the 146 * vIOMMU page tables, it needs to register only with UNMAP or 147 * DEVIOTLB_UNMAP notifies. 148 * 149 * It's when the device maintains a cache of IOMMU translations 150 * (IOTLB) and is able to fill that cache by requesting translations 151 * from the vIOMMU through a protocol similar to ATS (Address 152 * Translation Service). 153 * 154 * Note that in this mode the vIOMMU will not maintain a shadowed 155 * page table for the address space, and the UNMAP messages can cover 156 * more than the pages that used to get mapped. The IOMMU notifiee 157 * should be able to take care of over-sized invalidations. 158 */ 159 typedef enum { 160 IOMMU_NOTIFIER_NONE = 0, 161 /* Notify cache invalidations */ 162 IOMMU_NOTIFIER_UNMAP = 0x1, 163 /* Notify entry changes (newly created entries) */ 164 IOMMU_NOTIFIER_MAP = 0x2, 165 /* Notify changes on device IOTLB entries */ 166 IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04, 167 } IOMMUNotifierFlag; 168 169 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP) 170 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP 171 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \ 172 IOMMU_NOTIFIER_DEVIOTLB_EVENTS) 173 174 struct IOMMUNotifier; 175 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier, 176 IOMMUTLBEntry *data); 177 178 struct IOMMUNotifier { 179 IOMMUNotify notify; 180 IOMMUNotifierFlag notifier_flags; 181 /* Notify for address space range start <= addr <= end */ 182 hwaddr start; 183 hwaddr end; 184 int iommu_idx; 185 QLIST_ENTRY(IOMMUNotifier) node; 186 }; 187 typedef struct IOMMUNotifier IOMMUNotifier; 188 189 typedef struct IOMMUTLBEvent { 190 IOMMUNotifierFlag type; 191 IOMMUTLBEntry entry; 192 } IOMMUTLBEvent; 193 194 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ 195 #define RAM_PREALLOC (1 << 0) 196 197 /* RAM is mmap-ed with MAP_SHARED */ 198 #define RAM_SHARED (1 << 1) 199 200 /* Only a portion of RAM (used_length) is actually used, and migrated. 201 * Resizing RAM while migrating can result in the migration being canceled. 202 */ 203 #define RAM_RESIZEABLE (1 << 2) 204 205 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically 206 * zero the page and wake waiting processes. 207 * (Set during postcopy) 208 */ 209 #define RAM_UF_ZEROPAGE (1 << 3) 210 211 /* RAM can be migrated */ 212 #define RAM_MIGRATABLE (1 << 4) 213 214 /* RAM is a persistent kind memory */ 215 #define RAM_PMEM (1 << 5) 216 217 218 /* 219 * UFFDIO_WRITEPROTECT is used on this RAMBlock to 220 * support 'write-tracking' migration type. 221 * Implies ram_state->ram_wt_enabled. 222 */ 223 #define RAM_UF_WRITEPROTECT (1 << 6) 224 225 /* 226 * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge 227 * pages if applicable) is skipped: will bail out if not supported. When not 228 * set, the OS will do the reservation, if supported for the memory type. 229 */ 230 #define RAM_NORESERVE (1 << 7) 231 232 /* RAM that isn't accessible through normal means. */ 233 #define RAM_PROTECTED (1 << 8) 234 235 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn, 236 IOMMUNotifierFlag flags, 237 hwaddr start, hwaddr end, 238 int iommu_idx) 239 { 240 n->notify = fn; 241 n->notifier_flags = flags; 242 n->start = start; 243 n->end = end; 244 n->iommu_idx = iommu_idx; 245 } 246 247 /* 248 * Memory region callbacks 249 */ 250 struct MemoryRegionOps { 251 /* Read from the memory region. @addr is relative to @mr; @size is 252 * in bytes. */ 253 uint64_t (*read)(void *opaque, 254 hwaddr addr, 255 unsigned size); 256 /* Write to the memory region. @addr is relative to @mr; @size is 257 * in bytes. */ 258 void (*write)(void *opaque, 259 hwaddr addr, 260 uint64_t data, 261 unsigned size); 262 263 MemTxResult (*read_with_attrs)(void *opaque, 264 hwaddr addr, 265 uint64_t *data, 266 unsigned size, 267 MemTxAttrs attrs); 268 MemTxResult (*write_with_attrs)(void *opaque, 269 hwaddr addr, 270 uint64_t data, 271 unsigned size, 272 MemTxAttrs attrs); 273 274 enum device_endian endianness; 275 /* Guest-visible constraints: */ 276 struct { 277 /* If nonzero, specify bounds on access sizes beyond which a machine 278 * check is thrown. 279 */ 280 unsigned min_access_size; 281 unsigned max_access_size; 282 /* If true, unaligned accesses are supported. Otherwise unaligned 283 * accesses throw machine checks. 284 */ 285 bool unaligned; 286 /* 287 * If present, and returns #false, the transaction is not accepted 288 * by the device (and results in machine dependent behaviour such 289 * as a machine check exception). 290 */ 291 bool (*accepts)(void *opaque, hwaddr addr, 292 unsigned size, bool is_write, 293 MemTxAttrs attrs); 294 } valid; 295 /* Internal implementation constraints: */ 296 struct { 297 /* If nonzero, specifies the minimum size implemented. Smaller sizes 298 * will be rounded upwards and a partial result will be returned. 299 */ 300 unsigned min_access_size; 301 /* If nonzero, specifies the maximum size implemented. Larger sizes 302 * will be done as a series of accesses with smaller sizes. 303 */ 304 unsigned max_access_size; 305 /* If true, unaligned accesses are supported. Otherwise all accesses 306 * are converted to (possibly multiple) naturally aligned accesses. 307 */ 308 bool unaligned; 309 } impl; 310 }; 311 312 typedef struct MemoryRegionClass { 313 /* private */ 314 ObjectClass parent_class; 315 } MemoryRegionClass; 316 317 318 enum IOMMUMemoryRegionAttr { 319 IOMMU_ATTR_SPAPR_TCE_FD 320 }; 321 322 /* 323 * IOMMUMemoryRegionClass: 324 * 325 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION 326 * and provide an implementation of at least the @translate method here 327 * to handle requests to the memory region. Other methods are optional. 328 * 329 * The IOMMU implementation must use the IOMMU notifier infrastructure 330 * to report whenever mappings are changed, by calling 331 * memory_region_notify_iommu() (or, if necessary, by calling 332 * memory_region_notify_iommu_one() for each registered notifier). 333 * 334 * Conceptually an IOMMU provides a mapping from input address 335 * to an output TLB entry. If the IOMMU is aware of memory transaction 336 * attributes and the output TLB entry depends on the transaction 337 * attributes, we represent this using IOMMU indexes. Each index 338 * selects a particular translation table that the IOMMU has: 339 * 340 * @attrs_to_index returns the IOMMU index for a set of transaction attributes 341 * 342 * @translate takes an input address and an IOMMU index 343 * 344 * and the mapping returned can only depend on the input address and the 345 * IOMMU index. 346 * 347 * Most IOMMUs don't care about the transaction attributes and support 348 * only a single IOMMU index. A more complex IOMMU might have one index 349 * for secure transactions and one for non-secure transactions. 350 */ 351 struct IOMMUMemoryRegionClass { 352 /* private: */ 353 MemoryRegionClass parent_class; 354 355 /* public: */ 356 /** 357 * @translate: 358 * 359 * Return a TLB entry that contains a given address. 360 * 361 * The IOMMUAccessFlags indicated via @flag are optional and may 362 * be specified as IOMMU_NONE to indicate that the caller needs 363 * the full translation information for both reads and writes. If 364 * the access flags are specified then the IOMMU implementation 365 * may use this as an optimization, to stop doing a page table 366 * walk as soon as it knows that the requested permissions are not 367 * allowed. If IOMMU_NONE is passed then the IOMMU must do the 368 * full page table walk and report the permissions in the returned 369 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not 370 * return different mappings for reads and writes.) 371 * 372 * The returned information remains valid while the caller is 373 * holding the big QEMU lock or is inside an RCU critical section; 374 * if the caller wishes to cache the mapping beyond that it must 375 * register an IOMMU notifier so it can invalidate its cached 376 * information when the IOMMU mapping changes. 377 * 378 * @iommu: the IOMMUMemoryRegion 379 * 380 * @hwaddr: address to be translated within the memory region 381 * 382 * @flag: requested access permission 383 * 384 * @iommu_idx: IOMMU index for the translation 385 */ 386 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr, 387 IOMMUAccessFlags flag, int iommu_idx); 388 /** 389 * @get_min_page_size: 390 * 391 * Returns minimum supported page size in bytes. 392 * 393 * If this method is not provided then the minimum is assumed to 394 * be TARGET_PAGE_SIZE. 395 * 396 * @iommu: the IOMMUMemoryRegion 397 */ 398 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu); 399 /** 400 * @notify_flag_changed: 401 * 402 * Called when IOMMU Notifier flag changes (ie when the set of 403 * events which IOMMU users are requesting notification for changes). 404 * Optional method -- need not be provided if the IOMMU does not 405 * need to know exactly which events must be notified. 406 * 407 * @iommu: the IOMMUMemoryRegion 408 * 409 * @old_flags: events which previously needed to be notified 410 * 411 * @new_flags: events which now need to be notified 412 * 413 * Returns 0 on success, or a negative errno; in particular 414 * returns -EINVAL if the new flag bitmap is not supported by the 415 * IOMMU memory region. In case of failure, the error object 416 * must be created 417 */ 418 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu, 419 IOMMUNotifierFlag old_flags, 420 IOMMUNotifierFlag new_flags, 421 Error **errp); 422 /** 423 * @replay: 424 * 425 * Called to handle memory_region_iommu_replay(). 426 * 427 * The default implementation of memory_region_iommu_replay() is to 428 * call the IOMMU translate method for every page in the address space 429 * with flag == IOMMU_NONE and then call the notifier if translate 430 * returns a valid mapping. If this method is implemented then it 431 * overrides the default behaviour, and must provide the full semantics 432 * of memory_region_iommu_replay(), by calling @notifier for every 433 * translation present in the IOMMU. 434 * 435 * Optional method -- an IOMMU only needs to provide this method 436 * if the default is inefficient or produces undesirable side effects. 437 * 438 * Note: this is not related to record-and-replay functionality. 439 */ 440 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier); 441 442 /** 443 * @get_attr: 444 * 445 * Get IOMMU misc attributes. This is an optional method that 446 * can be used to allow users of the IOMMU to get implementation-specific 447 * information. The IOMMU implements this method to handle calls 448 * by IOMMU users to memory_region_iommu_get_attr() by filling in 449 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that 450 * the IOMMU supports. If the method is unimplemented then 451 * memory_region_iommu_get_attr() will always return -EINVAL. 452 * 453 * @iommu: the IOMMUMemoryRegion 454 * 455 * @attr: attribute being queried 456 * 457 * @data: memory to fill in with the attribute data 458 * 459 * Returns 0 on success, or a negative errno; in particular 460 * returns -EINVAL for unrecognized or unimplemented attribute types. 461 */ 462 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr, 463 void *data); 464 465 /** 466 * @attrs_to_index: 467 * 468 * Return the IOMMU index to use for a given set of transaction attributes. 469 * 470 * Optional method: if an IOMMU only supports a single IOMMU index then 471 * the default implementation of memory_region_iommu_attrs_to_index() 472 * will return 0. 473 * 474 * The indexes supported by an IOMMU must be contiguous, starting at 0. 475 * 476 * @iommu: the IOMMUMemoryRegion 477 * @attrs: memory transaction attributes 478 */ 479 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs); 480 481 /** 482 * @num_indexes: 483 * 484 * Return the number of IOMMU indexes this IOMMU supports. 485 * 486 * Optional method: if this method is not provided, then 487 * memory_region_iommu_num_indexes() will return 1, indicating that 488 * only a single IOMMU index is supported. 489 * 490 * @iommu: the IOMMUMemoryRegion 491 */ 492 int (*num_indexes)(IOMMUMemoryRegion *iommu); 493 494 /** 495 * @iommu_set_page_size_mask: 496 * 497 * Restrict the page size mask that can be supported with a given IOMMU 498 * memory region. Used for example to propagate host physical IOMMU page 499 * size mask limitations to the virtual IOMMU. 500 * 501 * Optional method: if this method is not provided, then the default global 502 * page mask is used. 503 * 504 * @iommu: the IOMMUMemoryRegion 505 * 506 * @page_size_mask: a bitmask of supported page sizes. At least one bit, 507 * representing the smallest page size, must be set. Additional set bits 508 * represent supported block sizes. For example a host physical IOMMU that 509 * uses page tables with a page size of 4kB, and supports 2MB and 4GB 510 * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate 511 * block sizes is specified with mask 0xfffffffffffff000. 512 * 513 * Returns 0 on success, or a negative error. In case of failure, the error 514 * object must be created. 