xref: /openbmc/qemu/include/exec/memory.h (revision 04e3aabd)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/ramlist.h"
23 #include "qemu/queue.h"
24 #include "qemu/int128.h"
25 #include "qemu/notify.h"
26 #include "qom/object.h"
27 #include "qemu/rcu.h"
28 #include "hw/qdev-core.h"
29 
30 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
31 
32 #define MAX_PHYS_ADDR_SPACE_BITS 62
33 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
34 
35 #define TYPE_MEMORY_REGION "qemu:memory-region"
36 #define MEMORY_REGION(obj) \
37         OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
38 
39 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region"
40 #define IOMMU_MEMORY_REGION(obj) \
41         OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION)
42 #define IOMMU_MEMORY_REGION_CLASS(klass) \
43         OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \
44                          TYPE_IOMMU_MEMORY_REGION)
45 #define IOMMU_MEMORY_REGION_GET_CLASS(obj) \
46         OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \
47                          TYPE_IOMMU_MEMORY_REGION)
48 
49 typedef struct MemoryRegionOps MemoryRegionOps;
50 typedef struct MemoryRegionMmio MemoryRegionMmio;
51 
52 struct MemoryRegionMmio {
53     CPUReadMemoryFunc *read[3];
54     CPUWriteMemoryFunc *write[3];
55 };
56 
57 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
58 
59 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
60 typedef enum {
61     IOMMU_NONE = 0,
62     IOMMU_RO   = 1,
63     IOMMU_WO   = 2,
64     IOMMU_RW   = 3,
65 } IOMMUAccessFlags;
66 
67 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
68 
69 struct IOMMUTLBEntry {
70     AddressSpace    *target_as;
71     hwaddr           iova;
72     hwaddr           translated_addr;
73     hwaddr           addr_mask;  /* 0xfff = 4k translation */
74     IOMMUAccessFlags perm;
75 };
76 
77 /*
78  * Bitmap for different IOMMUNotifier capabilities. Each notifier can
79  * register with one or multiple IOMMU Notifier capability bit(s).
80  */
81 typedef enum {
82     IOMMU_NOTIFIER_NONE = 0,
83     /* Notify cache invalidations */
84     IOMMU_NOTIFIER_UNMAP = 0x1,
85     /* Notify entry changes (newly created entries) */
86     IOMMU_NOTIFIER_MAP = 0x2,
87 } IOMMUNotifierFlag;
88 
89 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
90 
91 struct IOMMUNotifier;
92 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
93                             IOMMUTLBEntry *data);
94 
95 struct IOMMUNotifier {
96     IOMMUNotify notify;
97     IOMMUNotifierFlag notifier_flags;
98     /* Notify for address space range start <= addr <= end */
99     hwaddr start;
100     hwaddr end;
101     QLIST_ENTRY(IOMMUNotifier) node;
102 };
103 typedef struct IOMMUNotifier IOMMUNotifier;
104 
105 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
106                                        IOMMUNotifierFlag flags,
107                                        hwaddr start, hwaddr end)
108 {
109     n->notify = fn;
110     n->notifier_flags = flags;
111     n->start = start;
112     n->end = end;
113 }
114 
115 /*
116  * Memory region callbacks
117  */
118 struct MemoryRegionOps {
119     /* Read from the memory region. @addr is relative to @mr; @size is
120      * in bytes. */
121     uint64_t (*read)(void *opaque,
122                      hwaddr addr,
123                      unsigned size);
124     /* Write to the memory region. @addr is relative to @mr; @size is
125      * in bytes. */
126     void (*write)(void *opaque,
127                   hwaddr addr,
128                   uint64_t data,
129                   unsigned size);
130 
131     MemTxResult (*read_with_attrs)(void *opaque,
132                                    hwaddr addr,
133                                    uint64_t *data,
134                                    unsigned size,
135                                    MemTxAttrs attrs);
136     MemTxResult (*write_with_attrs)(void *opaque,
137                                     hwaddr addr,
138                                     uint64_t data,
139                                     unsigned size,
140                                     MemTxAttrs attrs);
141     /* Instruction execution pre-callback:
142      * @addr is the address of the access relative to the @mr.
143      * @size is the size of the area returned by the callback.
144      * @offset is the location of the pointer inside @mr.
145      *
146      * Returns a pointer to a location which contains guest code.
147      */
148     void *(*request_ptr)(void *opaque, hwaddr addr, unsigned *size,
149                          unsigned *offset);
150 
151     enum device_endian endianness;
152     /* Guest-visible constraints: */
153     struct {
154         /* If nonzero, specify bounds on access sizes beyond which a machine
155          * check is thrown.
156          */
157         unsigned min_access_size;
158         unsigned max_access_size;
159         /* If true, unaligned accesses are supported.  Otherwise unaligned
160          * accesses throw machine checks.
161          */
162          bool unaligned;
163         /*
164          * If present, and returns #false, the transaction is not accepted
165          * by the device (and results in machine dependent behaviour such
166          * as a machine check exception).
167          */
168         bool (*accepts)(void *opaque, hwaddr addr,
169                         unsigned size, bool is_write);
170     } valid;
171     /* Internal implementation constraints: */
172     struct {
173         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
174          * will be rounded upwards and a partial result will be returned.
175          */
176         unsigned min_access_size;
177         /* If nonzero, specifies the maximum size implemented.  Larger sizes
178          * will be done as a series of accesses with smaller sizes.
179          */
180         unsigned max_access_size;
181         /* If true, unaligned accesses are supported.  Otherwise all accesses
182          * are converted to (possibly multiple) naturally aligned accesses.
183          */
184         bool unaligned;
185     } impl;
186 
187     /* If .read and .write are not present, old_mmio may be used for
188      * backwards compatibility with old mmio registration
189      */
190     const MemoryRegionMmio old_mmio;
191 };
192 
193 typedef struct IOMMUMemoryRegionClass {
194     /* private */
195     struct DeviceClass parent_class;
196 
197     /*
198      * Return a TLB entry that contains a given address. Flag should
199      * be the access permission of this translation operation. We can
200      * set flag to IOMMU_NONE to mean that we don't need any
201      * read/write permission checks, like, when for region replay.
202      */
203     IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
204                                IOMMUAccessFlags flag);
205     /* Returns minimum supported page size */
206     uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
207     /* Called when IOMMU Notifier flag changed */
208     void (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
209                                 IOMMUNotifierFlag old_flags,
210                                 IOMMUNotifierFlag new_flags);
211     /* Set this up to provide customized IOMMU replay function */
212     void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
213 } IOMMUMemoryRegionClass;
214 
215 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
216 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
217 
218 struct MemoryRegion {
219     Object parent_obj;
220 
221     /* All fields are private - violators will be prosecuted */
222 
223     /* The following fields should fit in a cache line */
224     bool romd_mode;
225     bool ram;
226     bool subpage;
227     bool readonly; /* For RAM regions */
228     bool rom_device;
229     bool flush_coalesced_mmio;
230     bool global_locking;
231     uint8_t dirty_log_mask;
232     bool is_iommu;
233     RAMBlock *ram_block;
234     Object *owner;
235 
236     const MemoryRegionOps *ops;
237     void *opaque;
238     MemoryRegion *container;
239     Int128 size;
240     hwaddr addr;
241     void (*destructor)(MemoryRegion *mr);
242     uint64_t align;
243     bool terminates;
244     bool ram_device;
245     bool enabled;
246     bool warning_printed; /* For reservations */
247     uint8_t vga_logging_count;
248     MemoryRegion *alias;
249     hwaddr alias_offset;
250     int32_t priority;
251     QTAILQ_HEAD(subregions, MemoryRegion) subregions;
252     QTAILQ_ENTRY(MemoryRegion) subregions_link;
253     QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
254     const char *name;
255     unsigned ioeventfd_nb;
256     MemoryRegionIoeventfd *ioeventfds;
257 };
258 
259 struct IOMMUMemoryRegion {
260     MemoryRegion parent_obj;
261 
262     QLIST_HEAD(, IOMMUNotifier) iommu_notify;
263     IOMMUNotifierFlag iommu_notify_flags;
264 };
265 
266 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
267     QLIST_FOREACH((n), &(mr)->iommu_notify, node)
268 
269 /**
270  * MemoryListener: callbacks structure for updates to the physical memory map
271  *
272  * Allows a component to adjust to changes in the guest-visible memory map.
273  * Use with memory_listener_register() and memory_listener_unregister().
