xref: /openbmc/qemu/include/exec/memory.h (revision 041c2a31)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/memop.h"
23 #include "exec/ramlist.h"
24 #include "qemu/bswap.h"
25 #include "qemu/queue.h"
26 #include "qemu/int128.h"
27 #include "qemu/notify.h"
28 #include "qom/object.h"
29 #include "qemu/rcu.h"
30 
31 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
32 
33 #define MAX_PHYS_ADDR_SPACE_BITS 62
34 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
35 
36 #define TYPE_MEMORY_REGION "qemu:memory-region"
37 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION,
38                          TYPE_MEMORY_REGION)
39 
40 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region"
41 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass;
42 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass,
43                      IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION)
44 
45 #ifdef CONFIG_FUZZ
46 void fuzz_dma_read_cb(size_t addr,
47                       size_t len,
48                       MemoryRegion *mr);
49 #else
50 static inline void fuzz_dma_read_cb(size_t addr,
51                                     size_t len,
52                                     MemoryRegion *mr)
53 {
54     /* Do Nothing */
55 }
56 #endif
57 
58 extern bool global_dirty_log;
59 
60 typedef struct MemoryRegionOps MemoryRegionOps;
61 
62 struct ReservedRegion {
63     hwaddr low;
64     hwaddr high;
65     unsigned type;
66 };
67 
68 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
69 
70 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
71 typedef enum {
72     IOMMU_NONE = 0,
73     IOMMU_RO   = 1,
74     IOMMU_WO   = 2,
75     IOMMU_RW   = 3,
76 } IOMMUAccessFlags;
77 
78 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
79 
80 struct IOMMUTLBEntry {
81     AddressSpace    *target_as;
82     hwaddr           iova;
83     hwaddr           translated_addr;
84     hwaddr           addr_mask;  /* 0xfff = 4k translation */
85     IOMMUAccessFlags perm;
86 };
87 
88 /*
89  * Bitmap for different IOMMUNotifier capabilities. Each notifier can
90  * register with one or multiple IOMMU Notifier capability bit(s).
91  */
92 typedef enum {
93     IOMMU_NOTIFIER_NONE = 0,
94     /* Notify cache invalidations */
95     IOMMU_NOTIFIER_UNMAP = 0x1,
96     /* Notify entry changes (newly created entries) */
97     IOMMU_NOTIFIER_MAP = 0x2,
98     /* Notify changes on device IOTLB entries */
99     IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04,
100 } IOMMUNotifierFlag;
101 
102 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
103 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP
104 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \
105                             IOMMU_NOTIFIER_DEVIOTLB_EVENTS)
106 
107 struct IOMMUNotifier;
108 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
109                             IOMMUTLBEntry *data);
110 
111 struct IOMMUNotifier {
112     IOMMUNotify notify;
113     IOMMUNotifierFlag notifier_flags;
114     /* Notify for address space range start <= addr <= end */
115     hwaddr start;
116     hwaddr end;
117     int iommu_idx;
118     QLIST_ENTRY(IOMMUNotifier) node;
119 };
120 typedef struct IOMMUNotifier IOMMUNotifier;
121 
122 typedef struct IOMMUTLBEvent {
123     IOMMUNotifierFlag type;
124     IOMMUTLBEntry entry;
125 } IOMMUTLBEvent;
126 
127 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
128 #define RAM_PREALLOC   (1 << 0)
129 
130 /* RAM is mmap-ed with MAP_SHARED */
131 #define RAM_SHARED     (1 << 1)
132 
133 /* Only a portion of RAM (used_length) is actually used, and migrated.
134  * This used_length size can change across reboots.
135  */
136 #define RAM_RESIZEABLE (1 << 2)
137 
138 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
139  * zero the page and wake waiting processes.