515 */ 516 int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu, 517 uint64_t page_size_mask, 518 Error **errp); 519 }; 520 521 typedef struct RamDiscardListener RamDiscardListener; 522 typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl, 523 MemoryRegionSection *section); 524 typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl, 525 MemoryRegionSection *section); 526 527 struct RamDiscardListener { 528 /* 529 * @notify_populate: 530 * 531 * Notification that previously discarded memory is about to get populated. 532 * Listeners are able to object. If any listener objects, already 533 * successfully notified listeners are notified about a discard again. 534 * 535 * @rdl: the #RamDiscardListener getting notified 536 * @section: the #MemoryRegionSection to get populated. The section 537 * is aligned within the memory region to the minimum granularity 538 * unless it would exceed the registered section. 539 * 540 * Returns 0 on success. If the notification is rejected by the listener, 541 * an error is returned. 542 */ 543 NotifyRamPopulate notify_populate; 544 545 /* 546 * @notify_discard: 547 * 548 * Notification that previously populated memory was discarded successfully 549 * and listeners should drop all references to such memory and prevent 550 * new population (e.g., unmap). 551 * 552 * @rdl: the #RamDiscardListener getting notified 553 * @section: the #MemoryRegionSection to get populated. The section 554 * is aligned within the memory region to the minimum granularity 555 * unless it would exceed the registered section. 556 */ 557 NotifyRamDiscard notify_discard; 558 559 /* 560 * @double_discard_supported: 561 * 562 * The listener suppors getting @notify_discard notifications that span 563 * already discarded parts. 564 */ 565 bool double_discard_supported; 566 567 MemoryRegionSection *section; 568 QLIST_ENTRY(RamDiscardListener) next; 569 }; 570 571 static inline void ram_discard_listener_init(RamDiscardListener *rdl, 572 NotifyRamPopulate populate_fn, 573 NotifyRamDiscard discard_fn, 574 bool double_discard_supported) 575 { 576 rdl->notify_populate = populate_fn; 577 rdl->notify_discard = discard_fn; 578 rdl->double_discard_supported = double_discard_supported; 579 } 580 581 typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque); 582 typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque); 583 584 /* 585 * RamDiscardManagerClass: 586 * 587 * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion 588 * regions are currently populated to be used/accessed by the VM, notifying 589 * after parts were discarded (freeing up memory) and before parts will be 590 * populated (consuming memory), to be used/accessed by the VM. 591 * 592 * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the 593 * #MemoryRegion isn't mapped yet; it cannot change while the #MemoryRegion is 594 * mapped. 595 * 596 * The #RamDiscardManager is intended to be used by technologies that are 597 * incompatible with discarding of RAM (e.g., VFIO, which may pin all 598 * memory inside a #MemoryRegion), and require proper coordination to only 599 * map the currently populated parts, to hinder parts that are expected to 600 * remain discarded from silently getting populated and consuming memory. 601 * Technologies that support discarding of RAM don't have to bother and can 602 * simply map the whole #MemoryRegion. 603 * 604 * An example #RamDiscardManager is virtio-mem, which logically (un)plugs 605 * memory within an assigned RAM #MemoryRegion, coordinated with the VM. 606 * Logically unplugging memory consists of discarding RAM. The VM agreed to not 607 * access unplugged (discarded) memory - especially via DMA. virtio-mem will 608 * properly coordinate with listeners before memory is plugged (populated), 609 * and after memory is unplugged (discarded). 610 * 611 * Listeners are called in multiples of the minimum granularity (unless it 612 * would exceed the registered range) and changes are aligned to the minimum 613 * granularity within the #MemoryRegion. Listeners have to prepare for memory 614 * becoming discarded in a different granularity than it was populated and the 615 * other way around. 616 */ 617 struct RamDiscardManagerClass { 618 /* private */ 619 InterfaceClass parent_class; 620 621 /* public */ 622 623 /** 624 * @get_min_granularity: 625 * 626 * Get the minimum granularity in which listeners will get notified 627 * about changes within the #MemoryRegion via the #RamDiscardManager. 628 * 629 * @rdm: the #RamDiscardManager 630 * @mr: the #MemoryRegion 631 * 632 * Returns the minimum granularity. 633 */ 634 uint64_t (*get_min_granularity)(const RamDiscardManager *rdm, 635 const MemoryRegion *mr); 636 637 /** 638 * @is_populated: 639 * 640 * Check whether the given #MemoryRegionSection is completely populated 641 * (i.e., no parts are currently discarded) via the #RamDiscardManager. 642 * There are no alignment requirements. 643 * 644 * @rdm: the #RamDiscardManager 645 * @section: the #MemoryRegionSection 646 * 647 * Returns whether the given range is completely populated. 648 */ 649 bool (*is_populated)(const RamDiscardManager *rdm, 650 const MemoryRegionSection *section); 651 652 /** 653 * @replay_populated: 654 * 655 * Call the #ReplayRamPopulate callback for all populated parts within the 656 * #MemoryRegionSection via the #RamDiscardManager. 657 * 658 * In case any call fails, no further calls are made. 659 * 660 * @rdm: the #RamDiscardManager 661 * @section: the #MemoryRegionSection 662 * @replay_fn: the #ReplayRamPopulate callback 663 * @opaque: pointer to forward to the callback 664 * 665 * Returns 0 on success, or a negative error if any notification failed. 666 */ 667 int (*replay_populated)(const RamDiscardManager *rdm, 668 MemoryRegionSection *section, 669 ReplayRamPopulate replay_fn, void *opaque); 670 671 /** 672 * @replay_discarded: 673 * 674 * Call the #ReplayRamDiscard callback for all discarded parts within the 675 * #MemoryRegionSection via the #RamDiscardManager. 676 * 677 * @rdm: the #RamDiscardManager 678 * @section: the #MemoryRegionSection 679 * @replay_fn: the #ReplayRamDiscard callback 680 * @opaque: pointer to forward to the callback 681 */ 682 void (*replay_discarded)(const RamDiscardManager *rdm, 683 MemoryRegionSection *section, 684 ReplayRamDiscard replay_fn, void *opaque); 685 686 /** 687 * @register_listener: 688 * 689 * Register a #RamDiscardListener for the given #MemoryRegionSection and 690 * immediately notify the #RamDiscardListener about all populated parts 691 * within the #MemoryRegionSection via the #RamDiscardManager. 692 * 693 * In case any notification fails, no further notifications are triggered 694 * and an error is logged. 695 * 696 * @rdm: the #RamDiscardManager 697 * @rdl: the #RamDiscardListener 698 * @section: the #MemoryRegionSection 699 */ 700 void (*register_listener)(RamDiscardManager *rdm, 701 RamDiscardListener *rdl, 702 MemoryRegionSection *section); 703 704 /** 705 * @unregister_listener: 706 * 707 * Unregister a previously registered #RamDiscardListener via the 708 * #RamDiscardManager after notifying the #RamDiscardListener about all 709 * populated parts becoming unpopulated within the registered 710 * #MemoryRegionSection. 711 * 712 * @rdm: the #RamDiscardManager 713 * @rdl: the #RamDiscardListener 714 */ 715 void (*unregister_listener)(RamDiscardManager *rdm, 716 RamDiscardListener *rdl); 717 }; 718 719 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm, 720 const MemoryRegion *mr); 721 722 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm, 723 const MemoryRegionSection *section); 724 725 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm, 726 MemoryRegionSection *section, 727 ReplayRamPopulate replay_fn, 728 void *opaque); 729 730 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm, 731 MemoryRegionSection *section, 732 ReplayRamDiscard replay_fn, 733 void *opaque); 734 735 void ram_discard_manager_register_listener(RamDiscardManager *rdm, 736 RamDiscardListener *rdl, 737 MemoryRegionSection *section); 738 739 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm, 740 RamDiscardListener *rdl); 741 742 bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr, 743 ram_addr_t *ram_addr, bool *read_only, 744 bool *mr_has_discard_manager); 745 746 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 747 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 748 749 /** MemoryRegion: 750 * 751 * A struct representing a memory region. 752 */ 753 struct MemoryRegion { 754 Object parent_obj; 755 756 /* private: */ 757 758 /* The following fields should fit in a cache line */ 759 bool romd_mode; 760 bool ram; 761 bool subpage; 762 bool readonly; /* For RAM regions */ 763 bool nonvolatile; 764 bool rom_device; 765 bool flush_coalesced_mmio; 766 uint8_t dirty_log_mask; 767 bool is_iommu; 768 RAMBlock *ram_block; 769 Object *owner; 770 /* owner as TYPE_DEVICE. Used for re-entrancy checks in MR access hotpath */ 771 DeviceState *dev; 772 773 const MemoryRegionOps *ops; 774 void *opaque; 775 MemoryRegion *container; 776 int mapped_via_alias; /* Mapped via an alias, container might be NULL */ 777 Int128 size; 778 hwaddr addr; 779 void (*destructor)(MemoryRegion *mr); 780 uint64_t align; 781 bool terminates; 782 bool ram_device; 783 bool enabled; 784 bool warning_printed; /* For reservations */ 785 uint8_t vga_logging_count; 786 MemoryRegion *alias; 787 hwaddr alias_offset; 788 int32_t priority; 789 QTAILQ_HEAD(, MemoryRegion) subregions; 790 QTAILQ_ENTRY(MemoryRegion) subregions_link; 791 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced; 792 const char *name; 793 unsigned ioeventfd_nb; 794 MemoryRegionIoeventfd *ioeventfds; 795 RamDiscardManager *rdm; /* Only for RAM */ 796 797 /* For devices designed to perform re-entrant IO into their own IO MRs */ 798 bool disable_reentrancy_guard; 799 }; 800 801 struct IOMMUMemoryRegion { 802 MemoryRegion parent_obj; 803 804 QLIST_HEAD(, IOMMUNotifier) iommu_notify; 805 IOMMUNotifierFlag iommu_notify_flags; 806 }; 807 808 #define IOMMU_NOTIFIER_FOREACH(n, mr) \ 809 QLIST_FOREACH((n), &(mr)->iommu_notify, node) 810 811 /** 812 * struct MemoryListener: callbacks structure for updates to the physical memory map 813 * 814 * Allows a component to adjust to changes in the guest-visible memory map. 815 * Use with memory_listener_register() and memory_listener_unregister(). 816 */ 817 struct MemoryListener { 818 /** 819 * @begin: 820 * 821 * Called at the beginning of an address space update transaction. 822 * Followed by calls to #MemoryListener.region_add(), 823 * #MemoryListener.region_del(), #MemoryListener.region_nop(), 824 * #MemoryListener.log_start() and #MemoryListener.log_stop() in 825 * increasing address order. 826 * 827 * @listener: The #MemoryListener. 828 */ 829 void (*begin)(MemoryListener *listener); 830 831 /** 832 * @commit: 833 * 834 * Called at the end of an address space update transaction, 835 * after the last call to #MemoryListener.region_add(), 836 * #MemoryListener.region_del() or #MemoryListener.region_nop(), 837 * #MemoryListener.log_start() and #MemoryListener.log_stop(). 838 * 839 * @listener: The #MemoryListener. 840 */ 841 void (*commit)(MemoryListener *listener); 842 843 /** 844 * @region_add: 845 * 846 * Called during an address space update transaction, 847 * for a section of the address space that is new in this address space 848 * space since the last transaction. 849 * 850 * @listener: The #MemoryListener. 851 * @section: The new #MemoryRegionSection. 852 */ 853 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 854 855 /** 856 * @region_del: 857 * 858 * Called during an address space update transaction, 859 * for a section of the address space that has disappeared in the address 860 * space since the last transaction. 861 * 862 * @listener: The #MemoryListener. 863 * @section: The old #MemoryRegionSection. 864 */ 865 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 866 867 /** 868 * @region_nop: 869 * 870 * Called during an address space update transaction, 871 * for a section of the address space that is in the same place in the address 872 * space as in the last transaction. 873 * 874 * @listener: The #MemoryListener. 875 * @section: The #MemoryRegionSection. 876 */ 877 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 878 879 /** 880 * @log_start: 881 * 882 * Called during an address space update transaction, after 883 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or 884 * #MemoryListener.region_nop(), if dirty memory logging clients have 885 * become active since the last transaction. 886 * 887 * @listener: The #MemoryListener. 888 * @section: The #MemoryRegionSection. 889 * @old: A bitmap of dirty memory logging clients that were active in 890 * the previous transaction. 891 * @new: A bitmap of dirty memory logging clients that are active in 892 * the current transaction. 893 */ 894 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 895 int old, int new); 896 897 /** 898 * @log_stop: 899 * 900 * Called during an address space update transaction, after 901 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or 902 * #MemoryListener.region_nop() and possibly after 903 * #MemoryListener.log_start(), if dirty memory logging clients have 904 * become inactive since the last transaction. 905 * 906 * @listener: The #MemoryListener. 907 * @section: The #MemoryRegionSection. 