1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef MEMORY_H 15 #define MEMORY_H 16 17 #ifndef CONFIG_USER_ONLY 18 19 #include "exec/cpu-common.h" 20 #include "exec/hwaddr.h" 21 #include "exec/memattrs.h" 22 #include "exec/memop.h" 23 #include "exec/ramlist.h" 24 #include "qemu/bswap.h" 25 #include "qemu/queue.h" 26 #include "qemu/int128.h" 27 #include "qemu/notify.h" 28 #include "qom/object.h" 29 #include "qemu/rcu.h" 30 31 #define RAM_ADDR_INVALID (~(ram_addr_t)0) 32 33 #define MAX_PHYS_ADDR_SPACE_BITS 62 34 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 35 36 #define TYPE_MEMORY_REGION "qemu:memory-region" 37 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION, 38 TYPE_MEMORY_REGION) 39 40 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region" 41 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass; 42 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass, 43 IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION) 44 45 #ifdef CONFIG_FUZZ 46 void fuzz_dma_read_cb(size_t addr, 47 size_t len, 48 MemoryRegion *mr); 49 #else 50 static inline void fuzz_dma_read_cb(size_t addr, 51 size_t len, 52 MemoryRegion *mr) 53 { 54 /* Do Nothing */ 55 } 56 #endif 57 58 extern bool global_dirty_log; 59 60 typedef struct MemoryRegionOps MemoryRegionOps; 61 62 struct ReservedRegion { 63 hwaddr low; 64 hwaddr high; 65 unsigned type; 66 }; 67 68 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 69 70 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 71 typedef enum { 72 IOMMU_NONE = 0, 73 IOMMU_RO = 1, 74 IOMMU_WO = 2, 75 IOMMU_RW = 3, 76 } IOMMUAccessFlags; 77 78 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0)) 79 80 struct IOMMUTLBEntry { 81 AddressSpace *target_as; 82 hwaddr iova; 83 hwaddr translated_addr; 84 hwaddr addr_mask; /* 0xfff = 4k translation */ 85 IOMMUAccessFlags perm; 86 }; 87 88 /* 89 * Bitmap for different IOMMUNotifier capabilities. Each notifier can 90 * register with one or multiple IOMMU Notifier capability bit(s). 91 */ 92 typedef enum { 93 IOMMU_NOTIFIER_NONE = 0, 94 /* Notify cache invalidations */ 95 IOMMU_NOTIFIER_UNMAP = 0x1, 96 /* Notify entry changes (newly created entries) */ 97 IOMMU_NOTIFIER_MAP = 0x2, 98 /* Notify changes on device IOTLB entries */ 99 IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04, 100 } IOMMUNotifierFlag; 101 102 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP) 103 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP 104 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \ 105 IOMMU_NOTIFIER_DEVIOTLB_EVENTS) 106 107 struct IOMMUNotifier; 108 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier, 109 IOMMUTLBEntry *data); 110 111 struct IOMMUNotifier { 112 IOMMUNotify notify; 113 IOMMUNotifierFlag notifier_flags; 114 /* Notify for address space range start <= addr <= end */ 115 hwaddr start; 116 hwaddr end; 117 int iommu_idx; 118 QLIST_ENTRY(IOMMUNotifier) node; 119 }; 120 typedef struct IOMMUNotifier IOMMUNotifier; 121 122 typedef struct IOMMUTLBEvent { 123 IOMMUNotifierFlag type; 124 IOMMUTLBEntry entry; 125 } IOMMUTLBEvent; 126 127 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ 128 #define RAM_PREALLOC (1 << 0) 129 130 /* RAM is mmap-ed with MAP_SHARED */ 131 #define RAM_SHARED (1 << 1) 132 133 /* Only a portion of RAM (used_length) is actually used, and migrated. 134 * This used_length size can change across reboots. 135 */ 136 #define RAM_RESIZEABLE (1 << 2) 137 138 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically 139 * zero the page and wake waiting processes. 140 * (Set during postcopy) 141 */ 142 #define RAM_UF_ZEROPAGE (1 << 3) 143 144 /* RAM can be migrated */ 145 #define RAM_MIGRATABLE (1 << 4) 146 147 /* RAM is a persistent kind memory */ 148 #define RAM_PMEM (1 << 5) 149 150 151 /* 152 * UFFDIO_WRITEPROTECT is used on this RAMBlock to 153 * support 'write-tracking' migration type. 154 * Implies ram_state->ram_wt_enabled. 155 */ 156 #define RAM_UF_WRITEPROTECT (1 << 6) 157 158 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn, 159 IOMMUNotifierFlag flags, 160 hwaddr start, hwaddr end, 161 int iommu_idx) 162 { 163 n->notify = fn; 164 n->notifier_flags = flags; 165 n->start = start; 166 n->end = end; 167 n->iommu_idx = iommu_idx; 168 } 169 170 /* 171 * Memory region callbacks 172 */ 173 struct MemoryRegionOps { 174 /* Read from the memory region. @addr is relative to @mr; @size is 175 * in bytes. */ 176 uint64_t (*read)(void *opaque, 177 hwaddr addr, 178 unsigned size); 179 /* Write to the memory region. @addr is relative to @mr; @size is 180 * in bytes. */ 181 void (*write)(void *opaque, 182 hwaddr addr, 183 uint64_t data, 184 unsigned size); 185 186 MemTxResult (*read_with_attrs)(void *opaque, 187 hwaddr addr, 188 uint64_t *data, 189 unsigned size, 190 MemTxAttrs attrs); 191 MemTxResult (*write_with_attrs)(void *opaque, 192 hwaddr addr, 193 uint64_t data, 194 unsigned size, 195 MemTxAttrs attrs); 196 197 enum device_endian endianness; 198 /* Guest-visible constraints: */ 199 struct { 200 /* If nonzero, specify bounds on access sizes beyond which a machine 201 * check is thrown. 202 */ 203 unsigned min_access_size; 204 unsigned max_access_size; 205 /* If true, unaligned accesses are supported. Otherwise unaligned 206 * accesses throw machine checks. 207 */ 208 bool unaligned; 209 /* 210 * If present, and returns #false, the transaction is not accepted 211 * by the device (and results in machine dependent behaviour such 212 * as a machine check exception). 213 */ 214 bool (*accepts)(void *opaque, hwaddr addr, 215 unsigned size, bool is_write, 216 MemTxAttrs attrs); 217 } valid; 218 /* Internal implementation constraints: */ 219 struct { 220 /* If nonzero, specifies the minimum size implemented. Smaller sizes 221 * will be rounded upwards and a partial result will be returned. 222 */ 223 unsigned min_access_size; 224 /* If nonzero, specifies the maximum size implemented. Larger sizes 225 * will be done as a series of accesses with smaller sizes. 226 */ 227 unsigned max_access_size; 228 /* If true, unaligned accesses are supported. Otherwise all accesses 229 * are converted to (possibly multiple) naturally aligned accesses. 230 */ 231 bool unaligned; 232 } impl; 233 }; 234 235 typedef struct MemoryRegionClass { 236 /* private */ 237 ObjectClass parent_class; 238 } MemoryRegionClass; 239 240 241 enum IOMMUMemoryRegionAttr { 242 IOMMU_ATTR_SPAPR_TCE_FD 243 }; 244 245 /* 246 * IOMMUMemoryRegionClass: 247 * 248 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION 249 * and provide an implementation of at least the @translate method here 250 * to handle requests to the memory region. Other methods are optional. 251 * 252 * The IOMMU implementation must use the IOMMU notifier infrastructure 253 * to report whenever mappings are changed, by calling 254 * memory_region_notify_iommu() (or, if necessary, by calling 255 * memory_region_notify_iommu_one() for each registered notifier). 256 * 257 * Conceptually an IOMMU provides a mapping from input address 258 * to an output TLB entry. If the IOMMU is aware of memory transaction 259 * attributes and the output TLB entry depends on the transaction 260 * attributes, we represent this using IOMMU indexes. Each index 261 * selects a particular translation table that the IOMMU has: 262 * 263 * @attrs_to_index returns the IOMMU index for a set of transaction attributes 264 * 265 * @translate takes an input address and an IOMMU index 266 * 267 * and the mapping returned can only depend on the input address and the 268 * IOMMU index. 269 * 270 * Most IOMMUs don't care about the transaction attributes and support 271 * only a single IOMMU index. A more complex IOMMU might have one index 272 * for secure transactions and one for non-secure transactions. 273 */ 274 struct IOMMUMemoryRegionClass { 275 /* private: */ 276 MemoryRegionClass parent_class; 277 278 /* public: */ 279 /** 280 * @translate: 281 * 282 * Return a TLB entry that contains a given address. 283 * 284 * The IOMMUAccessFlags indicated via @flag are optional and may 285 * be specified as IOMMU_NONE to indicate that the caller needs 286 * the full translation information for both reads and writes. If 287 * the access flags are specified then the IOMMU implementation 288 * may use this as an optimization, to stop doing a page table 289 * walk as soon as it knows that the requested permissions are not 290 * allowed. If IOMMU_NONE is passed then the IOMMU must do the 291 * full page table walk and report the permissions in the returned 292 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not 293 * return different mappings for reads and writes.) 294 * 295 * The returned information remains valid while the caller is 296 * holding the big QEMU lock or is inside an RCU critical section; 297 * if the caller wishes to cache the mapping beyond that it must 298 * register an IOMMU notifier so it can invalidate its cached 299 * information when the IOMMU mapping changes. 300 * 301 * @iommu: the IOMMUMemoryRegion 302 * 303 * @hwaddr: address to be translated within the memory region 304 * 305 * @flag: requested access permission 306 * 307 * @iommu_idx: IOMMU index for the translation 308 */ 309 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr, 310 IOMMUAccessFlags flag, int iommu_idx); 311 /** 312 * @get_min_page_size: 313 * 314 * Returns minimum supported page size in bytes. 315 * 316 * If this method is not provided then the minimum is assumed to 317 * be TARGET_PAGE_SIZE. 318 * 319 * @iommu: the IOMMUMemoryRegion 320 */ 321 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu); 322 /** 323 * @notify_flag_changed: 324 * 325 * Called when IOMMU Notifier flag changes (ie when the set of 326 * events which IOMMU users are requesting notification for changes). 327 * Optional method -- need not be provided if the IOMMU does not 328 * need to know exactly which events must be notified. 329 * 330 * @iommu: the IOMMUMemoryRegion 331 * 332 * @old_flags: events which previously needed to be notified 333 * 334 * @new_flags: events which now need to be notified 335 * 336 * Returns 0 on success, or a negative errno; in particular 337 * returns -EINVAL if the new flag bitmap is not supported by the 338 * IOMMU memory region. In case of failure, the error object 339 * must be created 340 */ 341 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu, 342 IOMMUNotifierFlag old_flags, 343 IOMMUNotifierFlag new_flags, 344 Error **errp); 345 /** 346 * @replay: 347 * 348 * Called to handle memory_region_iommu_replay(). 349 * 350 * The default implementation of memory_region_iommu_replay() is to 351 * call the IOMMU translate method for every page in the address space 352 * with flag == IOMMU_NONE and then call the notifier if translate 353 * returns a valid mapping. If this method is implemented then it 354 * overrides the default behaviour, and must provide the full semantics 355 * of memory_region_iommu_replay(), by calling @notifier for every 356 * translation present in the IOMMU. 357 * 358 * Optional method -- an IOMMU only needs to provide this method 359 * if the default is inefficient or produces undesirable side effects. 360 * 361 * Note: this is not related to record-and-replay functionality. 362 */ 363 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier); 364 365 /** 366 * @get_attr: 367 * 368 * Get IOMMU misc attributes. This is an optional method that 369 * can be used to allow users of the IOMMU to get implementation-specific 370 * information. The IOMMU implements this method to handle calls 371 * by IOMMU users to memory_region_iommu_get_attr() by filling in 372 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that 373 * the IOMMU supports. If the method is unimplemented then 374 * memory_region_iommu_get_attr() will always return -EINVAL. 