274  */
275 struct MemoryListener {
276     void (*begin)(MemoryListener *listener);
277     void (*commit)(MemoryListener *listener);
278     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
279     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
280     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
281     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
282                       int old, int new);
283     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
284                      int old, int new);
285     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
286     void (*log_global_start)(MemoryListener *listener);
287     void (*log_global_stop)(MemoryListener *listener);
288     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
289                         bool match_data, uint64_t data, EventNotifier *e);
290     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
291                         bool match_data, uint64_t data, EventNotifier *e);
292     void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
293                                hwaddr addr, hwaddr len);
294     void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
295                                hwaddr addr, hwaddr len);
296     /* Lower = earlier (during add), later (during del) */
297     unsigned priority;
298     AddressSpace *address_space;
299     QTAILQ_ENTRY(MemoryListener) link;
300     QTAILQ_ENTRY(MemoryListener) link_as;
301 };
302 
303 /**
304  * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
305  */
306 struct AddressSpace {
307     /* All fields are private. */
308     struct rcu_head rcu;
309     char *name;
310     MemoryRegion *root;
311     int ref_count;
312     bool malloced;
313 
314     /* Accessed via RCU.  */
315     struct FlatView *current_map;
316 
317     int ioeventfd_nb;
318     struct MemoryRegionIoeventfd *ioeventfds;
319     struct AddressSpaceDispatch *dispatch;
320     struct AddressSpaceDispatch *next_dispatch;
321     MemoryListener dispatch_listener;
322     QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners;
323     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
324 };
325 
326 /**
327  * MemoryRegionSection: describes a fragment of a #MemoryRegion
328  *
329  * @mr: the region, or %NULL if empty
330  * @address_space: the address space the region is mapped in
331  * @offset_within_region: the beginning of the section, relative to @mr's start
332  * @size: the size of the section; will not exceed @mr's boundaries
333  * @offset_within_address_space: the address of the first byte of the section
334  *     relative to the region's address space
335  * @readonly: writes to this section are ignored
336  */
337 struct MemoryRegionSection {
338     MemoryRegion *mr;
339     AddressSpace *address_space;
340     hwaddr offset_within_region;
341     Int128 size;
342     hwaddr offset_within_address_space;
343     bool readonly;
344 };
345 
346 /**
347  * memory_region_init: Initialize a memory region
348  *
349  * The region typically acts as a container for other memory regions.  Use
350  * memory_region_add_subregion() to add subregions.
351  *
352  * @mr: the #MemoryRegion to be initialized
353  * @owner: the object that tracks the region's reference count
354  * @name: used for debugging; not visible to the user or ABI
355  * @size: size of the region; any subregions beyond this size will be clipped
356  */
357 void memory_region_init(MemoryRegion *mr,
358                         struct Object *owner,
359                         const char *name,
360                         uint64_t size);
361 
362 /**
363  * memory_region_ref: Add 1 to a memory region's reference count
364  *
365  * Whenever memory regions are accessed outside the BQL, they need to be
366  * preserved against hot-unplug.  MemoryRegions actually do not have their
367  * own reference count; they piggyback on a QOM object, their "owner".
368  * This function adds a reference to the owner.
369  *
370  * All MemoryRegions must have an owner if they can disappear, even if the
371  * device they belong to operates exclusively under the BQL.  This is because
372  * the region could be returned at any time by memory_region_find, and this
373  * is usually under guest control.
374  *
375  * @mr: the #MemoryRegion
376  */
377 void memory_region_ref(MemoryRegion *mr);
378 
379 /**
380  * memory_region_unref: Remove 1 to a memory region's reference count
381  *
382  * Whenever memory regions are accessed outside the BQL, they need to be
383  * preserved against hot-unplug.  MemoryRegions actually do not have their
384  * own reference count; they piggyback on a QOM object, their "owner".
385  * This function removes a reference to the owner and possibly destroys it.
386  *
387  * @mr: the #MemoryRegion
388  */
389 void memory_region_unref(MemoryRegion *mr);
390 
391 /**
392  * memory_region_init_io: Initialize an I/O memory region.
393  *
394  * Accesses into the region will cause the callbacks in @ops to be called.
395  * if @size is nonzero, subregions will be clipped to @size.
396  *
397  * @mr: the #MemoryRegion to be initialized.
398  * @owner: the object that tracks the region's reference count
399  * @ops: a structure containing read and write callbacks to be used when
400  *       I/O is performed on the region.
401  * @opaque: passed to the read and write callbacks of the @ops structure.
402  * @name: used for debugging; not visible to the user or ABI
403  * @size: size of the region.
404  */
405 void memory_region_init_io(MemoryRegion *mr,
406                            struct Object *owner,
407                            const MemoryRegionOps *ops,
408                            void *opaque,
409                            const char *name,
410                            uint64_t size);
411 
412 /**
413  * memory_region_init_ram_nomigrate:  Initialize RAM memory region.  Accesses
414  *                                    into the region will modify memory
415  *                                    directly.
416  *
417  * @mr: the #MemoryRegion to be initialized.
418  * @owner: the object that tracks the region's reference count
419  * @name: Region name, becomes part of RAMBlock name used in migration stream
420  *        must be unique within any device
421  * @size: size of the region.
422  * @errp: pointer to Error*, to store an error if it happens.
423  *
424  * Note that this function does not do anything to cause the data in the
425  * RAM memory region to be migrated; that is the responsibility of the caller.
426  */
427 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
428                                       struct Object *owner,
429                                       const char *name,
430                                       uint64_t size,
431                                       Error **errp);
432 
433 /**
434  * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
435  *                                     RAM.  Accesses into the region will
436  *                                     modify memory directly.  Only an initial
437  *                                     portion of this RAM is actually used.
438  *                                     The used size can change across reboots.
439  *
440  * @mr: the #MemoryRegion to be initialized.
441  * @owner: the object that tracks the region's reference count
442  * @name: Region name, becomes part of RAMBlock name used in migration stream
443  *        must be unique within any device
444  * @size: used size of the region.
445  * @max_size: max size of the region.
446  * @resized: callback to notify owner about used size change.
447  * @errp: pointer to Error*, to store an error if it happens.
448  *
449  * Note that this function does not do anything to cause the data in the
450  * RAM memory region to be migrated; that is the responsibility of the caller.
451  */
452 void memory_region_init_resizeable_ram(MemoryRegion *mr,
453                                        struct Object *owner,
454                                        const char *name,
455                                        uint64_t size,
456                                        uint64_t max_size,
457                                        void (*resized)(const char*,
458                                                        uint64_t length,
459                                                        void *host),
460                                        Error **errp);
461 #ifdef __linux__
462 /**
463  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
464  *                                    mmap-ed backend.
465  *
466  * @mr: the #MemoryRegion to be initialized.
467  * @owner: the object that tracks the region's reference count
468  * @name: Region name, becomes part of RAMBlock name used in migration stream
469  *        must be unique within any device
470  * @size: size of the region.
471  * @share: %true if memory must be mmaped with the MAP_SHARED flag
472  * @path: the path in which to allocate the RAM.
473  * @errp: pointer to Error*, to store an error if it happens.
474  *
475  * Note that this function does not do anything to cause the data in the
476  * RAM memory region to be migrated; that is the responsibility of the caller.
477  */
478 void memory_region_init_ram_from_file(MemoryRegion *mr,
479                                       struct Object *owner,
480                                       const char *name,
481                                       uint64_t size,
482                                       bool share,
483                                       const char *path,
484                                       Error **errp);
485 
486 /**
487  * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
488  *                                  mmap-ed backend.
489  *
490  * @mr: the #MemoryRegion to be initialized.
491  * @owner: the object that tracks the region's reference count
492  * @name: the name of the region.
493  * @size: size of the region.
494  * @share: %true if memory must be mmaped with the MAP_SHARED flag
495  * @fd: the fd to mmap.
496  * @errp: pointer to Error*, to store an error if it happens.
497  *
498  * Note that this function does not do anything to cause the data in the
499  * RAM memory region to be migrated; that is the responsibility of the caller.
500  */
501 void memory_region_init_ram_from_fd(MemoryRegion *mr,
502                                     struct Object *owner,
503                                     const char *name,
504                                     uint64_t size,
505                                     bool share,
506                                     int fd,
507                                     Error **errp);
508 #endif
509 
510 /**
511  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
512  *                              user-provided pointer.  Accesses into the
513  *                              region will modify memory directly.
514  *
515  * @mr: the #MemoryRegion to be initialized.
516  * @owner: the object that tracks the region's reference count
517  * @name: Region name, becomes part of RAMBlock name used in migration stream
518  *        must be unique within any device
519  * @size: size of the region.