908 * @old: A bitmap of dirty memory logging clients that were active in 909 * the previous transaction. 910 * @new: A bitmap of dirty memory logging clients that are active in 911 * the current transaction. 912 */ 913 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 914 int old, int new); 915 916 /** 917 * @log_sync: 918 * 919 * Called by memory_region_snapshot_and_clear_dirty() and 920 * memory_global_dirty_log_sync(), before accessing QEMU's "official" 921 * copy of the dirty memory bitmap for a #MemoryRegionSection. 922 * 923 * @listener: The #MemoryListener. 924 * @section: The #MemoryRegionSection. 925 */ 926 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 927 928 /** 929 * @log_sync_global: 930 * 931 * This is the global version of @log_sync when the listener does 932 * not have a way to synchronize the log with finer granularity. 933 * When the listener registers with @log_sync_global defined, then 934 * its @log_sync must be NULL. Vice versa. 935 * 936 * @listener: The #MemoryListener. 937 * @last_stage: The last stage to synchronize the log during migration. 938 * The caller should gurantee that the synchronization with true for 939 * @last_stage is triggered for once after all VCPUs have been stopped. 940 */ 941 void (*log_sync_global)(MemoryListener *listener, bool last_stage); 942 943 /** 944 * @log_clear: 945 * 946 * Called before reading the dirty memory bitmap for a 947 * #MemoryRegionSection. 948 * 949 * @listener: The #MemoryListener. 950 * @section: The #MemoryRegionSection. 951 */ 952 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section); 953 954 /** 955 * @log_global_start: 956 * 957 * Called by memory_global_dirty_log_start(), which 958 * enables the %DIRTY_LOG_MIGRATION client on all memory regions in 959 * the address space. #MemoryListener.log_global_start() is also 960 * called when a #MemoryListener is added, if global dirty logging is 961 * active at that time. 962 * 963 * @listener: The #MemoryListener. 964 */ 965 void (*log_global_start)(MemoryListener *listener); 966 967 /** 968 * @log_global_stop: 969 * 970 * Called by memory_global_dirty_log_stop(), which 971 * disables the %DIRTY_LOG_MIGRATION client on all memory regions in 972 * the address space. 973 * 974 * @listener: The #MemoryListener. 975 */ 976 void (*log_global_stop)(MemoryListener *listener); 977 978 /** 979 * @log_global_after_sync: 980 * 981 * Called after reading the dirty memory bitmap 982 * for any #MemoryRegionSection. 983 * 984 * @listener: The #MemoryListener. 985 */ 986 void (*log_global_after_sync)(MemoryListener *listener); 987 988 /** 989 * @eventfd_add: 990 * 991 * Called during an address space update transaction, 992 * for a section of the address space that has had a new ioeventfd 993 * registration since the last transaction. 994 * 995 * @listener: The #MemoryListener. 996 * @section: The new #MemoryRegionSection. 997 * @match_data: The @match_data parameter for the new ioeventfd. 998 * @data: The @data parameter for the new ioeventfd. 999 * @e: The #EventNotifier parameter for the new ioeventfd. 1000 */ 1001 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 1002 bool match_data, uint64_t data, EventNotifier *e); 1003 1004 /** 1005 * @eventfd_del: 1006 * 1007 * Called during an address space update transaction, 1008 * for a section of the address space that has dropped an ioeventfd 1009 * registration since the last transaction. 1010 * 1011 * @listener: The #MemoryListener. 1012 * @section: The new #MemoryRegionSection. 1013 * @match_data: The @match_data parameter for the dropped ioeventfd. 1014 * @data: The @data parameter for the dropped ioeventfd. 1015 * @e: The #EventNotifier parameter for the dropped ioeventfd. 1016 */ 1017 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 1018 bool match_data, uint64_t data, EventNotifier *e); 1019 1020 /** 1021 * @coalesced_io_add: 1022 * 1023 * Called during an address space update transaction, 1024 * for a section of the address space that has had a new coalesced 1025 * MMIO range registration since the last transaction. 1026 * 1027 * @listener: The #MemoryListener. 1028 * @section: The new #MemoryRegionSection. 1029 * @addr: The starting address for the coalesced MMIO range. 1030 * @len: The length of the coalesced MMIO range. 1031 */ 1032 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section, 1033 hwaddr addr, hwaddr len); 1034 1035 /** 1036 * @coalesced_io_del: 1037 * 1038 * Called during an address space update transaction, 1039 * for a section of the address space that has dropped a coalesced 1040 * MMIO range since the last transaction. 1041 * 1042 * @listener: The #MemoryListener. 1043 * @section: The new #MemoryRegionSection. 1044 * @addr: The starting address for the coalesced MMIO range. 1045 * @len: The length of the coalesced MMIO range. 1046 */ 1047 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section, 1048 hwaddr addr, hwaddr len); 1049 /** 1050 * @priority: 1051 * 1052 * Govern the order in which memory listeners are invoked. Lower priorities 1053 * are invoked earlier for "add" or "start" callbacks, and later for "delete" 1054 * or "stop" callbacks. 1055 */ 1056 unsigned priority; 1057 1058 /** 1059 * @name: 1060 * 1061 * Name of the listener. It can be used in contexts where we'd like to 1062 * identify one memory listener with the rest. 1063 */ 1064 const char *name; 1065 1066 /* private: */ 1067 AddressSpace *address_space; 1068 QTAILQ_ENTRY(MemoryListener) link; 1069 QTAILQ_ENTRY(MemoryListener) link_as; 1070 }; 1071 1072 /** 1073 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects 1074 */ 1075 struct AddressSpace { 1076 /* private: */ 1077 struct rcu_head rcu; 1078 char *name; 1079 MemoryRegion *root; 1080 1081 /* Accessed via RCU. */ 1082 struct FlatView *current_map; 1083 1084 int ioeventfd_nb; 1085 struct MemoryRegionIoeventfd *ioeventfds; 1086 QTAILQ_HEAD(, MemoryListener) listeners; 1087 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 1088 }; 1089 1090 typedef struct AddressSpaceDispatch AddressSpaceDispatch; 1091 typedef struct FlatRange FlatRange; 1092 1093 /* Flattened global view of current active memory hierarchy. Kept in sorted 1094 * order. 1095 */ 1096 struct FlatView { 1097 struct rcu_head rcu; 1098 unsigned ref; 1099 FlatRange *ranges; 1100 unsigned nr; 1101 unsigned nr_allocated; 1102 struct AddressSpaceDispatch *dispatch; 1103 MemoryRegion *root; 1104 }; 1105 1106 static inline FlatView *address_space_to_flatview(AddressSpace *as) 1107 { 1108 return qatomic_rcu_read(&as->current_map); 1109 } 1110 1111 /** 1112 * typedef flatview_cb: callback for flatview_for_each_range() 1113 * 1114 * @start: start address of the range within the FlatView 1115 * @len: length of the range in bytes 1116 * @mr: MemoryRegion covering this range 1117 * @offset_in_region: offset of the first byte of the range within @mr 1118 * @opaque: data pointer passed to flatview_for_each_range() 1119 * 1120 * Returns: true to stop the iteration, false to keep going. 1121 */ 1122 typedef bool (*flatview_cb)(Int128 start, 1123 Int128 len, 1124 const MemoryRegion *mr, 1125 hwaddr offset_in_region, 1126 void *opaque); 1127 1128 /** 1129 * flatview_for_each_range: Iterate through a FlatView 1130 * @fv: the FlatView to iterate through 1131 * @cb: function to call for each range 1132 * @opaque: opaque data pointer to pass to @cb 1133 * 1134 * A FlatView is made up of a list of non-overlapping ranges, each of 1135 * which is a slice of a MemoryRegion. This function iterates through 1136 * each range in @fv, calling @cb. The callback function can terminate 1137 * iteration early by returning 'true'. 1138 */ 1139 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque); 1140 1141 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a, 1142 MemoryRegionSection *b) 1143 { 1144 return a->mr == b->mr && 1145 a->fv == b->fv && 1146 a->offset_within_region == b->offset_within_region && 1147 a->offset_within_address_space == b->offset_within_address_space && 1148 int128_eq(a->size, b->size) && 1149 a->readonly == b->readonly && 1150 a->nonvolatile == b->nonvolatile; 1151 } 1152 1153 /** 1154 * memory_region_section_new_copy: Copy a memory region section 1155 * 1156 * Allocate memory for a new copy, copy the memory region section, and 1157 * properly take a reference on all relevant members. 1158 * 1159 * @s: the #MemoryRegionSection to copy 1160 */ 1161 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s); 1162 1163 /** 1164 * memory_region_section_new_copy: Free a copied memory region section 1165 * 1166 * Free a copy of a memory section created via memory_region_section_new_copy(). 1167 * properly dropping references on all relevant members. 1168 * 1169 * @s: the #MemoryRegionSection to copy 1170 */ 1171 void memory_region_section_free_copy(MemoryRegionSection *s); 1172 1173 /** 1174 * memory_region_init: Initialize a memory region 1175 * 1176 * The region typically acts as a container for other memory regions. Use 1177 * memory_region_add_subregion() to add subregions. 1178 * 1179 * @mr: the #MemoryRegion to be initialized 1180 * @owner: the object that tracks the region's reference count 1181 * @name: used for debugging; not visible to the user or ABI 1182 * @size: size of the region; any subregions beyond this size will be clipped 1183 */ 1184 void memory_region_init(MemoryRegion *mr, 1185 Object *owner, 1186 const char *name, 1187 uint64_t size); 1188 1189 /** 1190 * memory_region_ref: Add 1 to a memory region's reference count 1191 * 1192 * Whenever memory regions are accessed outside the BQL, they need to be 1193 * preserved against hot-unplug. MemoryRegions actually do not have their 1194 * own reference count; they piggyback on a QOM object, their "owner". 1195 * This function adds a reference to the owner. 1196 * 1197 * All MemoryRegions must have an owner if they can disappear, even if the 1198 * device they belong to operates exclusively under the BQL. This is because 1199 * the region could be returned at any time by memory_region_find, and this 1200 * is usually under guest control. 1201 * 1202 * @mr: the #MemoryRegion 1203 */ 1204 void memory_region_ref(MemoryRegion *mr); 1205 1206 /** 1207 * memory_region_unref: Remove 1 to a memory region's reference count 1208 * 1209 * Whenever memory regions are accessed outside the BQL, they need to be 1210 * preserved against hot-unplug. MemoryRegions actually do not have their 1211 * own reference count; they piggyback on a QOM object, their "owner". 1212 * This function removes a reference to the owner and possibly destroys it. 1213 * 1214 * @mr: the #MemoryRegion 1215 */ 1216 void memory_region_unref(MemoryRegion *mr); 1217 1218 /** 1219 * memory_region_init_io: Initialize an I/O memory region. 1220 * 1221 * Accesses into the region will cause the callbacks in @ops to be called. 1222 * if @size is nonzero, subregions will be clipped to @size. 1223 * 1224 * @mr: the #MemoryRegion to be initialized. 1225 * @owner: the object that tracks the region's reference count 1226 * @ops: a structure containing read and write callbacks to be used when 1227 * I/O is performed on the region. 1228 * @opaque: passed to the read and write callbacks of the @ops structure. 1229 * @name: used for debugging; not visible to the user or ABI 1230 * @size: size of the region. 1231 */ 1232 void memory_region_init_io(MemoryRegion *mr, 1233 Object *owner, 1234 const MemoryRegionOps *ops, 1235 void *opaque, 1236 const char *name, 1237 uint64_t size); 1238 1239 /** 1240 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses 1241 * into the region will modify memory 1242 * directly. 1243 * 1244 * @mr: the #MemoryRegion to be initialized. 1245 * @owner: the object that tracks the region's reference count 1246 * @name: Region name, becomes part of RAMBlock name used in migration stream 1247 * must be unique within any device 1248 * @size: size of the region. 1249 * @errp: pointer to Error*, to store an error if it happens. 1250 * 1251 * Note that this function does not do anything to cause the data in the 1252 * RAM memory region to be migrated; that is the responsibility of the caller. 1253 */ 1254 void memory_region_init_ram_nomigrate(MemoryRegion *mr, 1255 Object *owner, 1256 const char *name, 1257 uint64_t size, 1258 Error **errp); 1259 1260 /** 1261 * memory_region_init_ram_flags_nomigrate: Initialize RAM memory region. 1262 * Accesses into the region will 1263 * modify memory directly. 1264 * 1265 * @mr: the #MemoryRegion to be initialized. 1266 * @owner: the object that tracks the region's reference count 1267 * @name: Region name, becomes part of RAMBlock name used in migration stream 1268 * must be unique within any device 1269 * @size: size of the region. 1270 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE. 1271 * @errp: pointer to Error*, to store an error if it happens. 1272 * 1273 * Note that this function does not do anything to cause the data in the 1274 * RAM memory region to be migrated; that is the responsibility of the caller. 