375 * 376 * @iommu: the IOMMUMemoryRegion 377 * 378 * @attr: attribute being queried 379 * 380 * @data: memory to fill in with the attribute data 381 * 382 * Returns 0 on success, or a negative errno; in particular 383 * returns -EINVAL for unrecognized or unimplemented attribute types. 384 */ 385 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr, 386 void *data); 387 388 /** 389 * @attrs_to_index: 390 * 391 * Return the IOMMU index to use for a given set of transaction attributes. 392 * 393 * Optional method: if an IOMMU only supports a single IOMMU index then 394 * the default implementation of memory_region_iommu_attrs_to_index() 395 * will return 0. 396 * 397 * The indexes supported by an IOMMU must be contiguous, starting at 0. 398 * 399 * @iommu: the IOMMUMemoryRegion 400 * @attrs: memory transaction attributes 401 */ 402 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs); 403 404 /** 405 * @num_indexes: 406 * 407 * Return the number of IOMMU indexes this IOMMU supports. 408 * 409 * Optional method: if this method is not provided, then 410 * memory_region_iommu_num_indexes() will return 1, indicating that 411 * only a single IOMMU index is supported. 412 * 413 * @iommu: the IOMMUMemoryRegion 414 */ 415 int (*num_indexes)(IOMMUMemoryRegion *iommu); 416 417 /** 418 * @iommu_set_page_size_mask: 419 * 420 * Restrict the page size mask that can be supported with a given IOMMU 421 * memory region. Used for example to propagate host physical IOMMU page 422 * size mask limitations to the virtual IOMMU. 423 * 424 * Optional method: if this method is not provided, then the default global 425 * page mask is used. 426 * 427 * @iommu: the IOMMUMemoryRegion 428 * 429 * @page_size_mask: a bitmask of supported page sizes. At least one bit, 430 * representing the smallest page size, must be set. Additional set bits 431 * represent supported block sizes. For example a host physical IOMMU that 432 * uses page tables with a page size of 4kB, and supports 2MB and 4GB 433 * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate 434 * block sizes is specified with mask 0xfffffffffffff000. 435 * 436 * Returns 0 on success, or a negative error. In case of failure, the error 437 * object must be created. 438 */ 439 int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu, 440 uint64_t page_size_mask, 441 Error **errp); 442 }; 443 444 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 445 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 446 447 /** MemoryRegion: 448 * 449 * A struct representing a memory region. 450 */ 451 struct MemoryRegion { 452 Object parent_obj; 453 454 /* private: */ 455 456 /* The following fields should fit in a cache line */ 457 bool romd_mode; 458 bool ram; 459 bool subpage; 460 bool readonly; /* For RAM regions */ 461 bool nonvolatile; 462 bool rom_device; 463 bool flush_coalesced_mmio; 464 uint8_t dirty_log_mask; 465 bool is_iommu; 466 RAMBlock *ram_block; 467 Object *owner; 468 469 const MemoryRegionOps *ops; 470 void *opaque; 471 MemoryRegion *container; 472 Int128 size; 473 hwaddr addr; 474 void (*destructor)(MemoryRegion *mr); 475 uint64_t align; 476 bool terminates; 477 bool ram_device; 478 bool enabled; 479 bool warning_printed; /* For reservations */ 480 uint8_t vga_logging_count; 481 MemoryRegion *alias; 482 hwaddr alias_offset; 483 int32_t priority; 484 QTAILQ_HEAD(, MemoryRegion) subregions; 485 QTAILQ_ENTRY(MemoryRegion) subregions_link; 486 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced; 487 const char *name; 488 unsigned ioeventfd_nb; 489 MemoryRegionIoeventfd *ioeventfds; 490 }; 491 492 struct IOMMUMemoryRegion { 493 MemoryRegion parent_obj; 494 495 QLIST_HEAD(, IOMMUNotifier) iommu_notify; 496 IOMMUNotifierFlag iommu_notify_flags; 497 }; 498 499 #define IOMMU_NOTIFIER_FOREACH(n, mr) \ 500 QLIST_FOREACH((n), &(mr)->iommu_notify, node) 501 502 /** 503 * struct MemoryListener: callbacks structure for updates to the physical memory map 504 * 505 * Allows a component to adjust to changes in the guest-visible memory map. 506 * Use with memory_listener_register() and memory_listener_unregister(). 507 */ 508 struct MemoryListener { 509 /** 510 * @begin: 511 * 512 * Called at the beginning of an address space update transaction. 513 * Followed by calls to #MemoryListener.region_add(), 514 * #MemoryListener.region_del(), #MemoryListener.region_nop(), 515 * #MemoryListener.log_start() and #MemoryListener.log_stop() in 516 * increasing address order. 517 * 518 * @listener: The #MemoryListener. 519 */ 520 void (*begin)(MemoryListener *listener); 521 522 /** 523 * @commit: 524 * 525 * Called at the end of an address space update transaction, 526 * after the last call to #MemoryListener.region_add(), 527 * #MemoryListener.region_del() or #MemoryListener.region_nop(), 528 * #MemoryListener.log_start() and #MemoryListener.log_stop(). 529 * 530 * @listener: The #MemoryListener. 531 */ 532 void (*commit)(MemoryListener *listener); 533 534 /** 535 * @region_add: 536 * 537 * Called during an address space update transaction, 538 * for a section of the address space that is new in this address space 539 * space since the last transaction. 540 * 541 * @listener: The #MemoryListener. 542 * @section: The new #MemoryRegionSection. 543 */ 544 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 545 546 /** 547 * @region_del: 548 * 549 * Called during an address space update transaction, 550 * for a section of the address space that has disappeared in the address 551 * space since the last transaction. 552 * 553 * @listener: The #MemoryListener. 554 * @section: The old #MemoryRegionSection. 555 */ 556 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 557 558 /** 559 * @region_nop: 560 * 561 * Called during an address space update transaction, 562 * for a section of the address space that is in the same place in the address 563 * space as in the last transaction. 564 * 565 * @listener: The #MemoryListener. 566 * @section: The #MemoryRegionSection. 567 */ 568 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 569 570 /** 571 * @log_start: 572 * 573 * Called during an address space update transaction, after 574 * one of #MemoryListener.region_add(),#MemoryListener.region_del() or 575 * #MemoryListener.region_nop(), if dirty memory logging clients have 576 * become active since the last transaction. 577 * 578 * @listener: The #MemoryListener. 579 * @section: The #MemoryRegionSection. 580 * @old: A bitmap of dirty memory logging clients that were active in 581 * the previous transaction. 582 * @new: A bitmap of dirty memory logging clients that are active in 583 * the current transaction. 584 */ 585 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 586 int old, int new); 587 588 /** 589 * @log_stop: 590 * 591 * Called during an address space update transaction, after 592 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or 593 * #MemoryListener.region_nop() and possibly after 594 * #MemoryListener.log_start(), if dirty memory logging clients have 595 * become inactive since the last transaction. 596 * 597 * @listener: The #MemoryListener. 598 * @section: The #MemoryRegionSection. 599 * @old: A bitmap of dirty memory logging clients that were active in 600 * the previous transaction. 601 * @new: A bitmap of dirty memory logging clients that are active in 602 * the current transaction. 603 */ 604 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 605 int old, int new); 606 607 /** 608 * @log_sync: 609 * 610 * Called by memory_region_snapshot_and_clear_dirty() and 611 * memory_global_dirty_log_sync(), before accessing QEMU's "official" 612 * copy of the dirty memory bitmap for a #MemoryRegionSection. 613 * 614 * @listener: The #MemoryListener. 615 * @section: The #MemoryRegionSection. 616 */ 617 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 618 619 /** 620 * @log_clear: 621 * 622 * Called before reading the dirty memory bitmap for a 623 * #MemoryRegionSection. 624 * 625 * @listener: The #MemoryListener. 626 * @section: The #MemoryRegionSection. 627 */ 628 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section); 629 630 /** 631 * @log_global_start: 632 * 633 * Called by memory_global_dirty_log_start(), which 634 * enables the %DIRTY_LOG_MIGRATION client on all memory regions in 635 * the address space. #MemoryListener.log_global_start() is also 636 * called when a #MemoryListener is added, if global dirty logging is 637 * active at that time. 638 * 639 * @listener: The #MemoryListener. 640 */ 641 void (*log_global_start)(MemoryListener *listener); 642 643 /** 644 * @log_global_stop: 645 * 646 * Called by memory_global_dirty_log_stop(), which 647 * disables the %DIRTY_LOG_MIGRATION client on all memory regions in 648 * the address space. 649 * 650 * @listener: The #MemoryListener. 651 */ 652 void (*log_global_stop)(MemoryListener *listener); 653 654 /** 655 * @log_global_after_sync: 656 * 657 * Called after reading the dirty memory bitmap 658 * for any #MemoryRegionSection. 659 * 660 * @listener: The #MemoryListener. 661 */ 662 void (*log_global_after_sync)(MemoryListener *listener); 663 664 /** 665 * @eventfd_add: 666 * 667 * Called during an address space update transaction, 668 * for a section of the address space that has had a new ioeventfd 669 * registration since the last transaction. 670 * 671 * @listener: The #MemoryListener. 672 * @section: The new #MemoryRegionSection. 673 * @match_data: The @match_data parameter for the new ioeventfd. 674 * @data: The @data parameter for the new ioeventfd. 675 * @e: The #EventNotifier parameter for the new ioeventfd. 676 */ 677 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 678 bool match_data, uint64_t data, EventNotifier *e); 679 680 /** 681 * @eventfd_del: 682 * 683 * Called during an address space update transaction, 684 * for a section of the address space that has dropped an ioeventfd 685 * registration since the last transaction. 686 * 687 * @listener: The #MemoryListener. 688 * @section: The new #MemoryRegionSection. 689 * @match_data: The @match_data parameter for the dropped ioeventfd. 690 * @data: The @data parameter for the dropped ioeventfd. 691 * @e: The #EventNotifier parameter for the dropped ioeventfd. 692 */ 693 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 694 bool match_data, uint64_t data, EventNotifier *e); 695 696 /** 697 * @coalesced_io_add: 698 * 699 * Called during an address space update transaction, 700 * for a section of the address space that has had a new coalesced 701 * MMIO range registration since the last transaction. 702 * 703 * @listener: The #MemoryListener. 704 * @section: The new #MemoryRegionSection. 705 * @addr: The starting address for the coalesced MMIO range. 706 * @len: The length of the coalesced MMIO range. 707 */ 708 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section, 709 hwaddr addr, hwaddr len); 710 711 /** 712 * @coalesced_io_del: 713 * 714 * Called during an address space update transaction, 715 * for a section of the address space that has dropped a coalesced 716 * MMIO range since the last transaction. 717 * 718 * @listener: The #MemoryListener. 719 * @section: The new #MemoryRegionSection. 720 * @addr: The starting address for the coalesced MMIO range. 721 * @len: The length of the coalesced MMIO range. 