520  * @ptr: memory to be mapped; must contain at least @size bytes.
521  *
522  * Note that this function does not do anything to cause the data in the
523  * RAM memory region to be migrated; that is the responsibility of the caller.
524  */
525 void memory_region_init_ram_ptr(MemoryRegion *mr,
526                                 struct Object *owner,
527                                 const char *name,
528                                 uint64_t size,
529                                 void *ptr);
530 
531 /**
532  * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
533  *                                     a user-provided pointer.
534  *
535  * A RAM device represents a mapping to a physical device, such as to a PCI
536  * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
537  * into the VM address space and access to the region will modify memory
538  * directly.  However, the memory region should not be included in a memory
539  * dump (device may not be enabled/mapped at the time of the dump), and
540  * operations incompatible with manipulating MMIO should be avoided.  Replaces
541  * skip_dump flag.
542  *
543  * @mr: the #MemoryRegion to be initialized.
544  * @owner: the object that tracks the region's reference count
545  * @name: the name of the region.
546  * @size: size of the region.
547  * @ptr: memory to be mapped; must contain at least @size bytes.
548  *
549  * Note that this function does not do anything to cause the data in the
550  * RAM memory region to be migrated; that is the responsibility of the caller.
551  * (For RAM device memory regions, migrating the contents rarely makes sense.)
552  */
553 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
554                                        struct Object *owner,
555                                        const char *name,
556                                        uint64_t size,
557                                        void *ptr);
558 
559 /**
560  * memory_region_init_alias: Initialize a memory region that aliases all or a
561  *                           part of another memory region.
562  *
563  * @mr: the #MemoryRegion to be initialized.
564  * @owner: the object that tracks the region's reference count
565  * @name: used for debugging; not visible to the user or ABI
566  * @orig: the region to be referenced; @mr will be equivalent to
567  *        @orig between @offset and @offset + @size - 1.
568  * @offset: start of the section in @orig to be referenced.
569  * @size: size of the region.
570  */
571 void memory_region_init_alias(MemoryRegion *mr,
572                               struct Object *owner,
573                               const char *name,
574                               MemoryRegion *orig,
575                               hwaddr offset,
576                               uint64_t size);
577 
578 /**
579  * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
580  *
581  * This has the same effect as calling memory_region_init_ram_nomigrate()
582  * and then marking the resulting region read-only with
583  * memory_region_set_readonly().
584  *
585  * Note that this function does not do anything to cause the data in the
586  * RAM side of the memory region to be migrated; that is the responsibility
587  * of the caller.
588  *
589  * @mr: the #MemoryRegion to be initialized.
590  * @owner: the object that tracks the region's reference count
591  * @name: Region name, becomes part of RAMBlock name used in migration stream
592  *        must be unique within any device
593  * @size: size of the region.
594  * @errp: pointer to Error*, to store an error if it happens.
595  */
596 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
597                                       struct Object *owner,
598                                       const char *name,
599                                       uint64_t size,
600                                       Error **errp);
601 
602 /**
603  * memory_region_init_rom_device_nomigrate:  Initialize a ROM memory region.
604  *                                 Writes are handled via callbacks.
605  *
606  * Note that this function does not do anything to cause the data in the
607  * RAM side of the memory region to be migrated; that is the responsibility
608  * of the caller.
609  *
610  * @mr: the #MemoryRegion to be initialized.
611  * @owner: the object that tracks the region's reference count
612  * @ops: callbacks for write access handling (must not be NULL).
613  * @name: Region name, becomes part of RAMBlock name used in migration stream
614  *        must be unique within any device
615  * @size: size of the region.
616  * @errp: pointer to Error*, to store an error if it happens.
617  */
618 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
619                                              struct Object *owner,
620                                              const MemoryRegionOps *ops,
621                                              void *opaque,
622                                              const char *name,
623                                              uint64_t size,
624                                              Error **errp);
625 
626 /**
627  * memory_region_init_reservation: Initialize a memory region that reserves
628  *                                 I/O space.
629  *
630  * A reservation region primariy serves debugging purposes.  It claims I/O
631  * space that is not supposed to be handled by QEMU itself.  Any access via
632  * the memory API will cause an abort().
633  * This function is deprecated. Use memory_region_init_io() with NULL
634  * callbacks instead.
635  *
636  * @mr: the #MemoryRegion to be initialized
637  * @owner: the object that tracks the region's reference count
638  * @name: used for debugging; not visible to the user or ABI
639  * @size: size of the region.
640  */
641 static inline void memory_region_init_reservation(MemoryRegion *mr,
642                                     Object *owner,
643                                     const char *name,
644                                     uint64_t size)
645 {
646     memory_region_init_io(mr, owner, NULL, mr, name, size);
647 }
648 
649 /**
650  * memory_region_init_iommu: Initialize a memory region of a custom type
651  * that translates addresses
652  *
653  * An IOMMU region translates addresses and forwards accesses to a target
654  * memory region.
655  *
656  * @typename: QOM class name
657  * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
658  * @instance_size: the IOMMUMemoryRegion subclass instance size
659  * @owner: the object that tracks the region's reference count
660  * @ops: a function that translates addresses into the @target region
661  * @name: used for debugging; not visible to the user or ABI
662  * @size: size of the region.
663  */
664 void memory_region_init_iommu(void *_iommu_mr,
665                               size_t instance_size,
666                               const char *mrtypename,
667                               Object *owner,
668                               const char *name,
669                               uint64_t size);
670 
671 /**
672  * memory_region_init_ram - Initialize RAM memory region.  Accesses into the
673  *                          region will modify memory directly.
674  *
675  * @mr: the #MemoryRegion to be initialized
676  * @owner: the object that tracks the region's reference count (must be
677  *         TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
678  * @name: name of the memory region
679  * @size: size of the region in bytes
680  * @errp: pointer to Error*, to store an error if it happens.
681  *
682  * This function allocates RAM for a board model or device, and
683  * arranges for it to be migrated (by calling vmstate_register_ram()
684  * if @owner is a DeviceState, or vmstate_register_ram_global() if
685  * @owner is NULL).
686  *
687  * TODO: Currently we restrict @owner to being either NULL (for
688  * global RAM regions with no owner) or devices, so that we can
689  * give the RAM block a unique name for migration purposes.
690  * We should lift this restriction and allow arbitrary Objects.
691  * If you pass a non-NULL non-device @owner then we will assert.
692  */
693 void memory_region_init_ram(MemoryRegion *mr,
694                             struct Object *owner,
695                             const char *name,
696                             uint64_t size,
697                             Error **errp);
698 
699 /**
700  * memory_region_init_rom: Initialize a ROM memory region.
701  *
702  * This has the same effect as calling memory_region_init_ram()
703  * and then marking the resulting region read-only with
704  * memory_region_set_readonly(). This includes arranging for the
705  * contents to be migrated.
706  *
707  * TODO: Currently we restrict @owner to being either NULL (for
708  * global RAM regions with no owner) or devices, so that we can
709  * give the RAM block a unique name for migration purposes.
710  * We should lift this restriction and allow arbitrary Objects.
711  * If you pass a non-NULL non-device @owner then we will assert.
712  *
713  * @mr: the #MemoryRegion to be initialized.
714  * @owner: the object that tracks the region's reference count
715  * @name: Region name, becomes part of RAMBlock name used in migration stream
716  *        must be unique within any device
717  * @size: size of the region.
718  * @errp: pointer to Error*, to store an error if it happens.
719  */
720 void memory_region_init_rom(MemoryRegion *mr,
721                             struct Object *owner,
722                             const char *name,
723                             uint64_t size,
724                             Error **errp);
725 
726 /**
727  * memory_region_init_rom_device:  Initialize a ROM memory region.
728  *                                 Writes are handled via callbacks.
729  *
730  * This function initializes a memory region backed by RAM for reads
731  * and callbacks for writes, and arranges for the RAM backing to
732  * be migrated (by calling vmstate_register_ram()
733  * if @owner is a DeviceState, or vmstate_register_ram_global() if
734  * @owner is NULL).
735  *
736  * TODO: Currently we restrict @owner to being either NULL (for
737  * global RAM regions with no owner) or devices, so that we can
738  * give the RAM block a unique name for migration purposes.
739  * We should lift this restriction and allow arbitrary Objects.
740  * If you pass a non-NULL non-device @owner then we will assert.
741  *
742  * @mr: the #MemoryRegion to be initialized.
743  * @owner: the object that tracks the region's reference count
744  * @ops: callbacks for write access handling (must not be NULL).
745  * @name: Region name, becomes part of RAMBlock name used in migration stream
746  *        must be unique within any device
747  * @size: size of the region.