1275 */ 1276 void memory_region_init_ram_flags_nomigrate(MemoryRegion *mr, 1277 Object *owner, 1278 const char *name, 1279 uint64_t size, 1280 uint32_t ram_flags, 1281 Error **errp); 1282 1283 /** 1284 * memory_region_init_resizeable_ram: Initialize memory region with resizable 1285 * RAM. Accesses into the region will 1286 * modify memory directly. Only an initial 1287 * portion of this RAM is actually used. 1288 * Changing the size while migrating 1289 * can result in the migration being 1290 * canceled. 1291 * 1292 * @mr: the #MemoryRegion to be initialized. 1293 * @owner: the object that tracks the region's reference count 1294 * @name: Region name, becomes part of RAMBlock name used in migration stream 1295 * must be unique within any device 1296 * @size: used size of the region. 1297 * @max_size: max size of the region. 1298 * @resized: callback to notify owner about used size change. 1299 * @errp: pointer to Error*, to store an error if it happens. 1300 * 1301 * Note that this function does not do anything to cause the data in the 1302 * RAM memory region to be migrated; that is the responsibility of the caller. 1303 */ 1304 void memory_region_init_resizeable_ram(MemoryRegion *mr, 1305 Object *owner, 1306 const char *name, 1307 uint64_t size, 1308 uint64_t max_size, 1309 void (*resized)(const char*, 1310 uint64_t length, 1311 void *host), 1312 Error **errp); 1313 #ifdef CONFIG_POSIX 1314 1315 /** 1316 * memory_region_init_ram_from_file: Initialize RAM memory region with a 1317 * mmap-ed backend. 1318 * 1319 * @mr: the #MemoryRegion to be initialized. 1320 * @owner: the object that tracks the region's reference count 1321 * @name: Region name, becomes part of RAMBlock name used in migration stream 1322 * must be unique within any device 1323 * @size: size of the region. 1324 * @align: alignment of the region base address; if 0, the default alignment 1325 * (getpagesize()) will be used. 1326 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM, 1327 * RAM_NORESERVE, 1328 * @path: the path in which to allocate the RAM. 1329 * @offset: offset within the file referenced by path 1330 * @readonly: true to open @path for reading, false for read/write. 1331 * @errp: pointer to Error*, to store an error if it happens. 1332 * 1333 * Note that this function does not do anything to cause the data in the 1334 * RAM memory region to be migrated; that is the responsibility of the caller. 1335 */ 1336 void memory_region_init_ram_from_file(MemoryRegion *mr, 1337 Object *owner, 1338 const char *name, 1339 uint64_t size, 1340 uint64_t align, 1341 uint32_t ram_flags, 1342 const char *path, 1343 ram_addr_t offset, 1344 bool readonly, 1345 Error **errp); 1346 1347 /** 1348 * memory_region_init_ram_from_fd: Initialize RAM memory region with a 1349 * mmap-ed backend. 1350 * 1351 * @mr: the #MemoryRegion to be initialized. 1352 * @owner: the object that tracks the region's reference count 1353 * @name: the name of the region. 1354 * @size: size of the region. 1355 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM, 1356 * RAM_NORESERVE, RAM_PROTECTED. 1357 * @fd: the fd to mmap. 1358 * @offset: offset within the file referenced by fd 1359 * @errp: pointer to Error*, to store an error if it happens. 1360 * 1361 * Note that this function does not do anything to cause the data in the 1362 * RAM memory region to be migrated; that is the responsibility of the caller. 1363 */ 1364 void memory_region_init_ram_from_fd(MemoryRegion *mr, 1365 Object *owner, 1366 const char *name, 1367 uint64_t size, 1368 uint32_t ram_flags, 1369 int fd, 1370 ram_addr_t offset, 1371 Error **errp); 1372 #endif 1373 1374 /** 1375 * memory_region_init_ram_ptr: Initialize RAM memory region from a 1376 * user-provided pointer. Accesses into the 1377 * region will modify memory directly. 1378 * 1379 * @mr: the #MemoryRegion to be initialized. 1380 * @owner: the object that tracks the region's reference count 1381 * @name: Region name, becomes part of RAMBlock name used in migration stream 1382 * must be unique within any device 1383 * @size: size of the region. 1384 * @ptr: memory to be mapped; must contain at least @size bytes. 1385 * 1386 * Note that this function does not do anything to cause the data in the 1387 * RAM memory region to be migrated; that is the responsibility of the caller. 1388 */ 1389 void memory_region_init_ram_ptr(MemoryRegion *mr, 1390 Object *owner, 1391 const char *name, 1392 uint64_t size, 1393 void *ptr); 1394 1395 /** 1396 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from 1397 * a user-provided pointer. 1398 * 1399 * A RAM device represents a mapping to a physical device, such as to a PCI 1400 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped 1401 * into the VM address space and access to the region will modify memory 1402 * directly. However, the memory region should not be included in a memory 1403 * dump (device may not be enabled/mapped at the time of the dump), and 1404 * operations incompatible with manipulating MMIO should be avoided. Replaces 1405 * skip_dump flag. 1406 * 1407 * @mr: the #MemoryRegion to be initialized. 1408 * @owner: the object that tracks the region's reference count 1409 * @name: the name of the region. 1410 * @size: size of the region. 1411 * @ptr: memory to be mapped; must contain at least @size bytes. 1412 * 1413 * Note that this function does not do anything to cause the data in the 1414 * RAM memory region to be migrated; that is the responsibility of the caller. 1415 * (For RAM device memory regions, migrating the contents rarely makes sense.) 1416 */ 1417 void memory_region_init_ram_device_ptr(MemoryRegion *mr, 1418 Object *owner, 1419 const char *name, 1420 uint64_t size, 1421 void *ptr); 1422 1423 /** 1424 * memory_region_init_alias: Initialize a memory region that aliases all or a 1425 * part of another memory region. 1426 * 1427 * @mr: the #MemoryRegion to be initialized. 1428 * @owner: the object that tracks the region's reference count 1429 * @name: used for debugging; not visible to the user or ABI 1430 * @orig: the region to be referenced; @mr will be equivalent to 1431 * @orig between @offset and @offset + @size - 1. 1432 * @offset: start of the section in @orig to be referenced. 1433 * @size: size of the region. 1434 */ 1435 void memory_region_init_alias(MemoryRegion *mr, 1436 Object *owner, 1437 const char *name, 1438 MemoryRegion *orig, 1439 hwaddr offset, 1440 uint64_t size); 1441 1442 /** 1443 * memory_region_init_rom_nomigrate: Initialize a ROM memory region. 1444 * 1445 * This has the same effect as calling memory_region_init_ram_nomigrate() 1446 * and then marking the resulting region read-only with 1447 * memory_region_set_readonly(). 1448 * 1449 * Note that this function does not do anything to cause the data in the 1450 * RAM side of the memory region to be migrated; that is the responsibility 1451 * of the caller. 1452 * 1453 * @mr: the #MemoryRegion to be initialized. 1454 * @owner: the object that tracks the region's reference count 1455 * @name: Region name, becomes part of RAMBlock name used in migration stream 1456 * must be unique within any device 1457 * @size: size of the region. 1458 * @errp: pointer to Error*, to store an error if it happens. 1459 */ 1460 void memory_region_init_rom_nomigrate(MemoryRegion *mr, 1461 Object *owner, 1462 const char *name, 1463 uint64_t size, 1464 Error **errp); 1465 1466 /** 1467 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region. 1468 * Writes are handled via callbacks. 1469 * 1470 * Note that this function does not do anything to cause the data in the 1471 * RAM side of the memory region to be migrated; that is the responsibility 1472 * of the caller. 1473 * 1474 * @mr: the #MemoryRegion to be initialized. 1475 * @owner: the object that tracks the region's reference count 1476 * @ops: callbacks for write access handling (must not be NULL). 1477 * @opaque: passed to the read and write callbacks of the @ops structure. 1478 * @name: Region name, becomes part of RAMBlock name used in migration stream 1479 * must be unique within any device 1480 * @size: size of the region. 1481 * @errp: pointer to Error*, to store an error if it happens. 1482 */ 1483 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr, 1484 Object *owner, 1485 const MemoryRegionOps *ops, 1486 void *opaque, 1487 const char *name, 1488 uint64_t size, 1489 Error **errp); 1490 1491 /** 1492 * memory_region_init_iommu: Initialize a memory region of a custom type 1493 * that translates addresses 1494 * 1495 * An IOMMU region translates addresses and forwards accesses to a target 1496 * memory region. 1497 * 1498 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION. 1499 * @_iommu_mr should be a pointer to enough memory for an instance of 1500 * that subclass, @instance_size is the size of that subclass, and 1501 * @mrtypename is its name. This function will initialize @_iommu_mr as an 1502 * instance of the subclass, and its methods will then be called to handle 1503 * accesses to the memory region. See the documentation of 1504 * #IOMMUMemoryRegionClass for further details. 1505 * 1506 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized 1507 * @instance_size: the IOMMUMemoryRegion subclass instance size 1508 * @mrtypename: the type name of the #IOMMUMemoryRegion 1509 * @owner: the object that tracks the region's reference count 1510 * @name: used for debugging; not visible to the user or ABI 1511 * @size: size of the region. 1512 */ 1513 void memory_region_init_iommu(void *_iommu_mr, 1514 size_t instance_size, 1515 const char *mrtypename, 1516 Object *owner, 1517 const char *name, 1518 uint64_t size); 1519 1520 /** 1521 * memory_region_init_ram - Initialize RAM memory region. Accesses into the 1522 * region will modify memory directly. 1523 * 1524 * @mr: the #MemoryRegion to be initialized 1525 * @owner: the object that tracks the region's reference count (must be 1526 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL) 1527 * @name: name of the memory region 1528 * @size: size of the region in bytes 1529 * @errp: pointer to Error*, to store an error if it happens. 1530 * 1531 * This function allocates RAM for a board model or device, and 1532 * arranges for it to be migrated (by calling vmstate_register_ram() 1533 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1534 * @owner is NULL). 1535 * 1536 * TODO: Currently we restrict @owner to being either NULL (for 1537 * global RAM regions with no owner) or devices, so that we can 1538 * give the RAM block a unique name for migration purposes. 1539 * We should lift this restriction and allow arbitrary Objects. 1540 * If you pass a non-NULL non-device @owner then we will assert. 1541 */ 1542 void memory_region_init_ram(MemoryRegion *mr, 1543 Object *owner, 1544 const char *name, 1545 uint64_t size, 1546 Error **errp); 1547 1548 /** 1549 * memory_region_init_rom: Initialize a ROM memory region. 1550 * 1551 * This has the same effect as calling memory_region_init_ram() 1552 * and then marking the resulting region read-only with 1553 * memory_region_set_readonly(). This includes arranging for the 1554 * contents to be migrated. 1555 * 1556 * TODO: Currently we restrict @owner to being either NULL (for 1557 * global RAM regions with no owner) or devices, so that we can 1558 * give the RAM block a unique name for migration purposes. 1559 * We should lift this restriction and allow arbitrary Objects. 1560 * If you pass a non-NULL non-device @owner then we will assert. 1561 * 1562 * @mr: the #MemoryRegion to be initialized. 1563 * @owner: the object that tracks the region's reference count 1564 * @name: Region name, becomes part of RAMBlock name used in migration stream 1565 * must be unique within any device 1566 * @size: size of the region. 1567 * @errp: pointer to Error*, to store an error if it happens. 1568 */ 1569 void memory_region_init_rom(MemoryRegion *mr, 1570 Object *owner, 1571 const char *name, 1572 uint64_t size, 1573 Error **errp); 1574 1575 /** 1576 * memory_region_init_rom_device: Initialize a ROM memory region. 1577 * Writes are handled via callbacks. 1578 * 1579 * This function initializes a memory region backed by RAM for reads 1580 * and callbacks for writes, and arranges for the RAM backing to 1581 * be migrated (by calling vmstate_register_ram() 1582 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1583 * @owner is NULL). 1584 * 1585 * TODO: Currently we restrict @owner to being either NULL (for 1586 * global RAM regions with no owner) or devices, so that we can 1587 * give the RAM block a unique name for migration purposes. 1588 * We should lift this restriction and allow arbitrary Objects. 1589 * If you pass a non-NULL non-device @owner then we will assert. 1590 * 1591 * @mr: the #MemoryRegion to be initialized. 1592 * @owner: the object that tracks the region's reference count 1593 * @ops: callbacks for write access handling (must not be NULL). 1594 * @opaque: passed to the read and write callbacks of the @ops structure. 1595 * @name: Region name, becomes part of RAMBlock name used in migration stream 1596 * must be unique within any device 1597 * @size: size of the region. 1598 * @errp: pointer to Error*, to store an error if it happens. 1599 */ 1600 void memory_region_init_rom_device(MemoryRegion *mr, 1601 Object *owner, 1602 const MemoryRegionOps *ops, 1603 void *opaque, 1604 const char *name, 1605 uint64_t size, 1606 Error **errp); 1607 1608 1609 /** 1610 * memory_region_owner: get a memory region's owner. 