722 */ 723 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section, 724 hwaddr addr, hwaddr len); 725 /** 726 * @priority: 727 * 728 * Govern the order in which memory listeners are invoked. Lower priorities 729 * are invoked earlier for "add" or "start" callbacks, and later for "delete" 730 * or "stop" callbacks. 731 */ 732 unsigned priority; 733 734 /* private: */ 735 AddressSpace *address_space; 736 QTAILQ_ENTRY(MemoryListener) link; 737 QTAILQ_ENTRY(MemoryListener) link_as; 738 }; 739 740 /** 741 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects 742 */ 743 struct AddressSpace { 744 /* private: */ 745 struct rcu_head rcu; 746 char *name; 747 MemoryRegion *root; 748 749 /* Accessed via RCU. */ 750 struct FlatView *current_map; 751 752 int ioeventfd_nb; 753 struct MemoryRegionIoeventfd *ioeventfds; 754 QTAILQ_HEAD(, MemoryListener) listeners; 755 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 756 }; 757 758 typedef struct AddressSpaceDispatch AddressSpaceDispatch; 759 typedef struct FlatRange FlatRange; 760 761 /* Flattened global view of current active memory hierarchy. Kept in sorted 762 * order. 763 */ 764 struct FlatView { 765 struct rcu_head rcu; 766 unsigned ref; 767 FlatRange *ranges; 768 unsigned nr; 769 unsigned nr_allocated; 770 struct AddressSpaceDispatch *dispatch; 771 MemoryRegion *root; 772 }; 773 774 static inline FlatView *address_space_to_flatview(AddressSpace *as) 775 { 776 return qatomic_rcu_read(&as->current_map); 777 } 778 779 typedef int (*flatview_cb)(Int128 start, 780 Int128 len, 781 const MemoryRegion*, void*); 782 783 void flatview_for_each_range(FlatView *fv, flatview_cb cb , void *opaque); 784 785 /** 786 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion 787 * 788 * @mr: the region, or %NULL if empty 789 * @fv: the flat view of the address space the region is mapped in 790 * @offset_within_region: the beginning of the section, relative to @mr's start 791 * @size: the size of the section; will not exceed @mr's boundaries 792 * @offset_within_address_space: the address of the first byte of the section 793 * relative to the region's address space 794 * @readonly: writes to this section are ignored 795 * @nonvolatile: this section is non-volatile 796 */ 797 struct MemoryRegionSection { 798 Int128 size; 799 MemoryRegion *mr; 800 FlatView *fv; 801 hwaddr offset_within_region; 802 hwaddr offset_within_address_space; 803 bool readonly; 804 bool nonvolatile; 805 }; 806 807 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a, 808 MemoryRegionSection *b) 809 { 810 return a->mr == b->mr && 811 a->fv == b->fv && 812 a->offset_within_region == b->offset_within_region && 813 a->offset_within_address_space == b->offset_within_address_space && 814 int128_eq(a->size, b->size) && 815 a->readonly == b->readonly && 816 a->nonvolatile == b->nonvolatile; 817 } 818 819 /** 820 * memory_region_init: Initialize a memory region 821 * 822 * The region typically acts as a container for other memory regions. Use 823 * memory_region_add_subregion() to add subregions. 824 * 825 * @mr: the #MemoryRegion to be initialized 826 * @owner: the object that tracks the region's reference count 827 * @name: used for debugging; not visible to the user or ABI 828 * @size: size of the region; any subregions beyond this size will be clipped 829 */ 830 void memory_region_init(MemoryRegion *mr, 831 struct Object *owner, 832 const char *name, 833 uint64_t size); 834 835 /** 836 * memory_region_ref: Add 1 to a memory region's reference count 837 * 838 * Whenever memory regions are accessed outside the BQL, they need to be 839 * preserved against hot-unplug. MemoryRegions actually do not have their 840 * own reference count; they piggyback on a QOM object, their "owner". 841 * This function adds a reference to the owner. 842 * 843 * All MemoryRegions must have an owner if they can disappear, even if the 844 * device they belong to operates exclusively under the BQL. This is because 845 * the region could be returned at any time by memory_region_find, and this 846 * is usually under guest control. 847 * 848 * @mr: the #MemoryRegion 849 */ 850 void memory_region_ref(MemoryRegion *mr); 851 852 /** 853 * memory_region_unref: Remove 1 to a memory region's reference count 854 * 855 * Whenever memory regions are accessed outside the BQL, they need to be 856 * preserved against hot-unplug. MemoryRegions actually do not have their 857 * own reference count; they piggyback on a QOM object, their "owner". 858 * This function removes a reference to the owner and possibly destroys it. 859 * 860 * @mr: the #MemoryRegion 861 */ 862 void memory_region_unref(MemoryRegion *mr); 863 864 /** 865 * memory_region_init_io: Initialize an I/O memory region. 866 * 867 * Accesses into the region will cause the callbacks in @ops to be called. 868 * if @size is nonzero, subregions will be clipped to @size. 869 * 870 * @mr: the #MemoryRegion to be initialized. 871 * @owner: the object that tracks the region's reference count 872 * @ops: a structure containing read and write callbacks to be used when 873 * I/O is performed on the region. 874 * @opaque: passed to the read and write callbacks of the @ops structure. 875 * @name: used for debugging; not visible to the user or ABI 876 * @size: size of the region. 877 */ 878 void memory_region_init_io(MemoryRegion *mr, 879 struct Object *owner, 880 const MemoryRegionOps *ops, 881 void *opaque, 882 const char *name, 883 uint64_t size); 884 885 /** 886 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses 887 * into the region will modify memory 888 * directly. 889 * 890 * @mr: the #MemoryRegion to be initialized. 891 * @owner: the object that tracks the region's reference count 892 * @name: Region name, becomes part of RAMBlock name used in migration stream 893 * must be unique within any device 894 * @size: size of the region. 895 * @errp: pointer to Error*, to store an error if it happens. 896 * 897 * Note that this function does not do anything to cause the data in the 898 * RAM memory region to be migrated; that is the responsibility of the caller. 899 */ 900 void memory_region_init_ram_nomigrate(MemoryRegion *mr, 901 struct Object *owner, 902 const char *name, 903 uint64_t size, 904 Error **errp); 905 906 /** 907 * memory_region_init_ram_shared_nomigrate: Initialize RAM memory region. 908 * Accesses into the region will 909 * modify memory directly. 910 * 911 * @mr: the #MemoryRegion to be initialized. 912 * @owner: the object that tracks the region's reference count 913 * @name: Region name, becomes part of RAMBlock name used in migration stream 914 * must be unique within any device 915 * @size: size of the region. 916 * @share: allow remapping RAM to different addresses 917 * @errp: pointer to Error*, to store an error if it happens. 918 * 919 * Note that this function is similar to memory_region_init_ram_nomigrate. 920 * The only difference is part of the RAM region can be remapped. 921 */ 922 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr, 923 struct Object *owner, 924 const char *name, 925 uint64_t size, 926 bool share, 927 Error **errp); 928 929 /** 930 * memory_region_init_resizeable_ram: Initialize memory region with resizeable 931 * RAM. Accesses into the region will 932 * modify memory directly. Only an initial 933 * portion of this RAM is actually used. 934 * The used size can change across reboots. 935 * 936 * @mr: the #MemoryRegion to be initialized. 937 * @owner: the object that tracks the region's reference count 938 * @name: Region name, becomes part of RAMBlock name used in migration stream 939 * must be unique within any device 940 * @size: used size of the region. 941 * @max_size: max size of the region. 942 * @resized: callback to notify owner about used size change. 943 * @errp: pointer to Error*, to store an error if it happens. 944 * 945 * Note that this function does not do anything to cause the data in the 946 * RAM memory region to be migrated; that is the responsibility of the caller. 947 */ 948 void memory_region_init_resizeable_ram(MemoryRegion *mr, 949 struct Object *owner, 950 const char *name, 951 uint64_t size, 952 uint64_t max_size, 953 void (*resized)(const char*, 954 uint64_t length, 955 void *host), 956 Error **errp); 957 #ifdef CONFIG_POSIX 958 959 /** 960 * memory_region_init_ram_from_file: Initialize RAM memory region with a 961 * mmap-ed backend. 962 * 963 * @mr: the #MemoryRegion to be initialized. 964 * @owner: the object that tracks the region's reference count 965 * @name: Region name, becomes part of RAMBlock name used in migration stream 966 * must be unique within any device 967 * @size: size of the region. 968 * @align: alignment of the region base address; if 0, the default alignment 969 * (getpagesize()) will be used. 970 * @ram_flags: Memory region features: 971 * - RAM_SHARED: memory must be mmaped with the MAP_SHARED flag 972 * - RAM_PMEM: the memory is persistent memory 973 * Other bits are ignored now. 974 * @path: the path in which to allocate the RAM. 975 * @readonly: true to open @path for reading, false for read/write. 976 * @errp: pointer to Error*, to store an error if it happens. 977 * 978 * Note that this function does not do anything to cause the data in the 979 * RAM memory region to be migrated; that is the responsibility of the caller. 980 */ 981 void memory_region_init_ram_from_file(MemoryRegion *mr, 982 struct Object *owner, 983 const char *name, 984 uint64_t size, 985 uint64_t align, 986 uint32_t ram_flags, 987 const char *path, 988 bool readonly, 989 Error **errp); 990 991 /** 992 * memory_region_init_ram_from_fd: Initialize RAM memory region with a 993 * mmap-ed backend. 994 * 995 * @mr: the #MemoryRegion to be initialized. 996 * @owner: the object that tracks the region's reference count 997 * @name: the name of the region. 998 * @size: size of the region. 999 * @share: %true if memory must be mmaped with the MAP_SHARED flag 1000 * @fd: the fd to mmap. 1001 * @errp: pointer to Error*, to store an error if it happens. 1002 * 1003 * Note that this function does not do anything to cause the data in the 1004 * RAM memory region to be migrated; that is the responsibility of the caller. 1005 */ 1006 void memory_region_init_ram_from_fd(MemoryRegion *mr, 1007 struct Object *owner, 1008 const char *name, 1009 uint64_t size, 1010 bool share, 1011 int fd, 1012 Error **errp); 1013 #endif 1014 1015 /** 1016 * memory_region_init_ram_ptr: Initialize RAM memory region from a 1017 * user-provided pointer. Accesses into the 1018 * region will modify memory directly. 1019 * 1020 * @mr: the #MemoryRegion to be initialized. 1021 * @owner: the object that tracks the region's reference count 1022 * @name: Region name, becomes part of RAMBlock name used in migration stream 1023 * must be unique within any device 1024 * @size: size of the region. 1025 * @ptr: memory to be mapped; must contain at least @size bytes. 1026 * 1027 * Note that this function does not do anything to cause the data in the 1028 * RAM memory region to be migrated; that is the responsibility of the caller. 1029 */ 1030 void memory_region_init_ram_ptr(MemoryRegion *mr, 1031 struct Object *owner, 1032 const char *name, 1033 uint64_t size, 1034 void *ptr); 1035 1036 /** 1037 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from 1038 * a user-provided pointer. 1039 * 1040 * A RAM device represents a mapping to a physical device, such as to a PCI 1041 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped 1042 * into the VM address space and access to the region will modify memory 1043 * directly. However, the memory region should not be included in a memory 1044 * dump (device may not be enabled/mapped at the time of the dump), and 1045 * operations incompatible with manipulating MMIO should be avoided. Replaces 1046 * skip_dump flag. 1047 * 1048 * @mr: the #MemoryRegion to be initialized. 