748  * @errp: pointer to Error*, to store an error if it happens.
749  */
750 void memory_region_init_rom_device(MemoryRegion *mr,
751                                    struct Object *owner,
752                                    const MemoryRegionOps *ops,
753                                    void *opaque,
754                                    const char *name,
755                                    uint64_t size,
756                                    Error **errp);
757 
758 
759 /**
760  * memory_region_owner: get a memory region's owner.
761  *
762  * @mr: the memory region being queried.
763  */
764 struct Object *memory_region_owner(MemoryRegion *mr);
765 
766 /**
767  * memory_region_size: get a memory region's size.
768  *
769  * @mr: the memory region being queried.
770  */
771 uint64_t memory_region_size(MemoryRegion *mr);
772 
773 /**
774  * memory_region_is_ram: check whether a memory region is random access
775  *
776  * Returns %true is a memory region is random access.
777  *
778  * @mr: the memory region being queried
779  */
780 static inline bool memory_region_is_ram(MemoryRegion *mr)
781 {
782     return mr->ram;
783 }
784 
785 /**
786  * memory_region_is_ram_device: check whether a memory region is a ram device
787  *
788  * Returns %true is a memory region is a device backed ram region
789  *
790  * @mr: the memory region being queried
791  */
792 bool memory_region_is_ram_device(MemoryRegion *mr);
793 
794 /**
795  * memory_region_is_romd: check whether a memory region is in ROMD mode
796  *
797  * Returns %true if a memory region is a ROM device and currently set to allow
798  * direct reads.
799  *
800  * @mr: the memory region being queried
801  */
802 static inline bool memory_region_is_romd(MemoryRegion *mr)
803 {
804     return mr->rom_device && mr->romd_mode;
805 }
806 
807 /**
808  * memory_region_get_iommu: check whether a memory region is an iommu
809  *
810  * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
811  * otherwise NULL.
812  *
813  * @mr: the memory region being queried
814  */
815 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
816 {
817     if (mr->alias) {
818         return memory_region_get_iommu(mr->alias);
819     }
820     if (mr->is_iommu) {
821         return (IOMMUMemoryRegion *) mr;
822     }
823     return NULL;
824 }
825 
826 /**
827  * memory_region_get_iommu_class_nocheck: returns iommu memory region class
828  *   if an iommu or NULL if not
829  *
830  * Returns pointer to IOMMUMemoryRegioniClass if a memory region is an iommu,
831  * otherwise NULL. This is fast path avoinding QOM checking, use with caution.
832  *
833  * @mr: the memory region being queried
834  */
835 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
836         IOMMUMemoryRegion *iommu_mr)
837 {
838     return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
839 }
840 
841 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
842 
843 /**
844  * memory_region_iommu_get_min_page_size: get minimum supported page size
845  * for an iommu
846  *
847  * Returns minimum supported page size for an iommu.
848  *
849  * @iommu_mr: the memory region being queried
850  */
851 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
852 
853 /**
854  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
855  *
856  * The notification type will be decided by entry.perm bits:
857  *
858  * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
859  * - For MAP (newly added entry) notifies: set entry.perm to the
860  *   permission of the page (which is definitely !IOMMU_NONE).
861  *
862  * Note: for any IOMMU implementation, an in-place mapping change
863  * should be notified with an UNMAP followed by a MAP.
864  *
865  * @iommu_mr: the memory region that was changed
866  * @entry: the new entry in the IOMMU translation table.  The entry
867  *         replaces all old entries for the same virtual I/O address range.
868  *         Deleted entries have .@perm == 0.
869  */
870 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
871                                 IOMMUTLBEntry entry);
872 
873 /**
874  * memory_region_notify_one: notify a change in an IOMMU translation
875  *                           entry to a single notifier
876  *
877  * This works just like memory_region_notify_iommu(), but it only
878  * notifies a specific notifier, not all of them.
879  *
880  * @notifier: the notifier to be notified
881  * @entry: the new entry in the IOMMU translation table.  The entry
882  *         replaces all old entries for the same virtual I/O address range.
883  *         Deleted entries have .@perm == 0.
884  */
885 void memory_region_notify_one(IOMMUNotifier *notifier,
886                               IOMMUTLBEntry *entry);
887 
888 /**
889  * memory_region_register_iommu_notifier: register a notifier for changes to
890  * IOMMU translation entries.
891  *
892  * @mr: the memory region to observe
893  * @n: the IOMMUNotifier to be added; the notify callback receives a
894  *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
895  *     ceases to be valid on exit from the notifier.
896  */
897 void memory_region_register_iommu_notifier(MemoryRegion *mr,
898                                            IOMMUNotifier *n);
899 
900 /**
901  * memory_region_iommu_replay: replay existing IOMMU translations to
902  * a notifier with the minimum page granularity returned by
903  * mr->iommu_ops->get_page_size().
904  *
905  * @iommu_mr: the memory region to observe
906  * @n: the notifier to which to replay iommu mappings
907  */
908 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
909 
910 /**
911  * memory_region_iommu_replay_all: replay existing IOMMU translations
912  * to all the notifiers registered.
913  *
914  * @iommu_mr: the memory region to observe
915  */
916 void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr);
917 
918 /**
919  * memory_region_unregister_iommu_notifier: unregister a notifier for
920  * changes to IOMMU translation entries.
921  *
922  * @mr: the memory region which was observed and for which notity_stopped()
923  *      needs to be called
924  * @n: the notifier to be removed.
925  */
926 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
927                                              IOMMUNotifier *n);
928 
929 /**
930  * memory_region_name: get a memory region's name
931  *
932  * Returns the string that was used to initialize the memory region.
933  *
934  * @mr: the memory region being queried
935  */
936 const char *memory_region_name(const MemoryRegion *mr);
937 
938 /**
939  * memory_region_is_logging: return whether a memory region is logging writes
940  *
941  * Returns %true if the memory region is logging writes for the given client
942  *
943  * @mr: the memory region being queried
944  * @client: the client being queried
945  */
946 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
947 
948 /**
949  * memory_region_get_dirty_log_mask: return the clients for which a
950  * memory region is logging writes.
951  *
952  * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
953  * are the bit indices.
954  *
955  * @mr: the memory region being queried
956  */
957 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
958 
959 /**
960  * memory_region_is_rom: check whether a memory region is ROM
961  *
962  * Returns %true is a memory region is read-only memory.
963  *
964  * @mr: the memory region being queried
965  */
966 static inline bool memory_region_is_rom(MemoryRegion *mr)
967 {
968     return mr->ram && mr->readonly;
969 }
970 
971 
972 /**
973  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
974  *
975  * Returns a file descriptor backing a file-based RAM memory region,
976  * or -1 if the region is not a file-based RAM memory region.
977  *
978  * @mr: the RAM or alias memory region being queried.
979  */
980 int memory_region_get_fd(MemoryRegion *mr);
981 
982 /**
983  * memory_region_from_host: Convert a pointer into a RAM memory region
984  * and an offset within it.
985  *
986  * Given a host pointer inside a RAM memory region (created with
987  * memory_region_init_ram() or memory_region_init_ram_ptr()), return
988  * the MemoryRegion and the offset within it.
989  *
990  * Use with care; by the time this function returns, the returned pointer is
991  * not protected by RCU anymore.  If the caller is not within an RCU critical
992  * section and does not hold the iothread lock, it must have other means of
993  * protecting the pointer, such as a reference to the region that includes
994  * the incoming ram_addr_t.
995  *
996  * @mr: the memory region being queried.
997  */
998 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
999 
1000 /**
1001  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1002  *
1003  * Returns a host pointer to a RAM memory region (created with
1004  * memory_region_init_ram() or memory_region_init_ram_ptr()).
1005  *
1006  * Use with care; by the time this function returns, the returned pointer is
1007  * not protected by RCU anymore.  If the caller is not within an RCU critical
1008  * section and does not hold the iothread lock, it must have other means of
1009  * protecting the pointer, such as a reference to the region that includes
1010  * the incoming ram_addr_t.
1011  *
1012  * @mr: the memory region being queried.
1013  */
1014 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1015 
1016 /* memory_region_ram_resize: Resize a RAM region.
1017  *
1018  * Only legal before guest might have detected the memory size: e.g. on
1019  * incoming migration, or right after reset.
1020  *
1021  * @mr: a memory region created with @memory_region_init_resizeable_ram.
1022  * @newsize: the new size the region
1023  * @errp: pointer to Error*, to store an error if it happens.