1611 * 1612 * @mr: the memory region being queried. 1613 */ 1614 Object *memory_region_owner(MemoryRegion *mr); 1615 1616 /** 1617 * memory_region_size: get a memory region's size. 1618 * 1619 * @mr: the memory region being queried. 1620 */ 1621 uint64_t memory_region_size(MemoryRegion *mr); 1622 1623 /** 1624 * memory_region_is_ram: check whether a memory region is random access 1625 * 1626 * Returns %true if a memory region is random access. 1627 * 1628 * @mr: the memory region being queried 1629 */ 1630 static inline bool memory_region_is_ram(MemoryRegion *mr) 1631 { 1632 return mr->ram; 1633 } 1634 1635 /** 1636 * memory_region_is_ram_device: check whether a memory region is a ram device 1637 * 1638 * Returns %true if a memory region is a device backed ram region 1639 * 1640 * @mr: the memory region being queried 1641 */ 1642 bool memory_region_is_ram_device(MemoryRegion *mr); 1643 1644 /** 1645 * memory_region_is_romd: check whether a memory region is in ROMD mode 1646 * 1647 * Returns %true if a memory region is a ROM device and currently set to allow 1648 * direct reads. 1649 * 1650 * @mr: the memory region being queried 1651 */ 1652 static inline bool memory_region_is_romd(MemoryRegion *mr) 1653 { 1654 return mr->rom_device && mr->romd_mode; 1655 } 1656 1657 /** 1658 * memory_region_is_protected: check whether a memory region is protected 1659 * 1660 * Returns %true if a memory region is protected RAM and cannot be accessed 1661 * via standard mechanisms, e.g. DMA. 1662 * 1663 * @mr: the memory region being queried 1664 */ 1665 bool memory_region_is_protected(MemoryRegion *mr); 1666 1667 /** 1668 * memory_region_get_iommu: check whether a memory region is an iommu 1669 * 1670 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu, 1671 * otherwise NULL. 1672 * 1673 * @mr: the memory region being queried 1674 */ 1675 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr) 1676 { 1677 if (mr->alias) { 1678 return memory_region_get_iommu(mr->alias); 1679 } 1680 if (mr->is_iommu) { 1681 return (IOMMUMemoryRegion *) mr; 1682 } 1683 return NULL; 1684 } 1685 1686 /** 1687 * memory_region_get_iommu_class_nocheck: returns iommu memory region class 1688 * if an iommu or NULL if not 1689 * 1690 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu, 1691 * otherwise NULL. This is fast path avoiding QOM checking, use with caution. 1692 * 1693 * @iommu_mr: the memory region being queried 1694 */ 1695 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck( 1696 IOMMUMemoryRegion *iommu_mr) 1697 { 1698 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class); 1699 } 1700 1701 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL) 1702 1703 /** 1704 * memory_region_iommu_get_min_page_size: get minimum supported page size 1705 * for an iommu 1706 * 1707 * Returns minimum supported page size for an iommu. 1708 * 1709 * @iommu_mr: the memory region being queried 1710 */ 1711 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr); 1712 1713 /** 1714 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 1715 * 1716 * Note: for any IOMMU implementation, an in-place mapping change 1717 * should be notified with an UNMAP followed by a MAP. 1718 * 1719 * @iommu_mr: the memory region that was changed 1720 * @iommu_idx: the IOMMU index for the translation table which has changed 1721 * @event: TLB event with the new entry in the IOMMU translation table. 1722 * The entry replaces all old entries for the same virtual I/O address 1723 * range. 1724 */ 1725 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr, 1726 int iommu_idx, 1727 IOMMUTLBEvent event); 1728 1729 /** 1730 * memory_region_notify_iommu_one: notify a change in an IOMMU translation 1731 * entry to a single notifier 1732 * 1733 * This works just like memory_region_notify_iommu(), but it only 1734 * notifies a specific notifier, not all of them. 1735 * 1736 * @notifier: the notifier to be notified 1737 * @event: TLB event with the new entry in the IOMMU translation table. 1738 * The entry replaces all old entries for the same virtual I/O address 1739 * range. 1740 */ 1741 void memory_region_notify_iommu_one(IOMMUNotifier *notifier, 1742 IOMMUTLBEvent *event); 1743 1744 /** 1745 * memory_region_unmap_iommu_notifier_range: notify a unmap for an IOMMU 1746 * translation that covers the 1747 * range of a notifier 1748 * 1749 * @notifier: the notifier to be notified 1750 */ 1751 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier); 1752 1753 1754 /** 1755 * memory_region_register_iommu_notifier: register a notifier for changes to 1756 * IOMMU translation entries. 1757 * 1758 * Returns 0 on success, or a negative errno otherwise. In particular, 1759 * -EINVAL indicates that at least one of the attributes of the notifier 1760 * is not supported (flag/range) by the IOMMU memory region. In case of error 1761 * the error object must be created. 1762 * 1763 * @mr: the memory region to observe 1764 * @n: the IOMMUNotifier to be added; the notify callback receives a 1765 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer 1766 * ceases to be valid on exit from the notifier. 1767 * @errp: pointer to Error*, to store an error if it happens. 1768 */ 1769 int memory_region_register_iommu_notifier(MemoryRegion *mr, 1770 IOMMUNotifier *n, Error **errp); 1771 1772 /** 1773 * memory_region_iommu_replay: replay existing IOMMU translations to 1774 * a notifier with the minimum page granularity returned by 1775 * mr->iommu_ops->get_page_size(). 1776 * 1777 * Note: this is not related to record-and-replay functionality. 1778 * 1779 * @iommu_mr: the memory region to observe 1780 * @n: the notifier to which to replay iommu mappings 1781 */ 1782 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n); 1783 1784 /** 1785 * memory_region_unregister_iommu_notifier: unregister a notifier for 1786 * changes to IOMMU translation entries. 1787 * 1788 * @mr: the memory region which was observed and for which notity_stopped() 1789 * needs to be called 1790 * @n: the notifier to be removed. 1791 */ 1792 void memory_region_unregister_iommu_notifier(MemoryRegion *mr, 1793 IOMMUNotifier *n); 1794 1795 /** 1796 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is 1797 * defined on the IOMMU. 1798 * 1799 * Returns 0 on success, or a negative errno otherwise. In particular, 1800 * -EINVAL indicates that the IOMMU does not support the requested 1801 * attribute. 1802 * 1803 * @iommu_mr: the memory region 1804 * @attr: the requested attribute 1805 * @data: a pointer to the requested attribute data 1806 */ 1807 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr, 1808 enum IOMMUMemoryRegionAttr attr, 1809 void *data); 1810 1811 /** 1812 * memory_region_iommu_attrs_to_index: return the IOMMU index to 1813 * use for translations with the given memory transaction attributes. 1814 * 1815 * @iommu_mr: the memory region 1816 * @attrs: the memory transaction attributes 1817 */ 1818 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr, 1819 MemTxAttrs attrs); 1820 1821 /** 1822 * memory_region_iommu_num_indexes: return the total number of IOMMU 1823 * indexes that this IOMMU supports. 1824 * 1825 * @iommu_mr: the memory region 1826 */ 1827 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr); 1828 1829 /** 1830 * memory_region_iommu_set_page_size_mask: set the supported page 1831 * sizes for a given IOMMU memory region 1832 * 1833 * @iommu_mr: IOMMU memory region 1834 * @page_size_mask: supported page size mask 1835 * @errp: pointer to Error*, to store an error if it happens. 1836 */ 1837 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr, 1838 uint64_t page_size_mask, 1839 Error **errp); 1840 1841 /** 1842 * memory_region_name: get a memory region's name 1843 * 1844 * Returns the string that was used to initialize the memory region. 1845 * 1846 * @mr: the memory region being queried 1847 */ 1848 const char *memory_region_name(const MemoryRegion *mr); 1849 1850 /** 1851 * memory_region_is_logging: return whether a memory region is logging writes 1852 * 1853 * Returns %true if the memory region is logging writes for the given client 1854 * 1855 * @mr: the memory region being queried 1856 * @client: the client being queried 1857 */ 1858 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 1859 1860 /** 1861 * memory_region_get_dirty_log_mask: return the clients for which a 1862 * memory region is logging writes. 1863 * 1864 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 1865 * are the bit indices. 1866 * 1867 * @mr: the memory region being queried 1868 */ 1869 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 1870 1871 /** 1872 * memory_region_is_rom: check whether a memory region is ROM 1873 * 1874 * Returns %true if a memory region is read-only memory. 1875 * 1876 * @mr: the memory region being queried 1877 */ 1878 static inline bool memory_region_is_rom(MemoryRegion *mr) 1879 { 1880 return mr->ram && mr->readonly; 1881 } 1882 1883 /** 1884 * memory_region_is_nonvolatile: check whether a memory region is non-volatile 1885 * 1886 * Returns %true is a memory region is non-volatile memory. 1887 * 1888 * @mr: the memory region being queried 1889 */ 1890 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr) 1891 { 1892 return mr->nonvolatile; 1893 } 1894 1895 /** 1896 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 1897 * 1898 * Returns a file descriptor backing a file-based RAM memory region, 1899 * or -1 if the region is not a file-based RAM memory region. 1900 * 1901 * @mr: the RAM or alias memory region being queried. 1902 */ 1903 int memory_region_get_fd(MemoryRegion *mr); 1904 1905 /** 1906 * memory_region_from_host: Convert a pointer into a RAM memory region 1907 * and an offset within it. 1908 * 1909 * Given a host pointer inside a RAM memory region (created with 1910 * memory_region_init_ram() or memory_region_init_ram_ptr()), return 1911 * the MemoryRegion and the offset within it. 1912 * 1913 * Use with care; by the time this function returns, the returned pointer is 1914 * not protected by RCU anymore. If the caller is not within an RCU critical 1915 * section and does not hold the iothread lock, it must have other means of 1916 * protecting the pointer, such as a reference to the region that includes 1917 * the incoming ram_addr_t. 1918 * 1919 * @ptr: the host pointer to be converted 1920 * @offset: the offset within memory region 1921 */ 1922 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset); 1923 1924 /** 1925 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 1926 * 1927 * Returns a host pointer to a RAM memory region (created with 1928 * memory_region_init_ram() or memory_region_init_ram_ptr()). 1929 * 1930 * Use with care; by the time this function returns, the returned pointer is 1931 * not protected by RCU anymore. If the caller is not within an RCU critical 1932 * section and does not hold the iothread lock, it must have other means of 1933 * protecting the pointer, such as a reference to the region that includes 1934 * the incoming ram_addr_t. 1935 * 1936 * @mr: the memory region being queried. 1937 */ 1938 void *memory_region_get_ram_ptr(MemoryRegion *mr); 1939 1940 /* memory_region_ram_resize: Resize a RAM region. 1941 * 1942 * Resizing RAM while migrating can result in the migration being canceled. 1943 * Care has to be taken if the guest might have already detected the memory. 1944 * 1945 * @mr: a memory region created with @memory_region_init_resizeable_ram. 1946 * @newsize: the new size the region 1947 * @errp: pointer to Error*, to store an error if it happens. 1948 */ 1949 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 1950 Error **errp); 1951 1952 /** 1953 * memory_region_msync: Synchronize selected address range of 1954 * a memory mapped region 1955 * 1956 * @mr: the memory region to be msync 1957 * @addr: the initial address of the range to be sync 1958 * @size: the size of the range to be sync 1959 */ 1960 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size); 1961 1962 /** 1963 * memory_region_writeback: Trigger cache writeback for 1964 * selected address range 1965 * 1966 * @mr: the memory region to be updated 1967 * @addr: the initial address of the range to be written back 1968 * @size: the size of the range to be written back 1969 */ 1970 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size); 1971 1972 /** 1973 * memory_region_set_log: Turn dirty logging on or off for a region. 1974 * 1975 * Turns dirty logging on or off for a specified client (display, migration). 1976 * Only meaningful for RAM regions. 1977 * 1978 * @mr: the memory region being updated. 1979 * @log: whether dirty logging is to be enabled or disabled. 1980 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 1981 */ 1982 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 1983 1984 /** 1985 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 1986 * 1987 * Marks a range of bytes as dirty, after it has been dirtied outside 1988 * guest code. 1989 * 1990 * @mr: the memory region being dirtied. 1991 * @addr: the address (relative to the start of the region) being dirtied. 1992 * @size: size of the range being dirtied. 