1049 * @owner: the object that tracks the region's reference count 1050 * @name: the name of the region. 1051 * @size: size of the region. 1052 * @ptr: memory to be mapped; must contain at least @size bytes. 1053 * 1054 * Note that this function does not do anything to cause the data in the 1055 * RAM memory region to be migrated; that is the responsibility of the caller. 1056 * (For RAM device memory regions, migrating the contents rarely makes sense.) 1057 */ 1058 void memory_region_init_ram_device_ptr(MemoryRegion *mr, 1059 struct Object *owner, 1060 const char *name, 1061 uint64_t size, 1062 void *ptr); 1063 1064 /** 1065 * memory_region_init_alias: Initialize a memory region that aliases all or a 1066 * part of another memory region. 1067 * 1068 * @mr: the #MemoryRegion to be initialized. 1069 * @owner: the object that tracks the region's reference count 1070 * @name: used for debugging; not visible to the user or ABI 1071 * @orig: the region to be referenced; @mr will be equivalent to 1072 * @orig between @offset and @offset + @size - 1. 1073 * @offset: start of the section in @orig to be referenced. 1074 * @size: size of the region. 1075 */ 1076 void memory_region_init_alias(MemoryRegion *mr, 1077 struct Object *owner, 1078 const char *name, 1079 MemoryRegion *orig, 1080 hwaddr offset, 1081 uint64_t size); 1082 1083 /** 1084 * memory_region_init_rom_nomigrate: Initialize a ROM memory region. 1085 * 1086 * This has the same effect as calling memory_region_init_ram_nomigrate() 1087 * and then marking the resulting region read-only with 1088 * memory_region_set_readonly(). 1089 * 1090 * Note that this function does not do anything to cause the data in the 1091 * RAM side of the memory region to be migrated; that is the responsibility 1092 * of the caller. 1093 * 1094 * @mr: the #MemoryRegion to be initialized. 1095 * @owner: the object that tracks the region's reference count 1096 * @name: Region name, becomes part of RAMBlock name used in migration stream 1097 * must be unique within any device 1098 * @size: size of the region. 1099 * @errp: pointer to Error*, to store an error if it happens. 1100 */ 1101 void memory_region_init_rom_nomigrate(MemoryRegion *mr, 1102 struct Object *owner, 1103 const char *name, 1104 uint64_t size, 1105 Error **errp); 1106 1107 /** 1108 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region. 1109 * Writes are handled via callbacks. 1110 * 1111 * Note that this function does not do anything to cause the data in the 1112 * RAM side of the memory region to be migrated; that is the responsibility 1113 * of the caller. 1114 * 1115 * @mr: the #MemoryRegion to be initialized. 1116 * @owner: the object that tracks the region's reference count 1117 * @ops: callbacks for write access handling (must not be NULL). 1118 * @opaque: passed to the read and write callbacks of the @ops structure. 1119 * @name: Region name, becomes part of RAMBlock name used in migration stream 1120 * must be unique within any device 1121 * @size: size of the region. 1122 * @errp: pointer to Error*, to store an error if it happens. 1123 */ 1124 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr, 1125 struct Object *owner, 1126 const MemoryRegionOps *ops, 1127 void *opaque, 1128 const char *name, 1129 uint64_t size, 1130 Error **errp); 1131 1132 /** 1133 * memory_region_init_iommu: Initialize a memory region of a custom type 1134 * that translates addresses 1135 * 1136 * An IOMMU region translates addresses and forwards accesses to a target 1137 * memory region. 1138 * 1139 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION. 1140 * @_iommu_mr should be a pointer to enough memory for an instance of 1141 * that subclass, @instance_size is the size of that subclass, and 1142 * @mrtypename is its name. This function will initialize @_iommu_mr as an 1143 * instance of the subclass, and its methods will then be called to handle 1144 * accesses to the memory region. See the documentation of 1145 * #IOMMUMemoryRegionClass for further details. 1146 * 1147 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized 1148 * @instance_size: the IOMMUMemoryRegion subclass instance size 1149 * @mrtypename: the type name of the #IOMMUMemoryRegion 1150 * @owner: the object that tracks the region's reference count 1151 * @name: used for debugging; not visible to the user or ABI 1152 * @size: size of the region. 1153 */ 1154 void memory_region_init_iommu(void *_iommu_mr, 1155 size_t instance_size, 1156 const char *mrtypename, 1157 Object *owner, 1158 const char *name, 1159 uint64_t size); 1160 1161 /** 1162 * memory_region_init_ram - Initialize RAM memory region. Accesses into the 1163 * region will modify memory directly. 1164 * 1165 * @mr: the #MemoryRegion to be initialized 1166 * @owner: the object that tracks the region's reference count (must be 1167 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL) 1168 * @name: name of the memory region 1169 * @size: size of the region in bytes 1170 * @errp: pointer to Error*, to store an error if it happens. 1171 * 1172 * This function allocates RAM for a board model or device, and 1173 * arranges for it to be migrated (by calling vmstate_register_ram() 1174 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1175 * @owner is NULL). 1176 * 1177 * TODO: Currently we restrict @owner to being either NULL (for 1178 * global RAM regions with no owner) or devices, so that we can 1179 * give the RAM block a unique name for migration purposes. 1180 * We should lift this restriction and allow arbitrary Objects. 1181 * If you pass a non-NULL non-device @owner then we will assert. 1182 */ 1183 void memory_region_init_ram(MemoryRegion *mr, 1184 struct Object *owner, 1185 const char *name, 1186 uint64_t size, 1187 Error **errp); 1188 1189 /** 1190 * memory_region_init_rom: Initialize a ROM memory region. 1191 * 1192 * This has the same effect as calling memory_region_init_ram() 1193 * and then marking the resulting region read-only with 1194 * memory_region_set_readonly(). This includes arranging for the 1195 * contents to be migrated. 1196 * 1197 * TODO: Currently we restrict @owner to being either NULL (for 1198 * global RAM regions with no owner) or devices, so that we can 1199 * give the RAM block a unique name for migration purposes. 1200 * We should lift this restriction and allow arbitrary Objects. 1201 * If you pass a non-NULL non-device @owner then we will assert. 1202 * 1203 * @mr: the #MemoryRegion to be initialized. 1204 * @owner: the object that tracks the region's reference count 1205 * @name: Region name, becomes part of RAMBlock name used in migration stream 1206 * must be unique within any device 1207 * @size: size of the region. 1208 * @errp: pointer to Error*, to store an error if it happens. 1209 */ 1210 void memory_region_init_rom(MemoryRegion *mr, 1211 struct Object *owner, 1212 const char *name, 1213 uint64_t size, 1214 Error **errp); 1215 1216 /** 1217 * memory_region_init_rom_device: Initialize a ROM memory region. 1218 * Writes are handled via callbacks. 1219 * 1220 * This function initializes a memory region backed by RAM for reads 1221 * and callbacks for writes, and arranges for the RAM backing to 1222 * be migrated (by calling vmstate_register_ram() 1223 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1224 * @owner is NULL). 1225 * 1226 * TODO: Currently we restrict @owner to being either NULL (for 1227 * global RAM regions with no owner) or devices, so that we can 1228 * give the RAM block a unique name for migration purposes. 1229 * We should lift this restriction and allow arbitrary Objects. 1230 * If you pass a non-NULL non-device @owner then we will assert. 1231 * 1232 * @mr: the #MemoryRegion to be initialized. 1233 * @owner: the object that tracks the region's reference count 1234 * @ops: callbacks for write access handling (must not be NULL). 1235 * @opaque: passed to the read and write callbacks of the @ops structure. 1236 * @name: Region name, becomes part of RAMBlock name used in migration stream 1237 * must be unique within any device 1238 * @size: size of the region. 1239 * @errp: pointer to Error*, to store an error if it happens. 1240 */ 1241 void memory_region_init_rom_device(MemoryRegion *mr, 1242 struct Object *owner, 1243 const MemoryRegionOps *ops, 1244 void *opaque, 1245 const char *name, 1246 uint64_t size, 1247 Error **errp); 1248 1249 1250 /** 1251 * memory_region_owner: get a memory region's owner. 1252 * 1253 * @mr: the memory region being queried. 1254 */ 1255 struct Object *memory_region_owner(MemoryRegion *mr); 1256 1257 /** 1258 * memory_region_size: get a memory region's size. 1259 * 1260 * @mr: the memory region being queried. 1261 */ 1262 uint64_t memory_region_size(MemoryRegion *mr); 1263 1264 /** 1265 * memory_region_is_ram: check whether a memory region is random access 1266 * 1267 * Returns %true if a memory region is random access. 1268 * 1269 * @mr: the memory region being queried 1270 */ 1271 static inline bool memory_region_is_ram(MemoryRegion *mr) 1272 { 1273 return mr->ram; 1274 } 1275 1276 /** 1277 * memory_region_is_ram_device: check whether a memory region is a ram device 1278 * 1279 * Returns %true if a memory region is a device backed ram region 1280 * 1281 * @mr: the memory region being queried 1282 */ 1283 bool memory_region_is_ram_device(MemoryRegion *mr); 1284 1285 /** 1286 * memory_region_is_romd: check whether a memory region is in ROMD mode 1287 * 1288 * Returns %true if a memory region is a ROM device and currently set to allow 1289 * direct reads. 1290 * 1291 * @mr: the memory region being queried 1292 */ 1293 static inline bool memory_region_is_romd(MemoryRegion *mr) 1294 { 1295 return mr->rom_device && mr->romd_mode; 1296 } 1297 1298 /** 1299 * memory_region_get_iommu: check whether a memory region is an iommu 1300 * 1301 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu, 1302 * otherwise NULL. 1303 * 1304 * @mr: the memory region being queried 1305 */ 1306 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr) 1307 { 1308 if (mr->alias) { 1309 return memory_region_get_iommu(mr->alias); 1310 } 1311 if (mr->is_iommu) { 1312 return (IOMMUMemoryRegion *) mr; 1313 } 1314 return NULL; 1315 } 1316 1317 /** 1318 * memory_region_get_iommu_class_nocheck: returns iommu memory region class 1319 * if an iommu or NULL if not 1320 * 1321 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu, 1322 * otherwise NULL. This is fast path avoiding QOM checking, use with caution. 1323 * 1324 * @iommu_mr: the memory region being queried 1325 */ 1326 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck( 1327 IOMMUMemoryRegion *iommu_mr) 1328 { 1329 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class); 1330 } 1331 1332 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL) 1333 1334 /** 1335 * memory_region_iommu_get_min_page_size: get minimum supported page size 1336 * for an iommu 1337 * 1338 * Returns minimum supported page size for an iommu. 1339 * 1340 * @iommu_mr: the memory region being queried 1341 */ 1342 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr); 1343 1344 /** 1345 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 1346 * 1347 * Note: for any IOMMU implementation, an in-place mapping change 1348 * should be notified with an UNMAP followed by a MAP. 1349 * 1350 * @iommu_mr: the memory region that was changed 1351 * @iommu_idx: the IOMMU index for the translation table which has changed 1352 * @event: TLB event with the new entry in the IOMMU translation table. 