140  * (Set during postcopy)
141  */
142 #define RAM_UF_ZEROPAGE (1 << 3)
143 
144 /* RAM can be migrated */
145 #define RAM_MIGRATABLE (1 << 4)
146 
147 /* RAM is a persistent kind memory */
148 #define RAM_PMEM (1 << 5)
149 
150 
151 /*
152  * UFFDIO_WRITEPROTECT is used on this RAMBlock to
153  * support 'write-tracking' migration type.
154  * Implies ram_state->ram_wt_enabled.
155  */
156 #define RAM_UF_WRITEPROTECT (1 << 6)
157 
158 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
159                                        IOMMUNotifierFlag flags,
160                                        hwaddr start, hwaddr end,
161                                        int iommu_idx)
162 {
163     n->notify = fn;
164     n->notifier_flags = flags;
165     n->start = start;
166     n->end = end;
167     n->iommu_idx = iommu_idx;
168 }
169 
170 /*
171  * Memory region callbacks
172  */
173 struct MemoryRegionOps {
174     /* Read from the memory region. @addr is relative to @mr; @size is
175      * in bytes. */
176     uint64_t (*read)(void *opaque,
177                      hwaddr addr,
178                      unsigned size);
179     /* Write to the memory region. @addr is relative to @mr; @size is
180      * in bytes. */
181     void (*write)(void *opaque,
182                   hwaddr addr,
183                   uint64_t data,
184                   unsigned size);
185 
186     MemTxResult (*read_with_attrs)(void *opaque,
187                                    hwaddr addr,
188                                    uint64_t *data,
189                                    unsigned size,
190                                    MemTxAttrs attrs);
191     MemTxResult (*write_with_attrs)(void *opaque,
192                                     hwaddr addr,
193                                     uint64_t data,
194                                     unsigned size,
195                                     MemTxAttrs attrs);
196 
197     enum device_endian endianness;
198     /* Guest-visible constraints: */
199     struct {
200         /* If nonzero, specify bounds on access sizes beyond which a machine
201          * check is thrown.
202          */
203         unsigned min_access_size;
204         unsigned max_access_size;
205         /* If true, unaligned accesses are supported.  Otherwise unaligned
206          * accesses throw machine checks.
207          */
208          bool unaligned;
209         /*
210          * If present, and returns #false, the transaction is not accepted
211          * by the device (and results in machine dependent behaviour such
212          * as a machine check exception).
213          */
214         bool (*accepts)(void *opaque, hwaddr addr,
215                         unsigned size, bool is_write,
216                         MemTxAttrs attrs);
217     } valid;
218     /* Internal implementation constraints: */
219     struct {
220         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
221          * will be rounded upwards and a partial result will be returned.
222          */
223         unsigned min_access_size;
224         /* If nonzero, specifies the maximum size implemented.  Larger sizes
225          * will be done as a series of accesses with smaller sizes.
226          */
227         unsigned max_access_size;
228         /* If true, unaligned accesses are supported.  Otherwise all accesses
229          * are converted to (possibly multiple) naturally aligned accesses.
230          */
231         bool unaligned;
232     } impl;
233 };
234 
235 typedef struct MemoryRegionClass {
236     /* private */
237     ObjectClass parent_class;
238 } MemoryRegionClass;
239 
240 
241 enum IOMMUMemoryRegionAttr {
242     IOMMU_ATTR_SPAPR_TCE_FD
243 };
244 
245 /*
246  * IOMMUMemoryRegionClass:
247  *
248  * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
249  * and provide an implementation of at least the @translate method here
250  * to handle requests to the memory region. Other methods are optional.
251  *
252  * The IOMMU implementation must use the IOMMU notifier infrastructure
253  * to report whenever mappings are changed, by calling
254  * memory_region_notify_iommu() (or, if necessary, by calling
255  * memory_region_notify_iommu_one() for each registered notifier).