1993 */ 1994 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 1995 hwaddr size); 1996 1997 /** 1998 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range 1999 * 2000 * This function is called when the caller wants to clear the remote 2001 * dirty bitmap of a memory range within the memory region. This can 2002 * be used by e.g. KVM to manually clear dirty log when 2003 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host 2004 * kernel. 2005 * 2006 * @mr: the memory region to clear the dirty log upon 2007 * @start: start address offset within the memory region 2008 * @len: length of the memory region to clear dirty bitmap 2009 */ 2010 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start, 2011 hwaddr len); 2012 2013 /** 2014 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty 2015 * bitmap and clear it. 2016 * 2017 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and 2018 * returns the snapshot. The snapshot can then be used to query dirty 2019 * status, using memory_region_snapshot_get_dirty. Snapshotting allows 2020 * querying the same page multiple times, which is especially useful for 2021 * display updates where the scanlines often are not page aligned. 2022 * 2023 * The dirty bitmap region which gets copied into the snapshot (and 2024 * cleared afterwards) can be larger than requested. The boundaries 2025 * are rounded up/down so complete bitmap longs (covering 64 pages on 2026 * 64bit hosts) can be copied over into the bitmap snapshot. Which 2027 * isn't a problem for display updates as the extra pages are outside 2028 * the visible area, and in case the visible area changes a full 2029 * display redraw is due anyway. Should other use cases for this 2030 * function emerge we might have to revisit this implementation 2031 * detail. 2032 * 2033 * Use g_free to release DirtyBitmapSnapshot. 2034 * 2035 * @mr: the memory region being queried. 2036 * @addr: the address (relative to the start of the region) being queried. 2037 * @size: the size of the range being queried. 2038 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA. 2039 */ 2040 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr, 2041 hwaddr addr, 2042 hwaddr size, 2043 unsigned client); 2044 2045 /** 2046 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty 2047 * in the specified dirty bitmap snapshot. 2048 * 2049 * @mr: the memory region being queried. 2050 * @snap: the dirty bitmap snapshot 2051 * @addr: the address (relative to the start of the region) being queried. 2052 * @size: the size of the range being queried. 2053 */ 2054 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, 2055 DirtyBitmapSnapshot *snap, 2056 hwaddr addr, hwaddr size); 2057 2058 /** 2059 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 2060 * client. 2061 * 2062 * Marks a range of pages as no longer dirty. 2063 * 2064 * @mr: the region being updated. 2065 * @addr: the start of the subrange being cleaned. 2066 * @size: the size of the subrange being cleaned. 2067 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 2068 * %DIRTY_MEMORY_VGA. 2069 */ 2070 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 2071 hwaddr size, unsigned client); 2072 2073 /** 2074 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate 2075 * TBs (for self-modifying code). 2076 * 2077 * The MemoryRegionOps->write() callback of a ROM device must use this function 2078 * to mark byte ranges that have been modified internally, such as by directly 2079 * accessing the memory returned by memory_region_get_ram_ptr(). 2080 * 2081 * This function marks the range dirty and invalidates TBs so that TCG can 2082 * detect self-modifying code. 2083 * 2084 * @mr: the region being flushed. 2085 * @addr: the start, relative to the start of the region, of the range being 2086 * flushed. 2087 * @size: the size, in bytes, of the range being flushed. 2088 */ 2089 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size); 2090 2091 /** 2092 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 2093 * 2094 * Allows a memory region to be marked as read-only (turning it into a ROM). 2095 * only useful on RAM regions. 2096 * 2097 * @mr: the region being updated. 2098 * @readonly: whether rhe region is to be ROM or RAM. 2099 */ 2100 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 2101 2102 /** 2103 * memory_region_set_nonvolatile: Turn a memory region non-volatile 2104 * 2105 * Allows a memory region to be marked as non-volatile. 2106 * only useful on RAM regions. 2107 * 2108 * @mr: the region being updated. 2109 * @nonvolatile: whether rhe region is to be non-volatile. 2110 */ 2111 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile); 2112 2113 /** 2114 * memory_region_rom_device_set_romd: enable/disable ROMD mode 2115 * 2116 * Allows a ROM device (initialized with memory_region_init_rom_device() to 2117 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 2118 * device is mapped to guest memory and satisfies read access directly. 2119 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 2120 * Writes are always handled by the #MemoryRegion.write function. 2121 * 2122 * @mr: the memory region to be updated 2123 * @romd_mode: %true to put the region into ROMD mode 2124 */ 2125 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 2126 2127 /** 2128 * memory_region_set_coalescing: Enable memory coalescing for the region. 2129 * 2130 * Enabled writes to a region to be queued for later processing. MMIO ->write 2131 * callbacks may be delayed until a non-coalesced MMIO is issued. 2132 * Only useful for IO regions. Roughly similar to write-combining hardware. 2133 * 2134 * @mr: the memory region to be write coalesced 2135 */ 2136 void memory_region_set_coalescing(MemoryRegion *mr); 2137 2138 /** 2139 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 2140 * a region. 2141 * 2142 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 2143 * Multiple calls can be issued coalesced disjoint ranges. 2144 * 2145 * @mr: the memory region to be updated. 2146 * @offset: the start of the range within the region to be coalesced. 2147 * @size: the size of the subrange to be coalesced. 2148 */ 2149 void memory_region_add_coalescing(MemoryRegion *mr, 2150 hwaddr offset, 2151 uint64_t size); 2152 2153 /** 2154 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 2155 * 2156 * Disables any coalescing caused by memory_region_set_coalescing() or 2157 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 2158 * hardware. 2159 * 2160 * @mr: the memory region to be updated. 2161 */ 2162 void memory_region_clear_coalescing(MemoryRegion *mr); 2163 2164 /** 2165 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 2166 * accesses. 2167 * 2168 * Ensure that pending coalesced MMIO request are flushed before the memory 2169 * region is accessed. This property is automatically enabled for all regions 2170 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 2171 * 2172 * @mr: the memory region to be updated. 2173 */ 2174 void memory_region_set_flush_coalesced(MemoryRegion *mr); 2175 2176 /** 2177 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 2178 * accesses. 2179 * 2180 * Clear the automatic coalesced MMIO flushing enabled via 2181 * memory_region_set_flush_coalesced. Note that this service has no effect on 2182 * memory regions that have MMIO coalescing enabled for themselves. For them, 2183 * automatic flushing will stop once coalescing is disabled. 2184 * 2185 * @mr: the memory region to be updated. 2186 */ 2187 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 2188 2189 /** 2190 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 2191 * is written to a location. 2192 * 2193 * Marks a word in an IO region (initialized with memory_region_init_io()) 2194 * as a trigger for an eventfd event. The I/O callback will not be called. 2195 * The caller must be prepared to handle failure (that is, take the required 2196 * action if the callback _is_ called). 2197 * 2198 * @mr: the memory region being updated. 2199 * @addr: the address within @mr that is to be monitored 2200 * @size: the size of the access to trigger the eventfd 2201 * @match_data: whether to match against @data, instead of just @addr 2202 * @data: the data to match against the guest write 2203 * @e: event notifier to be triggered when @addr, @size, and @data all match. 2204 **/ 2205 void memory_region_add_eventfd(MemoryRegion *mr, 2206 hwaddr addr, 2207 unsigned size, 2208 bool match_data, 2209 uint64_t data, 2210 EventNotifier *e); 2211 2212 /** 2213 * memory_region_del_eventfd: Cancel an eventfd. 2214 * 2215 * Cancels an eventfd trigger requested by a previous 2216 * memory_region_add_eventfd() call. 2217 * 2218 * @mr: the memory region being updated. 2219 * @addr: the address within @mr that is to be monitored 2220 * @size: the size of the access to trigger the eventfd 2221 * @match_data: whether to match against @data, instead of just @addr 2222 * @data: the data to match against the guest write 2223 * @e: event notifier to be triggered when @addr, @size, and @data all match. 2224 */ 2225 void memory_region_del_eventfd(MemoryRegion *mr, 2226 hwaddr addr, 2227 unsigned size, 2228 bool match_data, 2229 uint64_t data, 2230 EventNotifier *e); 2231 2232 /** 2233 * memory_region_add_subregion: Add a subregion to a container. 2234 * 2235 * Adds a subregion at @offset. The subregion may not overlap with other 2236 * subregions (except for those explicitly marked as overlapping). A region 2237 * may only be added once as a subregion (unless removed with 2238 * memory_region_del_subregion()); use memory_region_init_alias() if you 2239 * want a region to be a subregion in multiple locations. 2240 * 2241 * @mr: the region to contain the new subregion; must be a container 2242 * initialized with memory_region_init(). 2243 * @offset: the offset relative to @mr where @subregion is added. 2244 * @subregion: the subregion to be added. 2245 */ 2246 void memory_region_add_subregion(MemoryRegion *mr, 2247 hwaddr offset, 2248 MemoryRegion *subregion); 2249 /** 2250 * memory_region_add_subregion_overlap: Add a subregion to a container 2251 * with overlap. 2252 * 2253 * Adds a subregion at @offset. The subregion may overlap with other 2254 * subregions. Conflicts are resolved by having a higher @priority hide a 2255 * lower @priority. Subregions without priority are taken as @priority 0. 2256 * A region may only be added once as a subregion (unless removed with 2257 * memory_region_del_subregion()); use memory_region_init_alias() if you 2258 * want a region to be a subregion in multiple locations. 2259 * 2260 * @mr: the region to contain the new subregion; must be a container 2261 * initialized with memory_region_init(). 2262 * @offset: the offset relative to @mr where @subregion is added. 2263 * @subregion: the subregion to be added. 2264 * @priority: used for resolving overlaps; highest priority wins. 2265 */ 2266 void memory_region_add_subregion_overlap(MemoryRegion *mr, 2267 hwaddr offset, 2268 MemoryRegion *subregion, 2269 int priority); 2270 2271 /** 2272 * memory_region_get_ram_addr: Get the ram address associated with a memory 2273 * region 2274 * 2275 * @mr: the region to be queried 2276 */ 2277 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 2278 2279 uint64_t memory_region_get_alignment(const MemoryRegion *mr); 2280 /** 2281 * memory_region_del_subregion: Remove a subregion. 2282 * 2283 * Removes a subregion from its container. 2284 * 2285 * @mr: the container to be updated. 2286 * @subregion: the region being removed; must be a current subregion of @mr. 2287 */ 2288 void memory_region_del_subregion(MemoryRegion *mr, 2289 MemoryRegion *subregion); 2290 2291 /* 2292 * memory_region_set_enabled: dynamically enable or disable a region 2293 * 2294 * Enables or disables a memory region. A disabled memory region 2295 * ignores all accesses to itself and its subregions. It does not 2296 * obscure sibling subregions with lower priority - it simply behaves as 2297 * if it was removed from the hierarchy. 2298 * 2299 * Regions default to being enabled. 2300 * 2301 * @mr: the region to be updated 2302 * @enabled: whether to enable or disable the region 2303 */ 2304 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 2305 2306 /* 2307 * memory_region_set_address: dynamically update the address of a region 2308 * 2309 * Dynamically updates the address of a region, relative to its container. 2310 * May be used on regions are currently part of a memory hierarchy. 2311 * 2312 * @mr: the region to be updated 2313 * @addr: new address, relative to container region 2314 */ 2315 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 2316 2317 /* 2318 * memory_region_set_size: dynamically update the size of a region. 2319 * 2320 * Dynamically updates the size of a region. 2321 * 2322 * @mr: the region to be updated 2323 * @size: used size of the region. 2324 */ 2325 void memory_region_set_size(MemoryRegion *mr, uint64_t size); 2326 2327 /* 2328 * memory_region_set_alias_offset: dynamically update a memory alias's offset 2329 * 2330 * Dynamically updates the offset into the target region that an alias points 2331 * to, as if the fourth argument to memory_region_init_alias() has changed. 2332 * 2333 * @mr: the #MemoryRegion to be updated; should be an alias. 