1353 * The entry replaces all old entries for the same virtual I/O address 1354 * range. 1355 */ 1356 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr, 1357 int iommu_idx, 1358 IOMMUTLBEvent event); 1359 1360 /** 1361 * memory_region_notify_iommu_one: notify a change in an IOMMU translation 1362 * entry to a single notifier 1363 * 1364 * This works just like memory_region_notify_iommu(), but it only 1365 * notifies a specific notifier, not all of them. 1366 * 1367 * @notifier: the notifier to be notified 1368 * @event: TLB event with the new entry in the IOMMU translation table. 1369 * The entry replaces all old entries for the same virtual I/O address 1370 * range. 1371 */ 1372 void memory_region_notify_iommu_one(IOMMUNotifier *notifier, 1373 IOMMUTLBEvent *event); 1374 1375 /** 1376 * memory_region_register_iommu_notifier: register a notifier for changes to 1377 * IOMMU translation entries. 1378 * 1379 * Returns 0 on success, or a negative errno otherwise. In particular, 1380 * -EINVAL indicates that at least one of the attributes of the notifier 1381 * is not supported (flag/range) by the IOMMU memory region. In case of error 1382 * the error object must be created. 1383 * 1384 * @mr: the memory region to observe 1385 * @n: the IOMMUNotifier to be added; the notify callback receives a 1386 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer 1387 * ceases to be valid on exit from the notifier. 1388 * @errp: pointer to Error*, to store an error if it happens. 1389 */ 1390 int memory_region_register_iommu_notifier(MemoryRegion *mr, 1391 IOMMUNotifier *n, Error **errp); 1392 1393 /** 1394 * memory_region_iommu_replay: replay existing IOMMU translations to 1395 * a notifier with the minimum page granularity returned by 1396 * mr->iommu_ops->get_page_size(). 1397 * 1398 * Note: this is not related to record-and-replay functionality. 1399 * 1400 * @iommu_mr: the memory region to observe 1401 * @n: the notifier to which to replay iommu mappings 1402 */ 1403 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n); 1404 1405 /** 1406 * memory_region_unregister_iommu_notifier: unregister a notifier for 1407 * changes to IOMMU translation entries. 1408 * 1409 * @mr: the memory region which was observed and for which notity_stopped() 1410 * needs to be called 1411 * @n: the notifier to be removed. 1412 */ 1413 void memory_region_unregister_iommu_notifier(MemoryRegion *mr, 1414 IOMMUNotifier *n); 1415 1416 /** 1417 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is 1418 * defined on the IOMMU. 1419 * 1420 * Returns 0 on success, or a negative errno otherwise. In particular, 1421 * -EINVAL indicates that the IOMMU does not support the requested 1422 * attribute. 1423 * 1424 * @iommu_mr: the memory region 1425 * @attr: the requested attribute 1426 * @data: a pointer to the requested attribute data 1427 */ 1428 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr, 1429 enum IOMMUMemoryRegionAttr attr, 1430 void *data); 1431 1432 /** 1433 * memory_region_iommu_attrs_to_index: return the IOMMU index to 1434 * use for translations with the given memory transaction attributes. 1435 * 1436 * @iommu_mr: the memory region 1437 * @attrs: the memory transaction attributes 1438 */ 1439 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr, 1440 MemTxAttrs attrs); 1441 1442 /** 1443 * memory_region_iommu_num_indexes: return the total number of IOMMU 1444 * indexes that this IOMMU supports. 1445 * 1446 * @iommu_mr: the memory region 1447 */ 1448 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr); 1449 1450 /** 1451 * memory_region_iommu_set_page_size_mask: set the supported page 1452 * sizes for a given IOMMU memory region 1453 * 1454 * @iommu_mr: IOMMU memory region 1455 * @page_size_mask: supported page size mask 1456 * @errp: pointer to Error*, to store an error if it happens. 1457 */ 1458 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr, 1459 uint64_t page_size_mask, 1460 Error **errp); 1461 1462 /** 1463 * memory_region_name: get a memory region's name 1464 * 1465 * Returns the string that was used to initialize the memory region. 1466 * 1467 * @mr: the memory region being queried 1468 */ 1469 const char *memory_region_name(const MemoryRegion *mr); 1470 1471 /** 1472 * memory_region_is_logging: return whether a memory region is logging writes 1473 * 1474 * Returns %true if the memory region is logging writes for the given client 1475 * 1476 * @mr: the memory region being queried 1477 * @client: the client being queried 1478 */ 1479 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 1480 1481 /** 1482 * memory_region_get_dirty_log_mask: return the clients for which a 1483 * memory region is logging writes. 1484 * 1485 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 1486 * are the bit indices. 1487 * 1488 * @mr: the memory region being queried 1489 */ 1490 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 1491 1492 /** 1493 * memory_region_is_rom: check whether a memory region is ROM 1494 * 1495 * Returns %true if a memory region is read-only memory. 1496 * 1497 * @mr: the memory region being queried 1498 */ 1499 static inline bool memory_region_is_rom(MemoryRegion *mr) 1500 { 1501 return mr->ram && mr->readonly; 1502 } 1503 1504 /** 1505 * memory_region_is_nonvolatile: check whether a memory region is non-volatile 1506 * 1507 * Returns %true is a memory region is non-volatile memory. 1508 * 1509 * @mr: the memory region being queried 1510 */ 1511 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr) 1512 { 1513 return mr->nonvolatile; 1514 } 1515 1516 /** 1517 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 1518 * 1519 * Returns a file descriptor backing a file-based RAM memory region, 1520 * or -1 if the region is not a file-based RAM memory region. 1521 * 1522 * @mr: the RAM or alias memory region being queried. 1523 */ 1524 int memory_region_get_fd(MemoryRegion *mr); 1525 1526 /** 1527 * memory_region_from_host: Convert a pointer into a RAM memory region 1528 * and an offset within it. 1529 * 1530 * Given a host pointer inside a RAM memory region (created with 1531 * memory_region_init_ram() or memory_region_init_ram_ptr()), return 1532 * the MemoryRegion and the offset within it. 1533 * 1534 * Use with care; by the time this function returns, the returned pointer is 1535 * not protected by RCU anymore. If the caller is not within an RCU critical 1536 * section and does not hold the iothread lock, it must have other means of 1537 * protecting the pointer, such as a reference to the region that includes 1538 * the incoming ram_addr_t. 1539 * 1540 * @ptr: the host pointer to be converted 1541 * @offset: the offset within memory region 1542 */ 1543 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset); 1544 1545 /** 1546 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 1547 * 1548 * Returns a host pointer to a RAM memory region (created with 1549 * memory_region_init_ram() or memory_region_init_ram_ptr()). 1550 * 1551 * Use with care; by the time this function returns, the returned pointer is 1552 * not protected by RCU anymore. If the caller is not within an RCU critical 1553 * section and does not hold the iothread lock, it must have other means of 1554 * protecting the pointer, such as a reference to the region that includes 1555 * the incoming ram_addr_t. 1556 * 1557 * @mr: the memory region being queried. 1558 */ 1559 void *memory_region_get_ram_ptr(MemoryRegion *mr); 1560 1561 /* memory_region_ram_resize: Resize a RAM region. 1562 * 1563 * Only legal before guest might have detected the memory size: e.g. on 1564 * incoming migration, or right after reset. 1565 * 1566 * @mr: a memory region created with @memory_region_init_resizeable_ram. 1567 * @newsize: the new size the region 1568 * @errp: pointer to Error*, to store an error if it happens. 1569 */ 1570 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 1571 Error **errp); 1572 1573 /** 1574 * memory_region_msync: Synchronize selected address range of 1575 * a memory mapped region 1576 * 1577 * @mr: the memory region to be msync 1578 * @addr: the initial address of the range to be sync 1579 * @size: the size of the range to be sync 1580 */ 1581 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size); 1582 1583 /** 1584 * memory_region_writeback: Trigger cache writeback for 1585 * selected address range 1586 * 1587 * @mr: the memory region to be updated 1588 * @addr: the initial address of the range to be written back 1589 * @size: the size of the range to be written back 1590 */ 1591 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size); 1592 1593 /** 1594 * memory_region_set_log: Turn dirty logging on or off for a region. 1595 * 1596 * Turns dirty logging on or off for a specified client (display, migration). 1597 * Only meaningful for RAM regions. 1598 * 1599 * @mr: the memory region being updated. 1600 * @log: whether dirty logging is to be enabled or disabled. 1601 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 1602 */ 1603 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 1604 1605 /** 1606 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 1607 * 1608 * Marks a range of bytes as dirty, after it has been dirtied outside 1609 * guest code. 1610 * 1611 * @mr: the memory region being dirtied. 1612 * @addr: the address (relative to the start of the region) being dirtied. 1613 * @size: size of the range being dirtied. 1614 */ 1615 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 1616 hwaddr size); 1617 1618 /** 1619 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range 1620 * 1621 * This function is called when the caller wants to clear the remote 1622 * dirty bitmap of a memory range within the memory region. This can 1623 * be used by e.g. KVM to manually clear dirty log when 1624 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host 1625 * kernel. 1626 * 1627 * @mr: the memory region to clear the dirty log upon 1628 * @start: start address offset within the memory region 1629 * @len: length of the memory region to clear dirty bitmap 1630 */ 1631 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start, 1632 hwaddr len); 1633 1634 /** 1635 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty 1636 * bitmap and clear it. 1637 * 1638 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and 1639 * returns the snapshot. The snapshot can then be used to query dirty 1640 * status, using memory_region_snapshot_get_dirty. Snapshotting allows 1641 * querying the same page multiple times, which is especially useful for 1642 * display updates where the scanlines often are not page aligned. 1643 * 1644 * The dirty bitmap region which gets copyed into the snapshot (and 1645 * cleared afterwards) can be larger than requested. The boundaries 1646 * are rounded up/down so complete bitmap longs (covering 64 pages on 1647 * 64bit hosts) can be copied over into the bitmap snapshot. Which 1648 * isn't a problem for display updates as the extra pages are outside 1649 * the visible area, and in case the visible area changes a full 1650 * display redraw is due anyway. Should other use cases for this 1651 * function emerge we might have to revisit this implementation 1652 * detail. 1653 * 1654 * Use g_free to release DirtyBitmapSnapshot. 1655 * 1656 * @mr: the memory region being queried. 1657 * @addr: the address (relative to the start of the region) being queried. 1658 * @size: the size of the range being queried. 