256  *
257  * Conceptually an IOMMU provides a mapping from input address
258  * to an output TLB entry. If the IOMMU is aware of memory transaction
259  * attributes and the output TLB entry depends on the transaction
260  * attributes, we represent this using IOMMU indexes. Each index
261  * selects a particular translation table that the IOMMU has:
262  *
263  *   @attrs_to_index returns the IOMMU index for a set of transaction attributes
264  *
265  *   @translate takes an input address and an IOMMU index
266  *
267  * and the mapping returned can only depend on the input address and the
268  * IOMMU index.
269  *
270  * Most IOMMUs don't care about the transaction attributes and support
271  * only a single IOMMU index. A more complex IOMMU might have one index
272  * for secure transactions and one for non-secure transactions.
273  */
274 struct IOMMUMemoryRegionClass {
275     /* private: */
276     MemoryRegionClass parent_class;
277 
278     /* public: */
279     /**
280      * @translate:
281      *
282      * Return a TLB entry that contains a given address.
283      *
284      * The IOMMUAccessFlags indicated via @flag are optional and may
285      * be specified as IOMMU_NONE to indicate that the caller needs
286      * the full translation information for both reads and writes. If
287      * the access flags are specified then the IOMMU implementation
288      * may use this as an optimization, to stop doing a page table
289      * walk as soon as it knows that the requested permissions are not
290      * allowed. If IOMMU_NONE is passed then the IOMMU must do the
291      * full page table walk and report the permissions in the returned
292      * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
293      * return different mappings for reads and writes.)
294      *
295      * The returned information remains valid while the caller is
296      * holding the big QEMU lock or is inside an RCU critical section;
297      * if the caller wishes to cache the mapping beyond that it must
298      * register an IOMMU notifier so it can invalidate its cached
299      * information when the IOMMU mapping changes.
300      *
301      * @iommu: the IOMMUMemoryRegion
302      *
303      * @hwaddr: address to be translated within the memory region
304      *
305      * @flag: requested access permission
306      *
307      * @iommu_idx: IOMMU index for the translation
308      */
309     IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
310                                IOMMUAccessFlags flag, int iommu_idx);
311     /**
312      * @get_min_page_size:
313      *
314      * Returns minimum supported page size in bytes.
315      *
316      * If this method is not provided then the minimum is assumed to
317      * be TARGET_PAGE_SIZE.
318      *
319      * @iommu: the IOMMUMemoryRegion
320      */
321     uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
322     /**
323      * @notify_flag_changed:
324      *
325      * Called when IOMMU Notifier flag changes (ie when the set of
326      * events which IOMMU users are requesting notification for changes).
327      * Optional method -- need not be provided if the IOMMU does not
328      * need to know exactly which events must be notified.
329      *
330      * @iommu: the IOMMUMemoryRegion
331      *
332      * @old_flags: events which previously needed to be notified
333      *
334      * @new_flags: events which now need to be notified
335      *
336      * Returns 0 on success, or a negative errno; in particular
337      * returns -EINVAL if the new flag bitmap is not supported by the
338      * IOMMU memory region. In case of failure, the error object
339      * must be created
340      */
341     int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
342                                IOMMUNotifierFlag old_flags,
343                                IOMMUNotifierFlag new_flags,
344                                Error **errp);
345     /**
346      * @replay:
347      *
348      * Called to handle memory_region_iommu_replay().
349      *
350      * The default implementation of memory_region_iommu_replay() is to
351      * call the IOMMU translate method for every page in the address space
352      * with flag == IOMMU_NONE and then call the notifier if translate
353      * returns a valid mapping. If this method is implemented then it
354      * overrides the default behaviour, and must provide the full semantics
355      * of memory_region_iommu_replay(), by calling @notifier for every
356      * translation present in the IOMMU.
357      *
358      * Optional method -- an IOMMU only needs to provide this method
359      * if the default is inefficient or produces undesirable side effects.
360      *
361      * Note: this is not related to record-and-replay functionality.