2334 * @offset: the new offset into the target memory region 2335 */ 2336 void memory_region_set_alias_offset(MemoryRegion *mr, 2337 hwaddr offset); 2338 2339 /** 2340 * memory_region_present: checks if an address relative to a @container 2341 * translates into #MemoryRegion within @container 2342 * 2343 * Answer whether a #MemoryRegion within @container covers the address 2344 * @addr. 2345 * 2346 * @container: a #MemoryRegion within which @addr is a relative address 2347 * @addr: the area within @container to be searched 2348 */ 2349 bool memory_region_present(MemoryRegion *container, hwaddr addr); 2350 2351 /** 2352 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 2353 * into another memory region, which does not necessarily imply that it is 2354 * mapped into an address space. 2355 * 2356 * @mr: a #MemoryRegion which should be checked if it's mapped 2357 */ 2358 bool memory_region_is_mapped(MemoryRegion *mr); 2359 2360 /** 2361 * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a 2362 * #MemoryRegion 2363 * 2364 * The #RamDiscardManager cannot change while a memory region is mapped. 2365 * 2366 * @mr: the #MemoryRegion 2367 */ 2368 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr); 2369 2370 /** 2371 * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a 2372 * #RamDiscardManager assigned 2373 * 2374 * @mr: the #MemoryRegion 2375 */ 2376 static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr) 2377 { 2378 return !!memory_region_get_ram_discard_manager(mr); 2379 } 2380 2381 /** 2382 * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a 2383 * #MemoryRegion 2384 * 2385 * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion 2386 * that does not cover RAM, or a #MemoryRegion that already has a 2387 * #RamDiscardManager assigned. 2388 * 2389 * @mr: the #MemoryRegion 2390 * @rdm: #RamDiscardManager to set 2391 */ 2392 void memory_region_set_ram_discard_manager(MemoryRegion *mr, 2393 RamDiscardManager *rdm); 2394 2395 /** 2396 * memory_region_find: translate an address/size relative to a 2397 * MemoryRegion into a #MemoryRegionSection. 2398 * 2399 * Locates the first #MemoryRegion within @mr that overlaps the range 2400 * given by @addr and @size. 2401 * 2402 * Returns a #MemoryRegionSection that describes a contiguous overlap. 2403 * It will have the following characteristics: 2404 * - @size = 0 iff no overlap was found 2405 * - @mr is non-%NULL iff an overlap was found 2406 * 2407 * Remember that in the return value the @offset_within_region is 2408 * relative to the returned region (in the .@mr field), not to the 2409 * @mr argument. 2410 * 2411 * Similarly, the .@offset_within_address_space is relative to the 2412 * address space that contains both regions, the passed and the 2413 * returned one. However, in the special case where the @mr argument 2414 * has no container (and thus is the root of the address space), the 2415 * following will hold: 2416 * - @offset_within_address_space >= @addr 2417 * - @offset_within_address_space + .@size <= @addr + @size 2418 * 2419 * @mr: a MemoryRegion within which @addr is a relative address 2420 * @addr: start of the area within @as to be searched 2421 * @size: size of the area to be searched 2422 */ 2423 MemoryRegionSection memory_region_find(MemoryRegion *mr, 2424 hwaddr addr, uint64_t size); 2425 2426 /** 2427 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 2428 * 2429 * Synchronizes the dirty page log for all address spaces. 2430 * 2431 * @last_stage: whether this is the last stage of live migration 2432 */ 2433 void memory_global_dirty_log_sync(bool last_stage); 2434 2435 /** 2436 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 2437 * 2438 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap. 2439 * This function must be called after the dirty log bitmap is cleared, and 2440 * before dirty guest memory pages are read. If you are using 2441 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes 2442 * care of doing this. 2443 */ 2444 void memory_global_after_dirty_log_sync(void); 2445 2446 /** 2447 * memory_region_transaction_begin: Start a transaction. 2448 * 2449 * During a transaction, changes will be accumulated and made visible 2450 * only when the transaction ends (is committed). 2451 */ 2452 void memory_region_transaction_begin(void); 2453 2454 /** 2455 * memory_region_transaction_commit: Commit a transaction and make changes 2456 * visible to the guest. 2457 */ 2458 void memory_region_transaction_commit(void); 2459 2460 /** 2461 * memory_listener_register: register callbacks to be called when memory 2462 * sections are mapped or unmapped into an address 2463 * space 2464 * 2465 * @listener: an object containing the callbacks to be called 2466 * @filter: if non-%NULL, only regions in this address space will be observed 2467 */ 2468 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 2469 2470 /** 2471 * memory_listener_unregister: undo the effect of memory_listener_register() 2472 * 2473 * @listener: an object containing the callbacks to be removed 2474 */ 2475 void memory_listener_unregister(MemoryListener *listener); 2476 2477 /** 2478 * memory_global_dirty_log_start: begin dirty logging for all regions 2479 * 2480 * @flags: purpose of starting dirty log, migration or dirty rate 2481 */ 2482 void memory_global_dirty_log_start(unsigned int flags); 2483 2484 /** 2485 * memory_global_dirty_log_stop: end dirty logging for all regions 2486 * 2487 * @flags: purpose of stopping dirty log, migration or dirty rate 2488 */ 2489 void memory_global_dirty_log_stop(unsigned int flags); 2490 2491 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled); 2492 2493 bool memory_region_access_valid(MemoryRegion *mr, hwaddr addr, 2494 unsigned size, bool is_write, 2495 MemTxAttrs attrs); 2496 2497 /** 2498 * memory_region_dispatch_read: perform a read directly to the specified 2499 * MemoryRegion. 2500 * 2501 * @mr: #MemoryRegion to access 2502 * @addr: address within that region 2503 * @pval: pointer to uint64_t which the data is written to 2504 * @op: size, sign, and endianness of the memory operation 2505 * @attrs: memory transaction attributes to use for the access 2506 */ 2507 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 2508 hwaddr addr, 2509 uint64_t *pval, 2510 MemOp op, 2511 MemTxAttrs attrs); 2512 /** 2513 * memory_region_dispatch_write: perform a write directly to the specified 2514 * MemoryRegion. 2515 * 2516 * @mr: #MemoryRegion to access 2517 * @addr: address within that region 2518 * @data: data to write 2519 * @op: size, sign, and endianness of the memory operation 2520 * @attrs: memory transaction attributes to use for the access 2521 */ 2522 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 2523 hwaddr addr, 2524 uint64_t data, 2525 MemOp op, 2526 MemTxAttrs attrs); 2527 2528 /** 2529 * address_space_init: initializes an address space 2530 * 2531 * @as: an uninitialized #AddressSpace 2532 * @root: a #MemoryRegion that routes addresses for the address space 2533 * @name: an address space name. The name is only used for debugging 2534 * output. 2535 */ 2536 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 2537 2538 /** 2539 * address_space_destroy: destroy an address space 2540 * 2541 * Releases all resources associated with an address space. After an address space 2542 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 2543 * as well. 2544 * 2545 * @as: address space to be destroyed 2546 */ 2547 void address_space_destroy(AddressSpace *as); 2548 2549 /** 2550 * address_space_remove_listeners: unregister all listeners of an address space 2551 * 2552 * Removes all callbacks previously registered with memory_listener_register() 2553 * for @as. 2554 * 2555 * @as: an initialized #AddressSpace 2556 */ 2557 void address_space_remove_listeners(AddressSpace *as); 2558 2559 /** 2560 * address_space_rw: read from or write to an address space. 2561 * 2562 * Return a MemTxResult indicating whether the operation succeeded 2563 * or failed (eg unassigned memory, device rejected the transaction, 2564 * IOMMU fault). 2565 * 2566 * @as: #AddressSpace to be accessed 2567 * @addr: address within that address space 2568 * @attrs: memory transaction attributes 2569 * @buf: buffer with the data transferred 2570 * @len: the number of bytes to read or write 2571 * @is_write: indicates the transfer direction 2572 */ 2573 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 2574 MemTxAttrs attrs, void *buf, 2575 hwaddr len, bool is_write); 2576 2577 /** 2578 * address_space_write: write to address space. 2579 * 2580 * Return a MemTxResult indicating whether the operation succeeded 2581 * or failed (eg unassigned memory, device rejected the transaction, 2582 * IOMMU fault). 2583 * 2584 * @as: #AddressSpace to be accessed 2585 * @addr: address within that address space 2586 * @attrs: memory transaction attributes 2587 * @buf: buffer with the data transferred 2588 * @len: the number of bytes to write 2589 */ 2590 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 2591 MemTxAttrs attrs, 2592 const void *buf, hwaddr len); 2593 2594 /** 2595 * address_space_write_rom: write to address space, including ROM. 2596 * 2597 * This function writes to the specified address space, but will 2598 * write data to both ROM and RAM. This is used for non-guest 2599 * writes like writes from the gdb debug stub or initial loading 2600 * of ROM contents. 2601 * 2602 * Note that portions of the write which attempt to write data to 2603 * a device will be silently ignored -- only real RAM and ROM will 2604 * be written to. 2605 * 2606 * Return a MemTxResult indicating whether the operation succeeded 2607 * or failed (eg unassigned memory, device rejected the transaction, 2608 * IOMMU fault). 2609 * 2610 * @as: #AddressSpace to be accessed 2611 * @addr: address within that address space 2612 * @attrs: memory transaction attributes 2613 * @buf: buffer with the data transferred 2614 * @len: the number of bytes to write 2615 */ 2616 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 2617 MemTxAttrs attrs, 2618 const void *buf, hwaddr len); 2619 2620 /* address_space_ld*: load from an address space 2621 * address_space_st*: store to an address space 2622 * 2623 * These functions perform a load or store of the byte, word, 2624 * longword or quad to the specified address within the AddressSpace. 2625 * The _le suffixed functions treat the data as little endian; 2626 * _be indicates big endian; no suffix indicates "same endianness 2627 * as guest CPU". 2628 * 2629 * The "guest CPU endianness" accessors are deprecated for use outside 2630 * target-* code; devices should be CPU-agnostic and use either the LE 2631 * or the BE accessors. 2632 * 2633 * @as #AddressSpace to be accessed 2634 * @addr: address within that address space 2635 * @val: data value, for stores 2636 * @attrs: memory transaction attributes 2637 * @result: location to write the success/failure of the transaction; 2638 * if NULL, this information is discarded 2639 */ 2640 2641 #define SUFFIX 2642 #define ARG1 as 2643 #define ARG1_DECL AddressSpace *as 2644 #include "exec/memory_ldst.h.inc" 2645 2646 #define SUFFIX 2647 #define ARG1 as 2648 #define ARG1_DECL AddressSpace *as 2649 #include "exec/memory_ldst_phys.h.inc" 2650 2651 struct MemoryRegionCache { 2652 void *ptr; 2653 hwaddr xlat; 2654 hwaddr len; 2655 FlatView *fv; 2656 MemoryRegionSection mrs; 2657 bool is_write; 2658 }; 2659 2660 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL }) 2661 2662 2663 /* address_space_ld*_cached: load from a cached #MemoryRegion 2664 * address_space_st*_cached: store into a cached #MemoryRegion 2665 * 2666 * These functions perform a load or store of the byte, word, 2667 * longword or quad to the specified address. The address is 2668 * a physical address in the AddressSpace, but it must lie within 2669 * a #MemoryRegion that was mapped with address_space_cache_init. 2670 * 2671 * The _le suffixed functions treat the data as little endian; 2672 * _be indicates big endian; no suffix indicates "same endianness 2673 * as guest CPU". 2674 * 2675 * The "guest CPU endianness" accessors are deprecated for use outside 2676 * target-* code; devices should be CPU-agnostic and use either the LE 2677 * or the BE accessors. 