1659 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA. 1660 */ 1661 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr, 1662 hwaddr addr, 1663 hwaddr size, 1664 unsigned client); 1665 1666 /** 1667 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty 1668 * in the specified dirty bitmap snapshot. 1669 * 1670 * @mr: the memory region being queried. 1671 * @snap: the dirty bitmap snapshot 1672 * @addr: the address (relative to the start of the region) being queried. 1673 * @size: the size of the range being queried. 1674 */ 1675 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, 1676 DirtyBitmapSnapshot *snap, 1677 hwaddr addr, hwaddr size); 1678 1679 /** 1680 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 1681 * client. 1682 * 1683 * Marks a range of pages as no longer dirty. 1684 * 1685 * @mr: the region being updated. 1686 * @addr: the start of the subrange being cleaned. 1687 * @size: the size of the subrange being cleaned. 1688 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 1689 * %DIRTY_MEMORY_VGA. 1690 */ 1691 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 1692 hwaddr size, unsigned client); 1693 1694 /** 1695 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate 1696 * TBs (for self-modifying code). 1697 * 1698 * The MemoryRegionOps->write() callback of a ROM device must use this function 1699 * to mark byte ranges that have been modified internally, such as by directly 1700 * accessing the memory returned by memory_region_get_ram_ptr(). 1701 * 1702 * This function marks the range dirty and invalidates TBs so that TCG can 1703 * detect self-modifying code. 1704 * 1705 * @mr: the region being flushed. 1706 * @addr: the start, relative to the start of the region, of the range being 1707 * flushed. 1708 * @size: the size, in bytes, of the range being flushed. 1709 */ 1710 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size); 1711 1712 /** 1713 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 1714 * 1715 * Allows a memory region to be marked as read-only (turning it into a ROM). 1716 * only useful on RAM regions. 1717 * 1718 * @mr: the region being updated. 1719 * @readonly: whether rhe region is to be ROM or RAM. 1720 */ 1721 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 1722 1723 /** 1724 * memory_region_set_nonvolatile: Turn a memory region non-volatile 1725 * 1726 * Allows a memory region to be marked as non-volatile. 1727 * only useful on RAM regions. 1728 * 1729 * @mr: the region being updated. 1730 * @nonvolatile: whether rhe region is to be non-volatile. 1731 */ 1732 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile); 1733 1734 /** 1735 * memory_region_rom_device_set_romd: enable/disable ROMD mode 1736 * 1737 * Allows a ROM device (initialized with memory_region_init_rom_device() to 1738 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 1739 * device is mapped to guest memory and satisfies read access directly. 1740 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 1741 * Writes are always handled by the #MemoryRegion.write function. 1742 * 1743 * @mr: the memory region to be updated 1744 * @romd_mode: %true to put the region into ROMD mode 1745 */ 1746 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 1747 1748 /** 1749 * memory_region_set_coalescing: Enable memory coalescing for the region. 1750 * 1751 * Enabled writes to a region to be queued for later processing. MMIO ->write 1752 * callbacks may be delayed until a non-coalesced MMIO is issued. 1753 * Only useful for IO regions. Roughly similar to write-combining hardware. 1754 * 1755 * @mr: the memory region to be write coalesced 1756 */ 1757 void memory_region_set_coalescing(MemoryRegion *mr); 1758 1759 /** 1760 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 1761 * a region. 1762 * 1763 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 1764 * Multiple calls can be issued coalesced disjoint ranges. 1765 * 1766 * @mr: the memory region to be updated. 1767 * @offset: the start of the range within the region to be coalesced. 1768 * @size: the size of the subrange to be coalesced. 1769 */ 1770 void memory_region_add_coalescing(MemoryRegion *mr, 1771 hwaddr offset, 1772 uint64_t size); 1773 1774 /** 1775 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 1776 * 1777 * Disables any coalescing caused by memory_region_set_coalescing() or 1778 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 1779 * hardware. 1780 * 1781 * @mr: the memory region to be updated. 1782 */ 1783 void memory_region_clear_coalescing(MemoryRegion *mr); 1784 1785 /** 1786 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 1787 * accesses. 1788 * 1789 * Ensure that pending coalesced MMIO request are flushed before the memory 1790 * region is accessed. This property is automatically enabled for all regions 1791 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 1792 * 1793 * @mr: the memory region to be updated. 1794 */ 1795 void memory_region_set_flush_coalesced(MemoryRegion *mr); 1796 1797 /** 1798 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 1799 * accesses. 1800 * 1801 * Clear the automatic coalesced MMIO flushing enabled via 1802 * memory_region_set_flush_coalesced. Note that this service has no effect on 1803 * memory regions that have MMIO coalescing enabled for themselves. For them, 1804 * automatic flushing will stop once coalescing is disabled. 1805 * 1806 * @mr: the memory region to be updated. 1807 */ 1808 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 1809 1810 /** 1811 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 1812 * is written to a location. 1813 * 1814 * Marks a word in an IO region (initialized with memory_region_init_io()) 1815 * as a trigger for an eventfd event. The I/O callback will not be called. 1816 * The caller must be prepared to handle failure (that is, take the required 1817 * action if the callback _is_ called). 1818 * 1819 * @mr: the memory region being updated. 1820 * @addr: the address within @mr that is to be monitored 1821 * @size: the size of the access to trigger the eventfd 1822 * @match_data: whether to match against @data, instead of just @addr 1823 * @data: the data to match against the guest write 1824 * @e: event notifier to be triggered when @addr, @size, and @data all match. 1825 **/ 1826 void memory_region_add_eventfd(MemoryRegion *mr, 1827 hwaddr addr, 1828 unsigned size, 1829 bool match_data, 1830 uint64_t data, 1831 EventNotifier *e); 1832 1833 /** 1834 * memory_region_del_eventfd: Cancel an eventfd. 1835 * 1836 * Cancels an eventfd trigger requested by a previous 1837 * memory_region_add_eventfd() call. 1838 * 1839 * @mr: the memory region being updated. 1840 * @addr: the address within @mr that is to be monitored 1841 * @size: the size of the access to trigger the eventfd 1842 * @match_data: whether to match against @data, instead of just @addr 1843 * @data: the data to match against the guest write 1844 * @e: event notifier to be triggered when @addr, @size, and @data all match. 1845 */ 1846 void memory_region_del_eventfd(MemoryRegion *mr, 1847 hwaddr addr, 1848 unsigned size, 1849 bool match_data, 1850 uint64_t data, 1851 EventNotifier *e); 1852 1853 /** 1854 * memory_region_add_subregion: Add a subregion to a container. 1855 * 1856 * Adds a subregion at @offset. The subregion may not overlap with other 1857 * subregions (except for those explicitly marked as overlapping). A region 1858 * may only be added once as a subregion (unless removed with 1859 * memory_region_del_subregion()); use memory_region_init_alias() if you 1860 * want a region to be a subregion in multiple locations. 1861 * 1862 * @mr: the region to contain the new subregion; must be a container 1863 * initialized with memory_region_init(). 1864 * @offset: the offset relative to @mr where @subregion is added. 1865 * @subregion: the subregion to be added. 1866 */ 1867 void memory_region_add_subregion(MemoryRegion *mr, 1868 hwaddr offset, 1869 MemoryRegion *subregion); 1870 /** 1871 * memory_region_add_subregion_overlap: Add a subregion to a container 1872 * with overlap. 1873 * 1874 * Adds a subregion at @offset. The subregion may overlap with other 1875 * subregions. Conflicts are resolved by having a higher @priority hide a 1876 * lower @priority. Subregions without priority are taken as @priority 0. 1877 * A region may only be added once as a subregion (unless removed with 1878 * memory_region_del_subregion()); use memory_region_init_alias() if you 1879 * want a region to be a subregion in multiple locations. 1880 * 1881 * @mr: the region to contain the new subregion; must be a container 1882 * initialized with memory_region_init(). 1883 * @offset: the offset relative to @mr where @subregion is added. 1884 * @subregion: the subregion to be added. 1885 * @priority: used for resolving overlaps; highest priority wins. 1886 */ 1887 void memory_region_add_subregion_overlap(MemoryRegion *mr, 1888 hwaddr offset, 1889 MemoryRegion *subregion, 1890 int priority); 1891 1892 /** 1893 * memory_region_get_ram_addr: Get the ram address associated with a memory 1894 * region 1895 * 1896 * @mr: the region to be queried 1897 */ 1898 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 1899 1900 uint64_t memory_region_get_alignment(const MemoryRegion *mr); 1901 /** 1902 * memory_region_del_subregion: Remove a subregion. 1903 * 1904 * Removes a subregion from its container. 1905 * 1906 * @mr: the container to be updated. 1907 * @subregion: the region being removed; must be a current subregion of @mr. 1908 */ 1909 void memory_region_del_subregion(MemoryRegion *mr, 1910 MemoryRegion *subregion); 1911 1912 /* 1913 * memory_region_set_enabled: dynamically enable or disable a region 1914 * 1915 * Enables or disables a memory region. A disabled memory region 1916 * ignores all accesses to itself and its subregions. It does not 1917 * obscure sibling subregions with lower priority - it simply behaves as 1918 * if it was removed from the hierarchy. 1919 * 1920 * Regions default to being enabled. 1921 * 1922 * @mr: the region to be updated 1923 * @enabled: whether to enable or disable the region 1924 */ 1925 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 1926 1927 /* 1928 * memory_region_set_address: dynamically update the address of a region 1929 * 1930 * Dynamically updates the address of a region, relative to its container. 1931 * May be used on regions are currently part of a memory hierarchy. 1932 * 1933 * @mr: the region to be updated 1934 * @addr: new address, relative to container region 1935 */ 1936 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 1937 1938 /* 1939 * memory_region_set_size: dynamically update the size of a region. 1940 * 1941 * Dynamically updates the size of a region. 1942 * 1943 * @mr: the region to be updated 1944 * @size: used size of the region. 1945 */ 1946 void memory_region_set_size(MemoryRegion *mr, uint64_t size); 1947 1948 /* 1949 * memory_region_set_alias_offset: dynamically update a memory alias's offset 1950 * 1951 * Dynamically updates the offset into the target region that an alias points 1952 * to, as if the fourth argument to memory_region_init_alias() has changed. 1953 * 1954 * @mr: the #MemoryRegion to be updated; should be an alias. 1955 * @offset: the new offset into the target memory region 1956 */ 1957 void memory_region_set_alias_offset(MemoryRegion *mr, 1958 hwaddr offset); 1959 1960 /** 1961 * memory_region_present: checks if an address relative to a @container 1962 * translates into #MemoryRegion within @container 1963 * 1964 * Answer whether a #MemoryRegion within @container covers the address 1965 * @addr. 1966 * 1967 * @container: a #MemoryRegion within which @addr is a relative address 1968 * @addr: the area within @container to be searched 1969 */ 1970 bool memory_region_present(MemoryRegion *container, hwaddr addr); 1971 1972 /** 1973 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 1974 * into any address space. 