1024  */
1025 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1026                               Error **errp);
1027 
1028 /**
1029  * memory_region_set_log: Turn dirty logging on or off for a region.
1030  *
1031  * Turns dirty logging on or off for a specified client (display, migration).
1032  * Only meaningful for RAM regions.
1033  *
1034  * @mr: the memory region being updated.
1035  * @log: whether dirty logging is to be enabled or disabled.
1036  * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1037  */
1038 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1039 
1040 /**
1041  * memory_region_get_dirty: Check whether a range of bytes is dirty
1042  *                          for a specified client.
1043  *
1044  * Checks whether a range of bytes has been written to since the last
1045  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
1046  * must be enabled.
1047  *
1048  * @mr: the memory region being queried.
1049  * @addr: the address (relative to the start of the region) being queried.
1050  * @size: the size of the range being queried.
1051  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1052  *          %DIRTY_MEMORY_VGA.
1053  */
1054 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1055                              hwaddr size, unsigned client);
1056 
1057 /**
1058  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1059  *
1060  * Marks a range of bytes as dirty, after it has been dirtied outside
1061  * guest code.
1062  *
1063  * @mr: the memory region being dirtied.
1064  * @addr: the address (relative to the start of the region) being dirtied.
1065  * @size: size of the range being dirtied.
1066  */
1067 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1068                              hwaddr size);
1069 
1070 /**
1071  * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
1072  *                                     for a specified client. It clears them.
1073  *
1074  * Checks whether a range of bytes has been written to since the last
1075  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
1076  * must be enabled.
1077  *
1078  * @mr: the memory region being queried.
1079  * @addr: the address (relative to the start of the region) being queried.
1080  * @size: the size of the range being queried.
1081  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1082  *          %DIRTY_MEMORY_VGA.
1083  */
1084 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1085                                         hwaddr size, unsigned client);
1086 
1087 /**
1088  * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1089  *                                         bitmap and clear it.
1090  *
1091  * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1092  * returns the snapshot.  The snapshot can then be used to query dirty
1093  * status, using memory_region_snapshot_get_dirty.  Unlike
1094  * memory_region_test_and_clear_dirty this allows to query the same
1095  * page multiple times, which is especially useful for display updates
1096  * where the scanlines often are not page aligned.
1097  *
1098  * The dirty bitmap region which gets copyed into the snapshot (and
1099  * cleared afterwards) can be larger than requested.  The boundaries
1100  * are rounded up/down so complete bitmap longs (covering 64 pages on
1101  * 64bit hosts) can be copied over into the bitmap snapshot.  Which
1102  * isn't a problem for display updates as the extra pages are outside
1103  * the visible area, and in case the visible area changes a full
1104  * display redraw is due anyway.  Should other use cases for this
1105  * function emerge we might have to revisit this implementation
1106  * detail.
1107  *
1108  * Use g_free to release DirtyBitmapSnapshot.
1109  *
1110  * @mr: the memory region being queried.
1111  * @addr: the address (relative to the start of the region) being queried.
1112  * @size: the size of the range being queried.
1113  * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1114  */
1115 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1116                                                             hwaddr addr,
1117                                                             hwaddr size,
1118                                                             unsigned client);
1119 
1120 /**
1121  * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1122  *                                   in the specified dirty bitmap snapshot.
1123  *
1124  * @mr: the memory region being queried.
1125  * @snap: the dirty bitmap snapshot
1126  * @addr: the address (relative to the start of the region) being queried.
1127  * @size: the size of the range being queried.
1128  */
1129 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1130                                       DirtyBitmapSnapshot *snap,
1131                                       hwaddr addr, hwaddr size);
1132 
1133 /**
1134  * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
1135  *                                  any external TLBs (e.g. kvm)
1136  *
1137  * Flushes dirty information from accelerators such as kvm and vhost-net
1138  * and makes it available to users of the memory API.
1139  *
1140  * @mr: the region being flushed.
1141  */
1142 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
1143 
1144 /**
1145  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1146  *                            client.
1147  *
1148  * Marks a range of pages as no longer dirty.
1149  *
1150  * @mr: the region being updated.
1151  * @addr: the start of the subrange being cleaned.
1152  * @size: the size of the subrange being cleaned.
1153  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1154  *          %DIRTY_MEMORY_VGA.
1155  */
1156 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1157                                hwaddr size, unsigned client);
1158 
1159 /**
1160  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1161  *
1162  * Allows a memory region to be marked as read-only (turning it into a ROM).
1163  * only useful on RAM regions.
1164  *
1165  * @mr: the region being updated.
1166  * @readonly: whether rhe region is to be ROM or RAM.
1167  */
1168 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1169 
1170 /**
1171  * memory_region_rom_device_set_romd: enable/disable ROMD mode
1172  *
1173  * Allows a ROM device (initialized with memory_region_init_rom_device() to
1174  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
1175  * device is mapped to guest memory and satisfies read access directly.
1176  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1177  * Writes are always handled by the #MemoryRegion.write function.
1178  *
1179  * @mr: the memory region to be updated
1180  * @romd_mode: %true to put the region into ROMD mode
1181  */
1182 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1183 
1184 /**
1185  * memory_region_set_coalescing: Enable memory coalescing for the region.
1186  *
1187  * Enabled writes to a region to be queued for later processing. MMIO ->write
1188  * callbacks may be delayed until a non-coalesced MMIO is issued.
1189  * Only useful for IO regions.  Roughly similar to write-combining hardware.
1190  *
1191  * @mr: the memory region to be write coalesced
1192  */
1193 void memory_region_set_coalescing(MemoryRegion *mr);
1194 
1195 /**
1196  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1197  *                               a region.
1198  *
1199  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1200  * Multiple calls can be issued coalesced disjoint ranges.
1201  *
1202  * @mr: the memory region to be updated.
1203  * @offset: the start of the range within the region to be coalesced.
1204  * @size: the size of the subrange to be coalesced.
1205  */
1206 void memory_region_add_coalescing(MemoryRegion *mr,
1207                                   hwaddr offset,
1208                                   uint64_t size);
1209 
1210 /**
1211  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1212  *
1213  * Disables any coalescing caused by memory_region_set_coalescing() or
1214  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
1215  * hardware.
1216  *
1217  * @mr: the memory region to be updated.
1218  */
1219 void memory_region_clear_coalescing(MemoryRegion *mr);
1220 
1221 /**
1222  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1223  *                                    accesses.
1224  *
1225  * Ensure that pending coalesced MMIO request are flushed before the memory
1226  * region is accessed. This property is automatically enabled for all regions
1227  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1228  *
1229  * @mr: the memory region to be updated.
1230  */
1231 void memory_region_set_flush_coalesced(MemoryRegion *mr);
1232 
1233 /**
1234  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1235  *                                      accesses.
1236  *
1237  * Clear the automatic coalesced MMIO flushing enabled via
1238  * memory_region_set_flush_coalesced. Note that this service has no effect on
1239  * memory regions that have MMIO coalescing enabled for themselves. For them,
1240  * automatic flushing will stop once coalescing is disabled.
1241  *
1242  * @mr: the memory region to be updated.
1243  */
1244 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1245 
1246 /**
1247  * memory_region_set_global_locking: Declares the access processing requires
1248  *                                   QEMU's global lock.
1249  *
1250  * When this is invoked, accesses to the memory region will be processed while
1251  * holding the global lock of QEMU. This is the default behavior of memory
1252  * regions.
1253  *
1254  * @mr: the memory region to be updated.
1255  */
1256 void memory_region_set_global_locking(MemoryRegion *mr);
1257 
1258 /**
1259  * memory_region_clear_global_locking: Declares that access processing does
1260  *                                     not depend on the QEMU global lock.
1261  *
1262  * By clearing this property, accesses to the memory region will be processed
1263  * outside of QEMU's global lock (unless the lock is held on when issuing the
1264  * access request). In this case, the device model implementing the access
1265  * handlers is responsible for synchronization of concurrency.
1266  *
1267  * @mr: the memory region to be updated.
1268  */
1269 void memory_region_clear_global_locking(MemoryRegion *mr);
1270 
1271 /**
1272  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1273  *                            is written to a location.
1274  *
1275  * Marks a word in an IO region (initialized with memory_region_init_io())
1276  * as a trigger for an eventfd event.  The I/O callback will not be called.
1277  * The caller must be prepared to handle failure (that is, take the required
1278  * action if the callback _is_ called).
1279  *
1280  * @mr: the memory region being updated.