2678 * 2679 * @cache: previously initialized #MemoryRegionCache to be accessed 2680 * @addr: address within the address space 2681 * @val: data value, for stores 2682 * @attrs: memory transaction attributes 2683 * @result: location to write the success/failure of the transaction; 2684 * if NULL, this information is discarded 2685 */ 2686 2687 #define SUFFIX _cached_slow 2688 #define ARG1 cache 2689 #define ARG1_DECL MemoryRegionCache *cache 2690 #include "exec/memory_ldst.h.inc" 2691 2692 /* Inline fast path for direct RAM access. */ 2693 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache, 2694 hwaddr addr, MemTxAttrs attrs, MemTxResult *result) 2695 { 2696 assert(addr < cache->len); 2697 if (likely(cache->ptr)) { 2698 return ldub_p(cache->ptr + addr); 2699 } else { 2700 return address_space_ldub_cached_slow(cache, addr, attrs, result); 2701 } 2702 } 2703 2704 static inline void address_space_stb_cached(MemoryRegionCache *cache, 2705 hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result) 2706 { 2707 assert(addr < cache->len); 2708 if (likely(cache->ptr)) { 2709 stb_p(cache->ptr + addr, val); 2710 } else { 2711 address_space_stb_cached_slow(cache, addr, val, attrs, result); 2712 } 2713 } 2714 2715 #define ENDIANNESS _le 2716 #include "exec/memory_ldst_cached.h.inc" 2717 2718 #define ENDIANNESS _be 2719 #include "exec/memory_ldst_cached.h.inc" 2720 2721 #define SUFFIX _cached 2722 #define ARG1 cache 2723 #define ARG1_DECL MemoryRegionCache *cache 2724 #include "exec/memory_ldst_phys.h.inc" 2725 2726 /* address_space_cache_init: prepare for repeated access to a physical 2727 * memory region 2728 * 2729 * @cache: #MemoryRegionCache to be filled 2730 * @as: #AddressSpace to be accessed 2731 * @addr: address within that address space 2732 * @len: length of buffer 2733 * @is_write: indicates the transfer direction 2734 * 2735 * Will only work with RAM, and may map a subset of the requested range by 2736 * returning a value that is less than @len. On failure, return a negative 2737 * errno value. 2738 * 2739 * Because it only works with RAM, this function can be used for 2740 * read-modify-write operations. In this case, is_write should be %true. 2741 * 2742 * Note that addresses passed to the address_space_*_cached functions 2743 * are relative to @addr. 2744 */ 2745 int64_t address_space_cache_init(MemoryRegionCache *cache, 2746 AddressSpace *as, 2747 hwaddr addr, 2748 hwaddr len, 2749 bool is_write); 2750 2751 /** 2752 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache 2753 * 2754 * @cache: The #MemoryRegionCache to operate on. 2755 * @addr: The first physical address that was written, relative to the 2756 * address that was passed to @address_space_cache_init. 2757 * @access_len: The number of bytes that were written starting at @addr. 2758 */ 2759 void address_space_cache_invalidate(MemoryRegionCache *cache, 2760 hwaddr addr, 2761 hwaddr access_len); 2762 2763 /** 2764 * address_space_cache_destroy: free a #MemoryRegionCache 2765 * 2766 * @cache: The #MemoryRegionCache whose memory should be released. 2767 */ 2768 void address_space_cache_destroy(MemoryRegionCache *cache); 2769 2770 /* address_space_get_iotlb_entry: translate an address into an IOTLB 2771 * entry. Should be called from an RCU critical section. 2772 */ 2773 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 2774 bool is_write, MemTxAttrs attrs); 2775 2776 /* address_space_translate: translate an address range into an address space 2777 * into a MemoryRegion and an address range into that section. Should be 2778 * called from an RCU critical section, to avoid that the last reference 2779 * to the returned region disappears after address_space_translate returns. 2780 * 2781 * @fv: #FlatView to be accessed 2782 * @addr: address within that address space 2783 * @xlat: pointer to address within the returned memory region section's 2784 * #MemoryRegion. 2785 * @len: pointer to length 2786 * @is_write: indicates the transfer direction 2787 * @attrs: memory attributes 2788 */ 2789 MemoryRegion *flatview_translate(FlatView *fv, 2790 hwaddr addr, hwaddr *xlat, 2791 hwaddr *len, bool is_write, 2792 MemTxAttrs attrs); 2793 2794 static inline MemoryRegion *address_space_translate(AddressSpace *as, 2795 hwaddr addr, hwaddr *xlat, 2796 hwaddr *len, bool is_write, 2797 MemTxAttrs attrs) 2798 { 2799 return flatview_translate(address_space_to_flatview(as), 2800 addr, xlat, len, is_write, attrs); 2801 } 2802 2803 /* address_space_access_valid: check for validity of accessing an address 2804 * space range 2805 * 2806 * Check whether memory is assigned to the given address space range, and 2807 * access is permitted by any IOMMU regions that are active for the address 2808 * space. 2809 * 2810 * For now, addr and len should be aligned to a page size. This limitation 2811 * will be lifted in the future. 2812 * 2813 * @as: #AddressSpace to be accessed 2814 * @addr: address within that address space 2815 * @len: length of the area to be checked 2816 * @is_write: indicates the transfer direction 2817 * @attrs: memory attributes 2818 */ 2819 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len, 2820 bool is_write, MemTxAttrs attrs); 2821 2822 /* address_space_map: map a physical memory region into a host virtual address 2823 * 2824 * May map a subset of the requested range, given by and returned in @plen. 2825 * May return %NULL and set *@plen to zero(0), if resources needed to perform 2826 * the mapping are exhausted. 2827 * Use only for reads OR writes - not for read-modify-write operations. 2828 * Use cpu_register_map_client() to know when retrying the map operation is 2829 * likely to succeed. 2830 * 2831 * @as: #AddressSpace to be accessed 2832 * @addr: address within that address space 2833 * @plen: pointer to length of buffer; updated on return 2834 * @is_write: indicates the transfer direction 2835 * @attrs: memory attributes 2836 */ 2837 void *address_space_map(AddressSpace *as, hwaddr addr, 2838 hwaddr *plen, bool is_write, MemTxAttrs attrs); 2839 2840 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 2841 * 2842 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 2843 * the amount of memory that was actually read or written by the caller. 2844 * 2845 * @as: #AddressSpace used 2846 * @buffer: host pointer as returned by address_space_map() 2847 * @len: buffer length as returned by address_space_map() 2848 * @access_len: amount of data actually transferred 2849 * @is_write: indicates the transfer direction 2850 */ 2851 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 2852 bool is_write, hwaddr access_len); 2853 2854 2855 /* Internal functions, part of the implementation of address_space_read. */ 2856 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2857 MemTxAttrs attrs, void *buf, hwaddr len); 2858 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2859 MemTxAttrs attrs, void *buf, 2860 hwaddr len, hwaddr addr1, hwaddr l, 2861 MemoryRegion *mr); 2862 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr); 2863 2864 /* Internal functions, part of the implementation of address_space_read_cached 2865 * and address_space_write_cached. */ 2866 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache, 2867 hwaddr addr, void *buf, hwaddr len); 2868 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache, 2869 hwaddr addr, const void *buf, 2870 hwaddr len); 2871 2872 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr); 2873 bool prepare_mmio_access(MemoryRegion *mr); 2874 2875 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) 2876 { 2877 if (is_write) { 2878 return memory_region_is_ram(mr) && !mr->readonly && 2879 !mr->rom_device && !memory_region_is_ram_device(mr); 2880 } else { 2881 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) || 2882 memory_region_is_romd(mr); 2883 } 2884 } 2885 2886 /** 2887 * address_space_read: read from an address space. 2888 * 2889 * Return a MemTxResult indicating whether the operation succeeded 2890 * or failed (eg unassigned memory, device rejected the transaction, 2891 * IOMMU fault). Called within RCU critical section. 2892 * 2893 * @as: #AddressSpace to be accessed 2894 * @addr: address within that address space 2895 * @attrs: memory transaction attributes 2896 * @buf: buffer with the data transferred 2897 * @len: length of the data transferred 2898 */ 2899 static inline __attribute__((__always_inline__)) 2900 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, 2901 MemTxAttrs attrs, void *buf, 2902 hwaddr len) 2903 { 2904 MemTxResult result = MEMTX_OK; 2905 hwaddr l, addr1; 2906 void *ptr; 2907 MemoryRegion *mr; 2908 FlatView *fv; 2909 2910 if (__builtin_constant_p(len)) { 2911 if (len) { 2912 RCU_READ_LOCK_GUARD(); 2913 fv = address_space_to_flatview(as); 2914 l = len; 2915 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2916 if (len == l && memory_access_is_direct(mr, false)) { 2917 ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 2918 memcpy(buf, ptr, len); 2919 } else { 2920 result = flatview_read_continue(fv, addr, attrs, buf, len, 2921 addr1, l, mr); 2922 } 2923 } 2924 } else { 2925 result = address_space_read_full(as, addr, attrs, buf, len); 2926 } 2927 return result; 2928 } 2929 2930 /** 2931 * address_space_read_cached: read from a cached RAM region 2932 * 2933 * @cache: Cached region to be addressed 2934 * @addr: address relative to the base of the RAM region 2935 * @buf: buffer with the data transferred 2936 * @len: length of the data transferred 2937 */ 2938 static inline MemTxResult 2939 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr, 2940 void *buf, hwaddr len) 2941 { 2942 assert(addr < cache->len && len <= cache->len - addr); 2943 fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr); 2944 if (likely(cache->ptr)) { 2945 memcpy(buf, cache->ptr + addr, len); 2946 return MEMTX_OK; 2947 } else { 2948 return address_space_read_cached_slow(cache, addr, buf, len); 2949 } 2950 } 2951 2952 /** 2953 * address_space_write_cached: write to a cached RAM region 2954 * 2955 * @cache: Cached region to be addressed 2956 * @addr: address relative to the base of the RAM region 2957 * @buf: buffer with the data transferred 2958 * @len: length of the data transferred 2959 */ 2960 static inline MemTxResult 2961 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr, 2962 const void *buf, hwaddr len) 2963 { 2964 assert(addr < cache->len && len <= cache->len - addr); 2965 if (likely(cache->ptr)) { 2966 memcpy(cache->ptr + addr, buf, len); 2967 return MEMTX_OK; 2968 } else { 2969 return address_space_write_cached_slow(cache, addr, buf, len); 2970 } 2971 } 2972 2973 /** 2974 * address_space_set: Fill address space with a constant byte. 2975 * 2976 * Return a MemTxResult indicating whether the operation succeeded 2977 * or failed (eg unassigned memory, device rejected the transaction, 2978 * IOMMU fault). 2979 * 2980 * @as: #AddressSpace to be accessed 2981 * @addr: address within that address space 2982 * @c: constant byte to fill the memory 2983 * @len: the number of bytes to fill with the constant byte 2984 * @attrs: memory transaction attributes 2985 */ 2986 MemTxResult address_space_set(AddressSpace *as, hwaddr addr, 2987 uint8_t c, hwaddr len, MemTxAttrs attrs); 2988 2989 #ifdef NEED_CPU_H 2990 /* enum device_endian to MemOp. */ 2991 static inline MemOp devend_memop(enum device_endian end) 2992 { 2993 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN && 2994 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN); 2995 2996 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 2997 /* Swap if non-host endianness or native (target) endianness */ 2998 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP; 2999 #else 3000 const int non_host_endianness = 3001 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN; 3002 3003 /* In this case, native (target) endianness needs no swap. */ 3004 return (end == non_host_endianness) ? MO_BSWAP : 0; 3005 #endif 3006 } 3007 #endif 3008 3009 /* 3010 * Inhibit technologies that require discarding of pages in RAM blocks, e.g., 3011 * to manage the actual amount of memory consumed by the VM (then, the memory 3012 * provided by RAM blocks might be bigger than the desired memory consumption). 3013 * This *must* be set if: 3014 * - Discarding parts of a RAM blocks does not result in the change being 3015 * reflected in the VM and the pages getting freed. 3016 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous 3017 * discards blindly. 3018 * - Discarding parts of a RAM blocks will result in integrity issues (e.g., 3019 * encrypted VMs). 3020 * Technologies that only temporarily pin the current working set of a 3021 * driver are fine, because we don't expect such pages to be discarded 3022 * (esp. based on guest action like balloon inflation). 3023 * 3024 * This is *not* to be used to protect from concurrent discards (esp., 3025 * postcopy). 3026 * 3027 * Returns 0 if successful. Returns -EBUSY if a technology that relies on 3028 * discards to work reliably is active. 3029 */ 3030 int ram_block_discard_disable(bool state); 3031 3032 /* 3033 * See ram_block_discard_disable(): only disable uncoordinated discards, 3034 * keeping coordinated discards (via the RamDiscardManager) enabled. 3035 */ 3036 int ram_block_uncoordinated_discard_disable(bool state); 3037 3038 /* 3039 * Inhibit technologies that disable discarding of pages in RAM blocks. 3040 * 3041 * Returns 0 if successful. Returns -EBUSY if discards are already set to 3042 * broken. 3043 */ 3044 int ram_block_discard_require(bool state); 3045 3046 /* 3047 * See ram_block_discard_require(): only inhibit technologies that disable 3048 * uncoordinated discarding of pages in RAM blocks, allowing co-existance with 3049 * technologies that only inhibit uncoordinated discards (via the 3050 * RamDiscardManager). 3051 */ 3052 int ram_block_coordinated_discard_require(bool state); 3053 3054 /* 3055 * Test if any discarding of memory in ram blocks is disabled. 3056 */ 3057 bool ram_block_discard_is_disabled(void); 3058 3059 /* 3060 * Test if any discarding of memory in ram blocks is required to work reliably. 3061 */ 3062 bool ram_block_discard_is_required(void); 3063 3064 #endif 3065 3066 #endif 3067