1975 * 1976 * @mr: a #MemoryRegion which should be checked if it's mapped 1977 */ 1978 bool memory_region_is_mapped(MemoryRegion *mr); 1979 1980 /** 1981 * memory_region_find: translate an address/size relative to a 1982 * MemoryRegion into a #MemoryRegionSection. 1983 * 1984 * Locates the first #MemoryRegion within @mr that overlaps the range 1985 * given by @addr and @size. 1986 * 1987 * Returns a #MemoryRegionSection that describes a contiguous overlap. 1988 * It will have the following characteristics: 1989 * - @size = 0 iff no overlap was found 1990 * - @mr is non-%NULL iff an overlap was found 1991 * 1992 * Remember that in the return value the @offset_within_region is 1993 * relative to the returned region (in the .@mr field), not to the 1994 * @mr argument. 1995 * 1996 * Similarly, the .@offset_within_address_space is relative to the 1997 * address space that contains both regions, the passed and the 1998 * returned one. However, in the special case where the @mr argument 1999 * has no container (and thus is the root of the address space), the 2000 * following will hold: 2001 * - @offset_within_address_space >= @addr 2002 * - @offset_within_address_space + .@size <= @addr + @size 2003 * 2004 * @mr: a MemoryRegion within which @addr is a relative address 2005 * @addr: start of the area within @as to be searched 2006 * @size: size of the area to be searched 2007 */ 2008 MemoryRegionSection memory_region_find(MemoryRegion *mr, 2009 hwaddr addr, uint64_t size); 2010 2011 /** 2012 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 2013 * 2014 * Synchronizes the dirty page log for all address spaces. 2015 */ 2016 void memory_global_dirty_log_sync(void); 2017 2018 /** 2019 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 2020 * 2021 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap. 2022 * This function must be called after the dirty log bitmap is cleared, and 2023 * before dirty guest memory pages are read. If you are using 2024 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes 2025 * care of doing this. 2026 */ 2027 void memory_global_after_dirty_log_sync(void); 2028 2029 /** 2030 * memory_region_transaction_begin: Start a transaction. 2031 * 2032 * During a transaction, changes will be accumulated and made visible 2033 * only when the transaction ends (is committed). 2034 */ 2035 void memory_region_transaction_begin(void); 2036 2037 /** 2038 * memory_region_transaction_commit: Commit a transaction and make changes 2039 * visible to the guest. 2040 */ 2041 void memory_region_transaction_commit(void); 2042 2043 /** 2044 * memory_listener_register: register callbacks to be called when memory 2045 * sections are mapped or unmapped into an address 2046 * space 2047 * 2048 * @listener: an object containing the callbacks to be called 2049 * @filter: if non-%NULL, only regions in this address space will be observed 2050 */ 2051 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 2052 2053 /** 2054 * memory_listener_unregister: undo the effect of memory_listener_register() 2055 * 2056 * @listener: an object containing the callbacks to be removed 2057 */ 2058 void memory_listener_unregister(MemoryListener *listener); 2059 2060 /** 2061 * memory_global_dirty_log_start: begin dirty logging for all regions 2062 */ 2063 void memory_global_dirty_log_start(void); 2064 2065 /** 2066 * memory_global_dirty_log_stop: end dirty logging for all regions 2067 */ 2068 void memory_global_dirty_log_stop(void); 2069 2070 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled); 2071 2072 /** 2073 * memory_region_dispatch_read: perform a read directly to the specified 2074 * MemoryRegion. 2075 * 2076 * @mr: #MemoryRegion to access 2077 * @addr: address within that region 2078 * @pval: pointer to uint64_t which the data is written to 2079 * @op: size, sign, and endianness of the memory operation 2080 * @attrs: memory transaction attributes to use for the access 2081 */ 2082 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 2083 hwaddr addr, 2084 uint64_t *pval, 2085 MemOp op, 2086 MemTxAttrs attrs); 2087 /** 2088 * memory_region_dispatch_write: perform a write directly to the specified 2089 * MemoryRegion. 2090 * 2091 * @mr: #MemoryRegion to access 2092 * @addr: address within that region 2093 * @data: data to write 2094 * @op: size, sign, and endianness of the memory operation 2095 * @attrs: memory transaction attributes to use for the access 2096 */ 2097 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 2098 hwaddr addr, 2099 uint64_t data, 2100 MemOp op, 2101 MemTxAttrs attrs); 2102 2103 /** 2104 * address_space_init: initializes an address space 2105 * 2106 * @as: an uninitialized #AddressSpace 2107 * @root: a #MemoryRegion that routes addresses for the address space 2108 * @name: an address space name. The name is only used for debugging 2109 * output. 2110 */ 2111 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 2112 2113 /** 2114 * address_space_destroy: destroy an address space 2115 * 2116 * Releases all resources associated with an address space. After an address space 2117 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 2118 * as well. 2119 * 2120 * @as: address space to be destroyed 2121 */ 2122 void address_space_destroy(AddressSpace *as); 2123 2124 /** 2125 * address_space_remove_listeners: unregister all listeners of an address space 2126 * 2127 * Removes all callbacks previously registered with memory_listener_register() 2128 * for @as. 2129 * 2130 * @as: an initialized #AddressSpace 2131 */ 2132 void address_space_remove_listeners(AddressSpace *as); 2133 2134 /** 2135 * address_space_rw: read from or write to an address space. 2136 * 2137 * Return a MemTxResult indicating whether the operation succeeded 2138 * or failed (eg unassigned memory, device rejected the transaction, 2139 * IOMMU fault). 2140 * 2141 * @as: #AddressSpace to be accessed 2142 * @addr: address within that address space 2143 * @attrs: memory transaction attributes 2144 * @buf: buffer with the data transferred 2145 * @len: the number of bytes to read or write 2146 * @is_write: indicates the transfer direction 2147 */ 2148 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 2149 MemTxAttrs attrs, void *buf, 2150 hwaddr len, bool is_write); 2151 2152 /** 2153 * address_space_write: write to address space. 2154 * 2155 * Return a MemTxResult indicating whether the operation succeeded 2156 * or failed (eg unassigned memory, device rejected the transaction, 2157 * IOMMU fault). 2158 * 2159 * @as: #AddressSpace to be accessed 2160 * @addr: address within that address space 2161 * @attrs: memory transaction attributes 2162 * @buf: buffer with the data transferred 2163 * @len: the number of bytes to write 2164 */ 2165 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 2166 MemTxAttrs attrs, 2167 const void *buf, hwaddr len); 2168 2169 /** 2170 * address_space_write_rom: write to address space, including ROM. 2171 * 2172 * This function writes to the specified address space, but will 2173 * write data to both ROM and RAM. This is used for non-guest 2174 * writes like writes from the gdb debug stub or initial loading 2175 * of ROM contents. 2176 * 2177 * Note that portions of the write which attempt to write data to 2178 * a device will be silently ignored -- only real RAM and ROM will 2179 * be written to. 2180 * 2181 * Return a MemTxResult indicating whether the operation succeeded 2182 * or failed (eg unassigned memory, device rejected the transaction, 2183 * IOMMU fault). 2184 * 2185 * @as: #AddressSpace to be accessed 2186 * @addr: address within that address space 2187 * @attrs: memory transaction attributes 2188 * @buf: buffer with the data transferred 2189 * @len: the number of bytes to write 2190 */ 2191 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 2192 MemTxAttrs attrs, 2193 const void *buf, hwaddr len); 2194 2195 /* address_space_ld*: load from an address space 2196 * address_space_st*: store to an address space 2197 * 2198 * These functions perform a load or store of the byte, word, 2199 * longword or quad to the specified address within the AddressSpace. 2200 * The _le suffixed functions treat the data as little endian; 2201 * _be indicates big endian; no suffix indicates "same endianness 2202 * as guest CPU". 2203 * 2204 * The "guest CPU endianness" accessors are deprecated for use outside 2205 * target-* code; devices should be CPU-agnostic and use either the LE 2206 * or the BE accessors. 2207 * 2208 * @as #AddressSpace to be accessed 2209 * @addr: address within that address space 2210 * @val: data value, for stores 2211 * @attrs: memory transaction attributes 2212 * @result: location to write the success/failure of the transaction; 2213 * if NULL, this information is discarded 2214 */ 2215 2216 #define SUFFIX 2217 #define ARG1 as 2218 #define ARG1_DECL AddressSpace *as 2219 #include "exec/memory_ldst.h.inc" 2220 2221 #define SUFFIX 2222 #define ARG1 as 2223 #define ARG1_DECL AddressSpace *as 2224 #include "exec/memory_ldst_phys.h.inc" 2225 2226 struct MemoryRegionCache { 2227 void *ptr; 2228 hwaddr xlat; 2229 hwaddr len; 2230 FlatView *fv; 2231 MemoryRegionSection mrs; 2232 bool is_write; 2233 }; 2234 2235 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL }) 2236 2237 2238 /* address_space_ld*_cached: load from a cached #MemoryRegion 2239 * address_space_st*_cached: store into a cached #MemoryRegion 2240 * 2241 * These functions perform a load or store of the byte, word, 2242 * longword or quad to the specified address. The address is 2243 * a physical address in the AddressSpace, but it must lie within 2244 * a #MemoryRegion that was mapped with address_space_cache_init. 2245 * 2246 * The _le suffixed functions treat the data as little endian; 2247 * _be indicates big endian; no suffix indicates "same endianness 2248 * as guest CPU". 2249 * 2250 * The "guest CPU endianness" accessors are deprecated for use outside 2251 * target-* code; devices should be CPU-agnostic and use either the LE 2252 * or the BE accessors. 2253 * 2254 * @cache: previously initialized #MemoryRegionCache to be accessed 2255 * @addr: address within the address space 2256 * @val: data value, for stores 2257 * @attrs: memory transaction attributes 2258 * @result: location to write the success/failure of the transaction; 2259 * if NULL, this information is discarded 2260 */ 2261 2262 #define SUFFIX _cached_slow 2263 #define ARG1 cache 2264 #define ARG1_DECL MemoryRegionCache *cache 2265 #include "exec/memory_ldst.h.inc" 2266 2267 /* Inline fast path for direct RAM access. */ 2268 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache, 2269 hwaddr addr, MemTxAttrs attrs, MemTxResult *result) 2270 { 2271 assert(addr < cache->len); 2272 if (likely(cache->ptr)) { 2273 return ldub_p(cache->ptr + addr); 2274 } else { 2275 return address_space_ldub_cached_slow(cache, addr, attrs, result); 2276 } 2277 } 2278 2279 static inline void address_space_stb_cached(MemoryRegionCache *cache, 2280 hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result) 2281 { 2282 assert(addr < cache->len); 2283 if (likely(cache->ptr)) { 2284 stb_p(cache->ptr + addr, val); 2285 } else { 2286 address_space_stb_cached_slow(cache, addr, val, attrs, result); 2287 } 2288 } 2289 2290 #define ENDIANNESS _le 2291 #include "exec/memory_ldst_cached.h.inc" 2292 2293 #define ENDIANNESS _be 2294 #include "exec/memory_ldst_cached.h.inc" 2295 2296 #define SUFFIX _cached 2297 #define ARG1 cache 2298 #define ARG1_DECL MemoryRegionCache *cache 2299 #include "exec/memory_ldst_phys.h.inc" 2300 2301 /* address_space_cache_init: prepare for repeated access to a physical 2302 * memory region 2303 * 2304 * @cache: #MemoryRegionCache to be filled 2305 * @as: #AddressSpace to be accessed 2306 * @addr: address within that address space 2307 * @len: length of buffer 2308 * @is_write: indicates the transfer direction 2309 * 2310 * Will only work with RAM, and may map a subset of the requested range by 2311 * returning a value that is less than @len. On failure, return a negative 2312 * errno value. 