1281  * @addr: the address within @mr that is to be monitored
1282  * @size: the size of the access to trigger the eventfd
1283  * @match_data: whether to match against @data, instead of just @addr
1284  * @data: the data to match against the guest write
1285  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1286  **/
1287 void memory_region_add_eventfd(MemoryRegion *mr,
1288                                hwaddr addr,
1289                                unsigned size,
1290                                bool match_data,
1291                                uint64_t data,
1292                                EventNotifier *e);
1293 
1294 /**
1295  * memory_region_del_eventfd: Cancel an eventfd.
1296  *
1297  * Cancels an eventfd trigger requested by a previous
1298  * memory_region_add_eventfd() call.
1299  *
1300  * @mr: the memory region being updated.
1301  * @addr: the address within @mr that is to be monitored
1302  * @size: the size of the access to trigger the eventfd
1303  * @match_data: whether to match against @data, instead of just @addr
1304  * @data: the data to match against the guest write
1305  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1306  */
1307 void memory_region_del_eventfd(MemoryRegion *mr,
1308                                hwaddr addr,
1309                                unsigned size,
1310                                bool match_data,
1311                                uint64_t data,
1312                                EventNotifier *e);
1313 
1314 /**
1315  * memory_region_add_subregion: Add a subregion to a container.
1316  *
1317  * Adds a subregion at @offset.  The subregion may not overlap with other
1318  * subregions (except for those explicitly marked as overlapping).  A region
1319  * may only be added once as a subregion (unless removed with
1320  * memory_region_del_subregion()); use memory_region_init_alias() if you
1321  * want a region to be a subregion in multiple locations.
1322  *
1323  * @mr: the region to contain the new subregion; must be a container
1324  *      initialized with memory_region_init().
1325  * @offset: the offset relative to @mr where @subregion is added.
1326  * @subregion: the subregion to be added.
1327  */
1328 void memory_region_add_subregion(MemoryRegion *mr,
1329                                  hwaddr offset,
1330                                  MemoryRegion *subregion);
1331 /**
1332  * memory_region_add_subregion_overlap: Add a subregion to a container
1333  *                                      with overlap.
1334  *
1335  * Adds a subregion at @offset.  The subregion may overlap with other
1336  * subregions.  Conflicts are resolved by having a higher @priority hide a
1337  * lower @priority. Subregions without priority are taken as @priority 0.
1338  * A region may only be added once as a subregion (unless removed with
1339  * memory_region_del_subregion()); use memory_region_init_alias() if you
1340  * want a region to be a subregion in multiple locations.
1341  *
1342  * @mr: the region to contain the new subregion; must be a container
1343  *      initialized with memory_region_init().
1344  * @offset: the offset relative to @mr where @subregion is added.
1345  * @subregion: the subregion to be added.
1346  * @priority: used for resolving overlaps; highest priority wins.
1347  */
1348 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1349                                          hwaddr offset,
1350                                          MemoryRegion *subregion,
1351                                          int priority);
1352 
1353 /**
1354  * memory_region_get_ram_addr: Get the ram address associated with a memory
1355  *                             region
1356  */
1357 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1358 
1359 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1360 /**
1361  * memory_region_del_subregion: Remove a subregion.
1362  *
1363  * Removes a subregion from its container.
1364  *
1365  * @mr: the container to be updated.
1366  * @subregion: the region being removed; must be a current subregion of @mr.
1367  */
1368 void memory_region_del_subregion(MemoryRegion *mr,
1369                                  MemoryRegion *subregion);
1370 
1371 /*
1372  * memory_region_set_enabled: dynamically enable or disable a region
1373  *
1374  * Enables or disables a memory region.  A disabled memory region
1375  * ignores all accesses to itself and its subregions.  It does not
1376  * obscure sibling subregions with lower priority - it simply behaves as
1377  * if it was removed from the hierarchy.
1378  *
1379  * Regions default to being enabled.
1380  *
1381  * @mr: the region to be updated
1382  * @enabled: whether to enable or disable the region
1383  */
1384 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1385 
1386 /*
1387  * memory_region_set_address: dynamically update the address of a region
1388  *
1389  * Dynamically updates the address of a region, relative to its container.
1390  * May be used on regions are currently part of a memory hierarchy.
1391  *
1392  * @mr: the region to be updated
1393  * @addr: new address, relative to container region
1394  */
1395 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1396 
1397 /*
1398  * memory_region_set_size: dynamically update the size of a region.
1399  *
1400  * Dynamically updates the size of a region.
1401  *
1402  * @mr: the region to be updated
1403  * @size: used size of the region.
1404  */
1405 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1406 
1407 /*
1408  * memory_region_set_alias_offset: dynamically update a memory alias's offset
1409  *
1410  * Dynamically updates the offset into the target region that an alias points
1411  * to, as if the fourth argument to memory_region_init_alias() has changed.
1412  *
1413  * @mr: the #MemoryRegion to be updated; should be an alias.
1414  * @offset: the new offset into the target memory region
1415  */
1416 void memory_region_set_alias_offset(MemoryRegion *mr,
1417                                     hwaddr offset);
1418 
1419 /**
1420  * memory_region_present: checks if an address relative to a @container
1421  * translates into #MemoryRegion within @container
1422  *
1423  * Answer whether a #MemoryRegion within @container covers the address
1424  * @addr.
1425  *
1426  * @container: a #MemoryRegion within which @addr is a relative address
1427  * @addr: the area within @container to be searched
1428  */
1429 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1430 
1431 /**
1432  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1433  * into any address space.
1434  *
1435  * @mr: a #MemoryRegion which should be checked if it's mapped
1436  */
1437 bool memory_region_is_mapped(MemoryRegion *mr);
1438 
1439 /**
1440  * memory_region_find: translate an address/size relative to a
1441  * MemoryRegion into a #MemoryRegionSection.
1442  *
1443  * Locates the first #MemoryRegion within @mr that overlaps the range
1444  * given by @addr and @size.
1445  *
1446  * Returns a #MemoryRegionSection that describes a contiguous overlap.
1447  * It will have the following characteristics:
1448  *    .@size = 0 iff no overlap was found
1449  *    .@mr is non-%NULL iff an overlap was found
1450  *
1451  * Remember that in the return value the @offset_within_region is
1452  * relative to the returned region (in the .@mr field), not to the
1453  * @mr argument.
1454  *
1455  * Similarly, the .@offset_within_address_space is relative to the
1456  * address space that contains both regions, the passed and the
1457  * returned one.  However, in the special case where the @mr argument
1458  * has no container (and thus is the root of the address space), the
1459  * following will hold:
1460  *    .@offset_within_address_space >= @addr
1461  *    .@offset_within_address_space + .@size <= @addr + @size
1462  *
1463  * @mr: a MemoryRegion within which @addr is a relative address
1464  * @addr: start of the area within @as to be searched
1465  * @size: size of the area to be searched
1466  */
1467 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1468                                        hwaddr addr, uint64_t size);
1469 
1470 /**
1471  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1472  *
1473  * Synchronizes the dirty page log for all address spaces.
1474  */
1475 void memory_global_dirty_log_sync(void);
1476 
1477 /**
1478  * memory_region_transaction_begin: Start a transaction.
1479  *
1480  * During a transaction, changes will be accumulated and made visible
1481  * only when the transaction ends (is committed).
1482  */
1483 void memory_region_transaction_begin(void);
1484 
1485 /**
1486  * memory_region_transaction_commit: Commit a transaction and make changes
1487  *                                   visible to the guest.
1488  */
1489 void memory_region_transaction_commit(void);
1490 
1491 /**
1492  * memory_listener_register: register callbacks to be called when memory
1493  *                           sections are mapped or unmapped into an address
1494  *                           space
1495  *
1496  * @listener: an object containing the callbacks to be called
1497  * @filter: if non-%NULL, only regions in this address space will be observed
1498  */
1499 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1500 
1501 /**
1502  * memory_listener_unregister: undo the effect of memory_listener_register()
1503  *
1504  * @listener: an object containing the callbacks to be removed
1505  */
1506 void memory_listener_unregister(MemoryListener *listener);
1507 
1508 /**
1509  * memory_global_dirty_log_start: begin dirty logging for all regions
1510  */
1511 void memory_global_dirty_log_start(void);
1512 
1513 /**
1514  * memory_global_dirty_log_stop: end dirty logging for all regions
1515  */
1516 void memory_global_dirty_log_stop(void);
1517 
1518 void mtree_info(fprintf_function mon_printf, void *f, bool flatview);
1519 
1520 /**
1521  * memory_region_request_mmio_ptr: request a pointer to an mmio
1522  * MemoryRegion. If it is possible map a RAM MemoryRegion with this pointer.