2313 * 2314 * Because it only works with RAM, this function can be used for 2315 * read-modify-write operations. In this case, is_write should be %true. 2316 * 2317 * Note that addresses passed to the address_space_*_cached functions 2318 * are relative to @addr. 2319 */ 2320 int64_t address_space_cache_init(MemoryRegionCache *cache, 2321 AddressSpace *as, 2322 hwaddr addr, 2323 hwaddr len, 2324 bool is_write); 2325 2326 /** 2327 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache 2328 * 2329 * @cache: The #MemoryRegionCache to operate on. 2330 * @addr: The first physical address that was written, relative to the 2331 * address that was passed to @address_space_cache_init. 2332 * @access_len: The number of bytes that were written starting at @addr. 2333 */ 2334 void address_space_cache_invalidate(MemoryRegionCache *cache, 2335 hwaddr addr, 2336 hwaddr access_len); 2337 2338 /** 2339 * address_space_cache_destroy: free a #MemoryRegionCache 2340 * 2341 * @cache: The #MemoryRegionCache whose memory should be released. 2342 */ 2343 void address_space_cache_destroy(MemoryRegionCache *cache); 2344 2345 /* address_space_get_iotlb_entry: translate an address into an IOTLB 2346 * entry. Should be called from an RCU critical section. 2347 */ 2348 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 2349 bool is_write, MemTxAttrs attrs); 2350 2351 /* address_space_translate: translate an address range into an address space 2352 * into a MemoryRegion and an address range into that section. Should be 2353 * called from an RCU critical section, to avoid that the last reference 2354 * to the returned region disappears after address_space_translate returns. 2355 * 2356 * @fv: #FlatView to be accessed 2357 * @addr: address within that address space 2358 * @xlat: pointer to address within the returned memory region section's 2359 * #MemoryRegion. 2360 * @len: pointer to length 2361 * @is_write: indicates the transfer direction 2362 * @attrs: memory attributes 2363 */ 2364 MemoryRegion *flatview_translate(FlatView *fv, 2365 hwaddr addr, hwaddr *xlat, 2366 hwaddr *len, bool is_write, 2367 MemTxAttrs attrs); 2368 2369 static inline MemoryRegion *address_space_translate(AddressSpace *as, 2370 hwaddr addr, hwaddr *xlat, 2371 hwaddr *len, bool is_write, 2372 MemTxAttrs attrs) 2373 { 2374 return flatview_translate(address_space_to_flatview(as), 2375 addr, xlat, len, is_write, attrs); 2376 } 2377 2378 /* address_space_access_valid: check for validity of accessing an address 2379 * space range 2380 * 2381 * Check whether memory is assigned to the given address space range, and 2382 * access is permitted by any IOMMU regions that are active for the address 2383 * space. 2384 * 2385 * For now, addr and len should be aligned to a page size. This limitation 2386 * will be lifted in the future. 2387 * 2388 * @as: #AddressSpace to be accessed 2389 * @addr: address within that address space 2390 * @len: length of the area to be checked 2391 * @is_write: indicates the transfer direction 2392 * @attrs: memory attributes 2393 */ 2394 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len, 2395 bool is_write, MemTxAttrs attrs); 2396 2397 /* address_space_map: map a physical memory region into a host virtual address 2398 * 2399 * May map a subset of the requested range, given by and returned in @plen. 2400 * May return %NULL and set *@plen to zero(0), if resources needed to perform 2401 * the mapping are exhausted. 2402 * Use only for reads OR writes - not for read-modify-write operations. 2403 * Use cpu_register_map_client() to know when retrying the map operation is 2404 * likely to succeed. 2405 * 2406 * @as: #AddressSpace to be accessed 2407 * @addr: address within that address space 2408 * @plen: pointer to length of buffer; updated on return 2409 * @is_write: indicates the transfer direction 2410 * @attrs: memory attributes 2411 */ 2412 void *address_space_map(AddressSpace *as, hwaddr addr, 2413 hwaddr *plen, bool is_write, MemTxAttrs attrs); 2414 2415 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 2416 * 2417 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 2418 * the amount of memory that was actually read or written by the caller. 2419 * 2420 * @as: #AddressSpace used 2421 * @buffer: host pointer as returned by address_space_map() 2422 * @len: buffer length as returned by address_space_map() 2423 * @access_len: amount of data actually transferred 2424 * @is_write: indicates the transfer direction 2425 */ 2426 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 2427 bool is_write, hwaddr access_len); 2428 2429 2430 /* Internal functions, part of the implementation of address_space_read. */ 2431 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2432 MemTxAttrs attrs, void *buf, hwaddr len); 2433 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2434 MemTxAttrs attrs, void *buf, 2435 hwaddr len, hwaddr addr1, hwaddr l, 2436 MemoryRegion *mr); 2437 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr); 2438 2439 /* Internal functions, part of the implementation of address_space_read_cached 2440 * and address_space_write_cached. */ 2441 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache, 2442 hwaddr addr, void *buf, hwaddr len); 2443 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache, 2444 hwaddr addr, const void *buf, 2445 hwaddr len); 2446 2447 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) 2448 { 2449 if (is_write) { 2450 return memory_region_is_ram(mr) && !mr->readonly && 2451 !mr->rom_device && !memory_region_is_ram_device(mr); 2452 } else { 2453 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) || 2454 memory_region_is_romd(mr); 2455 } 2456 } 2457 2458 /** 2459 * address_space_read: read from an address space. 2460 * 2461 * Return a MemTxResult indicating whether the operation succeeded 2462 * or failed (eg unassigned memory, device rejected the transaction, 2463 * IOMMU fault). Called within RCU critical section. 2464 * 2465 * @as: #AddressSpace to be accessed 2466 * @addr: address within that address space 2467 * @attrs: memory transaction attributes 2468 * @buf: buffer with the data transferred 2469 * @len: length of the data transferred 2470 */ 2471 static inline __attribute__((__always_inline__)) 2472 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, 2473 MemTxAttrs attrs, void *buf, 2474 hwaddr len) 2475 { 2476 MemTxResult result = MEMTX_OK; 2477 hwaddr l, addr1; 2478 void *ptr; 2479 MemoryRegion *mr; 2480 FlatView *fv; 2481 2482 if (__builtin_constant_p(len)) { 2483 if (len) { 2484 RCU_READ_LOCK_GUARD(); 2485 fv = address_space_to_flatview(as); 2486 l = len; 2487 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2488 if (len == l && memory_access_is_direct(mr, false)) { 2489 ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 2490 memcpy(buf, ptr, len); 2491 } else { 2492 result = flatview_read_continue(fv, addr, attrs, buf, len, 2493 addr1, l, mr); 2494 } 2495 } 2496 } else { 2497 result = address_space_read_full(as, addr, attrs, buf, len); 2498 } 2499 return result; 2500 } 2501 2502 /** 2503 * address_space_read_cached: read from a cached RAM region 2504 * 2505 * @cache: Cached region to be addressed 2506 * @addr: address relative to the base of the RAM region 2507 * @buf: buffer with the data transferred 2508 * @len: length of the data transferred 2509 */ 2510 static inline MemTxResult 2511 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr, 2512 void *buf, hwaddr len) 2513 { 2514 assert(addr < cache->len && len <= cache->len - addr); 2515 fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr); 2516 if (likely(cache->ptr)) { 2517 memcpy(buf, cache->ptr + addr, len); 2518 return MEMTX_OK; 2519 } else { 2520 return address_space_read_cached_slow(cache, addr, buf, len); 2521 } 2522 } 2523 2524 /** 2525 * address_space_write_cached: write to a cached RAM region 2526 * 2527 * @cache: Cached region to be addressed 2528 * @addr: address relative to the base of the RAM region 2529 * @buf: buffer with the data transferred 2530 * @len: length of the data transferred 2531 */ 2532 static inline MemTxResult 2533 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr, 2534 const void *buf, hwaddr len) 2535 { 2536 assert(addr < cache->len && len <= cache->len - addr); 2537 if (likely(cache->ptr)) { 2538 memcpy(cache->ptr + addr, buf, len); 2539 return MEMTX_OK; 2540 } else { 2541 return address_space_write_cached_slow(cache, addr, buf, len); 2542 } 2543 } 2544 2545 #ifdef NEED_CPU_H 2546 /* enum device_endian to MemOp. */ 2547 static inline MemOp devend_memop(enum device_endian end) 2548 { 2549 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN && 2550 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN); 2551 2552 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 2553 /* Swap if non-host endianness or native (target) endianness */ 2554 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP; 2555 #else 2556 const int non_host_endianness = 2557 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN; 2558 2559 /* In this case, native (target) endianness needs no swap. */ 2560 return (end == non_host_endianness) ? MO_BSWAP : 0; 2561 #endif 2562 } 2563 #endif 2564 2565 /* 2566 * Inhibit technologies that require discarding of pages in RAM blocks, e.g., 2567 * to manage the actual amount of memory consumed by the VM (then, the memory 2568 * provided by RAM blocks might be bigger than the desired memory consumption). 2569 * This *must* be set if: 2570 * - Discarding parts of a RAM blocks does not result in the change being 2571 * reflected in the VM and the pages getting freed. 2572 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous 2573 * discards blindly. 2574 * - Discarding parts of a RAM blocks will result in integrity issues (e.g., 2575 * encrypted VMs). 2576 * Technologies that only temporarily pin the current working set of a 2577 * driver are fine, because we don't expect such pages to be discarded 2578 * (esp. based on guest action like balloon inflation). 2579 * 2580 * This is *not* to be used to protect from concurrent discards (esp., 2581 * postcopy). 2582 * 2583 * Returns 0 if successful. Returns -EBUSY if a technology that relies on 2584 * discards to work reliably is active. 2585 */ 2586 int ram_block_discard_disable(bool state); 2587 2588 /* 2589 * Inhibit technologies that disable discarding of pages in RAM blocks. 2590 * 2591 * Returns 0 if successful. Returns -EBUSY if discards are already set to 2592 * broken. 2593 */ 2594 int ram_block_discard_require(bool state); 2595 2596 /* 2597 * Test if discarding of memory in ram blocks is disabled. 2598 */ 2599 bool ram_block_discard_is_disabled(void); 2600 2601 /* 2602 * Test if discarding of memory in ram blocks is required to work reliably. 2603 */ 2604 bool ram_block_discard_is_required(void); 2605 2606 #endif 2607 2608 #endif 2609