1523  * When the device wants to invalidate the pointer it will call
1524  * memory_region_invalidate_mmio_ptr.
1525  *
1526  * @mr: #MemoryRegion to check
1527  * @addr: address within that region
1528  *
1529  * Returns true on success, false otherwise.
1530  */
1531 bool memory_region_request_mmio_ptr(MemoryRegion *mr, hwaddr addr);
1532 
1533 /**
1534  * memory_region_invalidate_mmio_ptr: invalidate the pointer to an mmio
1535  * previously requested.
1536  * In the end that means that if something wants to execute from this area it
1537  * will need to request the pointer again.
1538  *
1539  * @mr: #MemoryRegion associated to the pointer.
1540  * @addr: address within that region
1541  * @size: size of that area.
1542  */
1543 void memory_region_invalidate_mmio_ptr(MemoryRegion *mr, hwaddr offset,
1544                                        unsigned size);
1545 
1546 /**
1547  * memory_region_dispatch_read: perform a read directly to the specified
1548  * MemoryRegion.
1549  *
1550  * @mr: #MemoryRegion to access
1551  * @addr: address within that region
1552  * @pval: pointer to uint64_t which the data is written to
1553  * @size: size of the access in bytes
1554  * @attrs: memory transaction attributes to use for the access
1555  */
1556 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1557                                         hwaddr addr,
1558                                         uint64_t *pval,
1559                                         unsigned size,
1560                                         MemTxAttrs attrs);
1561 /**
1562  * memory_region_dispatch_write: perform a write directly to the specified
1563  * MemoryRegion.
1564  *
1565  * @mr: #MemoryRegion to access
1566  * @addr: address within that region
1567  * @data: data to write
1568  * @size: size of the access in bytes
1569  * @attrs: memory transaction attributes to use for the access
1570  */
1571 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1572                                          hwaddr addr,
1573                                          uint64_t data,
1574                                          unsigned size,
1575                                          MemTxAttrs attrs);
1576 
1577 /**
1578  * address_space_init: initializes an address space
1579  *
1580  * @as: an uninitialized #AddressSpace
1581  * @root: a #MemoryRegion that routes addresses for the address space
1582  * @name: an address space name.  The name is only used for debugging
1583  *        output.
1584  */
1585 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1586 
1587 /**
1588  * address_space_init_shareable: return an address space for a memory region,
1589  *                               creating it if it does not already exist
1590  *
1591  * @root: a #MemoryRegion that routes addresses for the address space
1592  * @name: an address space name.  The name is only used for debugging
1593  *        output.
1594  *
1595  * This function will return a pointer to an existing AddressSpace
1596  * which was initialized with the specified MemoryRegion, or it will
1597  * create and initialize one if it does not already exist. The ASes
1598  * are reference-counted, so the memory will be freed automatically
1599  * when the AddressSpace is destroyed via address_space_destroy.
1600  */
1601 AddressSpace *address_space_init_shareable(MemoryRegion *root,
1602                                            const char *name);
1603 
1604 /**
1605  * address_space_destroy: destroy an address space
1606  *
1607  * Releases all resources associated with an address space.  After an address space
1608  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1609  * as well.
1610  *
1611  * @as: address space to be destroyed
1612  */
1613 void address_space_destroy(AddressSpace *as);
1614 
1615 /**
1616  * address_space_rw: read from or write to an address space.
1617  *
1618  * Return a MemTxResult indicating whether the operation succeeded
1619  * or failed (eg unassigned memory, device rejected the transaction,
1620  * IOMMU fault).
1621  *
1622  * @as: #AddressSpace to be accessed
1623  * @addr: address within that address space
1624  * @attrs: memory transaction attributes
1625  * @buf: buffer with the data transferred
1626  * @is_write: indicates the transfer direction
1627  */
1628 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1629                              MemTxAttrs attrs, uint8_t *buf,
1630                              int len, bool is_write);
1631 
1632 /**
1633  * address_space_write: write to address space.
1634  *
1635  * Return a MemTxResult indicating whether the operation succeeded
1636  * or failed (eg unassigned memory, device rejected the transaction,
1637  * IOMMU fault).
1638  *
1639  * @as: #AddressSpace to be accessed
1640  * @addr: address within that address space
1641  * @attrs: memory transaction attributes
1642  * @buf: buffer with the data transferred
1643  */
1644 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1645                                 MemTxAttrs attrs,
1646                                 const uint8_t *buf, int len);
1647 
1648 /* address_space_ld*: load from an address space
1649  * address_space_st*: store to an address space
1650  *
1651  * These functions perform a load or store of the byte, word,
1652  * longword or quad to the specified address within the AddressSpace.
1653  * The _le suffixed functions treat the data as little endian;
1654  * _be indicates big endian; no suffix indicates "same endianness
1655  * as guest CPU".
1656  *
1657  * The "guest CPU endianness" accessors are deprecated for use outside
1658  * target-* code; devices should be CPU-agnostic and use either the LE
1659  * or the BE accessors.
1660  *
1661  * @as #AddressSpace to be accessed
1662  * @addr: address within that address space
1663  * @val: data value, for stores
1664  * @attrs: memory transaction attributes
1665  * @result: location to write the success/failure of the transaction;
1666  *   if NULL, this information is discarded
1667  */
1668 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1669                             MemTxAttrs attrs, MemTxResult *result);
1670 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1671                             MemTxAttrs attrs, MemTxResult *result);
1672 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1673                             MemTxAttrs attrs, MemTxResult *result);
1674 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1675                             MemTxAttrs attrs, MemTxResult *result);
1676 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1677                             MemTxAttrs attrs, MemTxResult *result);
1678 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1679                             MemTxAttrs attrs, MemTxResult *result);
1680 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1681                             MemTxAttrs attrs, MemTxResult *result);
1682 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1683                             MemTxAttrs attrs, MemTxResult *result);
1684 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1685                             MemTxAttrs attrs, MemTxResult *result);
1686 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1687                             MemTxAttrs attrs, MemTxResult *result);
1688 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1689                             MemTxAttrs attrs, MemTxResult *result);
1690 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1691                             MemTxAttrs attrs, MemTxResult *result);
1692 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1693                             MemTxAttrs attrs, MemTxResult *result);
1694 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1695                             MemTxAttrs attrs, MemTxResult *result);
1696 
1697 uint32_t ldub_phys(AddressSpace *as, hwaddr addr);
1698 uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr);
1699 uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr);
1700 uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr);
1701 uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr);
1702 uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr);
1703 uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr);
1704 void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1705 void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1706 void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1707 void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1708 void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1709 void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1710 void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1711 
1712 struct MemoryRegionCache {
1713     hwaddr xlat;
1714     hwaddr len;
1715     AddressSpace *as;
1716 };
1717 
1718 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .as = NULL })
1719 
1720 /* address_space_cache_init: prepare for repeated access to a physical
1721  * memory region
1722  *
1723  * @cache: #MemoryRegionCache to be filled
1724  * @as: #AddressSpace to be accessed
1725  * @addr: address within that address space
1726  * @len: length of buffer
1727  * @is_write: indicates the transfer direction
1728  *
1729  * Will only work with RAM, and may map a subset of the requested range by
1730  * returning a value that is less than @len.  On failure, return a negative
1731  * errno value.
1732  *
1733  * Because it only works with RAM, this function can be used for
1734  * read-modify-write operations.  In this case, is_write should be %true.
1735  *
1736  * Note that addresses passed to the address_space_*_cached functions
1737  * are relative to @addr.
1738  */
1739 int64_t address_space_cache_init(MemoryRegionCache *cache,
1740                                  AddressSpace *as,
1741                                  hwaddr addr,
1742                                  hwaddr len,
1743                                  bool is_write);
1744 
1745 /**
1746  * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
1747  *
1748  * @cache: The #MemoryRegionCache to operate on.
1749  * @addr: The first physical address that was written, relative to the
1750  * address that was passed to @address_space_cache_init.
1751  * @access_len: The number of bytes that were written starting at @addr.
1752  */
1753 void address_space_cache_invalidate(MemoryRegionCache *cache,
1754                                     hwaddr addr,
1755                                     hwaddr access_len);
1756 
1757 /**
1758  * address_space_cache_destroy: free a #MemoryRegionCache
1759  *
1760  * @cache: The #MemoryRegionCache whose memory should be released.
1761  */
1762 void address_space_cache_destroy(MemoryRegionCache *cache);
1763 
1764 /* address_space_ld*_cached: load from a cached #MemoryRegion
1765  * address_space_st*_cached: store into a cached #MemoryRegion
1766  *
1767  * These functions perform a load or store of the byte, word,
1768  * longword or quad to the specified address.  The address is
1769  * a physical address in the AddressSpace, but it must lie within
1770  * a #MemoryRegion that was mapped with address_space_cache_init.
1771  *
1772  * The _le suffixed functions treat the data as little endian;
1773  * _be indicates big endian; no suffix indicates "same endianness
1774  * as guest CPU".
1775  *
1776  * The "guest CPU endianness" accessors are deprecated for use outside
1777  * target-* code; devices should be CPU-agnostic and use either the LE
1778  * or the BE accessors.
1779  *
1780  * @cache: previously initialized #MemoryRegionCache to be accessed
1781  * @addr: address within the address space
1782  * @val: data value, for stores
1783  * @attrs: memory transaction attributes
1784  * @result: location to write the success/failure of the transaction;
1785  *   if NULL, this information is discarded
1786  */
1787 uint32_t address_space_ldub_cached(MemoryRegionCache *cache, hwaddr addr,
1788                             MemTxAttrs attrs, MemTxResult *result);
1789 uint32_t address_space_lduw_le_cached(MemoryRegionCache *cache, hwaddr addr,
1790                             MemTxAttrs attrs, MemTxResult *result);
1791 uint32_t address_space_lduw_be_cached(MemoryRegionCache *cache, hwaddr addr,
1792                             MemTxAttrs attrs, MemTxResult *result);
1793 uint32_t address_space_ldl_le_cached(MemoryRegionCache *cache, hwaddr addr,
1794                             MemTxAttrs attrs, MemTxResult *result);
1795 uint32_t address_space_ldl_be_cached(MemoryRegionCache *cache, hwaddr addr,
1796                             MemTxAttrs attrs, MemTxResult *result);
1797 uint64_t address_space_ldq_le_cached(MemoryRegionCache *cache, hwaddr addr,
1798                             MemTxAttrs attrs, MemTxResult *result);
1799 uint64_t address_space_ldq_be_cached(MemoryRegionCache *cache, hwaddr addr,
1800                             MemTxAttrs attrs, MemTxResult *result);
1801 void address_space_stb_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1802                             MemTxAttrs attrs, MemTxResult *result);
1803 void address_space_stw_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1804                             MemTxAttrs attrs, MemTxResult *result);
1805 void address_space_stw_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1806                             MemTxAttrs attrs, MemTxResult *result);
1807 void address_space_stl_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1808                             MemTxAttrs attrs, MemTxResult *result);
1809 void address_space_stl_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1810                             MemTxAttrs attrs, MemTxResult *result);
1811 void address_space_stq_le_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1812                             MemTxAttrs attrs, MemTxResult *result);
1813 void address_space_stq_be_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1814                             MemTxAttrs attrs, MemTxResult *result);
1815 
1816 uint32_t ldub_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1817 uint32_t lduw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1818 uint32_t lduw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1819 uint32_t ldl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1820 uint32_t ldl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1821 uint64_t ldq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1822 uint64_t ldq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1823 void stb_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1824 void stw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1825 void stw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1826 void stl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1827 void stl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1828 void stq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1829 void stq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1830 /* address_space_get_iotlb_entry: translate an address into an IOTLB
1831  * entry. Should be called from an RCU critical section.
1832  */
1833 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
1834                                             bool is_write);
1835 
1836 /* address_space_translate: translate an address range into an address space
1837  * into a MemoryRegion and an address range into that section.  Should be
1838  * called from an RCU critical section, to avoid that the last reference
1839  * to the returned region disappears after address_space_translate returns.
1840  *
1841  * @as: #AddressSpace to be accessed
1842  * @addr: address within that address space
1843  * @xlat: pointer to address within the returned memory region section's
1844  * #MemoryRegion.
1845  * @len: pointer to length
1846  * @is_write: indicates the transfer direction
1847  */
1848 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1849                                       hwaddr *xlat, hwaddr *len,
1850                                       bool is_write);
1851 
1852 /* address_space_access_valid: check for validity of accessing an address
1853  * space range
1854  *
1855  * Check whether memory is assigned to the given address space range, and
1856  * access is permitted by any IOMMU regions that are active for the address
1857  * space.
1858  *
1859  * For now, addr and len should be aligned to a page size.  This limitation
1860  * will be lifted in the future.
1861  *
1862  * @as: #AddressSpace to be accessed
1863  * @addr: address within that address space
1864  * @len: length of the area to be checked
1865  * @is_write: indicates the transfer direction
1866  */
1867 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1868 
1869 /* address_space_map: map a physical memory region into a host virtual address
1870  *
1871  * May map a subset of the requested range, given by and returned in @plen.
1872  * May return %NULL if resources needed to perform the mapping are exhausted.
1873  * Use only for reads OR writes - not for read-modify-write operations.
1874  * Use cpu_register_map_client() to know when retrying the map operation is
1875  * likely to succeed.
1876  *
1877  * @as: #AddressSpace to be accessed
1878  * @addr: address within that address space
1879  * @plen: pointer to length of buffer; updated on return
1880  * @is_write: indicates the transfer direction
1881  */
1882 void *address_space_map(AddressSpace *as, hwaddr addr,
1883                         hwaddr *plen, bool is_write);
1884 
1885 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1886  *
1887  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
1888  * the amount of memory that was actually read or written by the caller.
1889  *
1890  * @as: #AddressSpace used
1891  * @addr: address within that address space
1892  * @len: buffer length as returned by address_space_map()
1893  * @access_len: amount of data actually transferred
1894  * @is_write: indicates the transfer direction
1895  */
1896 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1897                          int is_write, hwaddr access_len);
1898 
1899 
1900 /* Internal functions, part of the implementation of address_space_read.  */
1901 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
1902                                         MemTxAttrs attrs, uint8_t *buf,
1903                                         int len, hwaddr addr1, hwaddr l,
1904 					MemoryRegion *mr);
1905 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
1906                                     MemTxAttrs attrs, uint8_t *buf, int len);
1907 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
1908 
1909 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1910 {
1911     if (is_write) {
1912         return memory_region_is_ram(mr) &&
1913                !mr->readonly && !memory_region_is_ram_device(mr);
1914     } else {
1915         return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
1916                memory_region_is_romd(mr);
1917     }
1918 }
1919 
1920 /**
1921  * address_space_read: read from an address space.
1922  *
1923  * Return a MemTxResult indicating whether the operation succeeded
1924  * or failed (eg unassigned memory, device rejected the transaction,
1925  * IOMMU fault).
1926  *
1927  * @as: #AddressSpace to be accessed
1928  * @addr: address within that address space
1929  * @attrs: memory transaction attributes
1930  * @buf: buffer with the data transferred
1931  */
1932 static inline __attribute__((__always_inline__))
1933 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
1934                                uint8_t *buf, int len)
1935 {
1936     MemTxResult result = MEMTX_OK;
1937     hwaddr l, addr1;
1938     void *ptr;
1939     MemoryRegion *mr;
1940 
1941     if (__builtin_constant_p(len)) {
1942         if (len) {
1943             rcu_read_lock();
1944             l = len;
1945             mr = address_space_translate(as, addr, &addr1, &l, false);
1946             if (len == l && memory_access_is_direct(mr, false)) {
1947                 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1948                 memcpy(buf, ptr, len);
1949             } else {
1950                 result = address_space_read_continue(as, addr, attrs, buf, len,
1951                                                      addr1, l, mr);
1952             }
1953             rcu_read_unlock();
1954         }
1955     } else {
1956         result = address_space_read_full(as, addr, attrs, buf, len);
1957     }
1958     return result;
1959 }
1960 
1961 /**
1962  * address_space_read_cached: read from a cached RAM region
1963  *
1964  * @cache: Cached region to be addressed
1965  * @addr: address relative to the base of the RAM region
1966  * @buf: buffer with the data transferred
1967  * @len: length of the data transferred
1968  */
1969 static inline void
1970 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
1971                           void *buf, int len)
1972 {
1973     assert(addr < cache->len && len <= cache->len - addr);
1974     address_space_read(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
1975 }
1976 
1977 /**
1978  * address_space_write_cached: write to a cached RAM region
1979  *
1980  * @cache: Cached region to be addressed
1981  * @addr: address relative to the base of the RAM region
1982  * @buf: buffer with the data transferred
1983  * @len: length of the data transferred
1984  */
1985 static inline void
1986 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
1987                            void *buf, int len)
1988 {
1989     assert(addr < cache->len && len <= cache->len - addr);
1990     address_space_write(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
1991 }
1992 
1993 #endif
1994 
1995 #endif
1996