362      */
363     void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
364 
365     /**
366      * @get_attr:
367      *
368      * Get IOMMU misc attributes. This is an optional method that
369      * can be used to allow users of the IOMMU to get implementation-specific
370      * information. The IOMMU implements this method to handle calls
371      * by IOMMU users to memory_region_iommu_get_attr() by filling in
372      * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
373      * the IOMMU supports. If the method is unimplemented then
374      * memory_region_iommu_get_attr() will always return -EINVAL.
375      *
376      * @iommu: the IOMMUMemoryRegion
377      *
378      * @attr: attribute being queried
379      *
380      * @data: memory to fill in with the attribute data
381      *
382      * Returns 0 on success, or a negative errno; in particular
383      * returns -EINVAL for unrecognized or unimplemented attribute types.
384      */
385     int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
386                     void *data);
387 
388     /**
389      * @attrs_to_index:
390      *
391      * Return the IOMMU index to use for a given set of transaction attributes.
392      *
393      * Optional method: if an IOMMU only supports a single IOMMU index then
394      * the default implementation of memory_region_iommu_attrs_to_index()
395      * will return 0.
396      *
397      * The indexes supported by an IOMMU must be contiguous, starting at 0.
398      *
399      * @iommu: the IOMMUMemoryRegion
400      * @attrs: memory transaction attributes
401      */
402     int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
403 
404     /**
405      * @num_indexes:
406      *
407      * Return the number of IOMMU indexes this IOMMU supports.
408      *
409      * Optional method: if this method is not provided, then
410      * memory_region_iommu_num_indexes() will return 1, indicating that
411      * only a single IOMMU index is supported.
412      *
413      * @iommu: the IOMMUMemoryRegion
414      */
415     int (*num_indexes)(IOMMUMemoryRegion *iommu);
416 
417     /**
418      * @iommu_set_page_size_mask:
419      *
420      * Restrict the page size mask that can be supported with a given IOMMU
421      * memory region. Used for example to propagate host physical IOMMU page
422      * size mask limitations to the virtual IOMMU.
423      *
424      * Optional method: if this method is not provided, then the default global
425      * page mask is used.
426      *
427      * @iommu: the IOMMUMemoryRegion
428      *
429      * @page_size_mask: a bitmask of supported page sizes. At least one bit,
430      * representing the smallest page size, must be set. Additional set bits
431      * represent supported block sizes. For example a host physical IOMMU that
432      * uses page tables with a page size of 4kB, and supports 2MB and 4GB
433      * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate
434      * block sizes is specified with mask 0xfffffffffffff000.
435      *
436      * Returns 0 on success, or a negative error. In case of failure, the error
437      * object must be created.
438      */
439      int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu,
440                                      uint64_t page_size_mask,
441                                      Error **errp);
442 };
443 
444 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
445 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
446 
447 /** MemoryRegion:
448  *
449  * A struct representing a memory region.
450  */
451 struct MemoryRegion {
452     Object parent_obj;
453 
454     /* private: */
455 
456     /* The following fields should fit in a cache line */
457     bool romd_mode;
458     bool ram;
459     bool subpage;
460     bool readonly; /* For RAM regions */
461     bool nonvolatile;
462     bool rom_device;
463     bool flush_coalesced_mmio;
464     uint8_t dirty_log_mask;
465     bool is_iommu;
466     RAMBlock *ram_block;
467     Object *owner;
468 
469     const MemoryRegionOps *ops;
470     void *opaque;
471     MemoryRegion *container;
472     Int128 size;
473     hwaddr addr;
474     void (*destructor)(MemoryRegion *mr);
475     uint64_t align;
476     bool terminates;
477     bool ram_device;
478     bool enabled;
479     bool warning_printed; /* For reservations */
480     uint8_t vga_logging_count;
481     MemoryRegion *alias;
482     hwaddr alias_offset;
483     int32_t priority;
484     QTAILQ_HEAD(, MemoryRegion) subregions;
485     QTAILQ_ENTRY(MemoryRegion) subregions_link;
486     QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
487     const char *name;
488     unsigned ioeventfd_nb;
489     MemoryRegionIoeventfd *ioeventfds;
490 };
491 
492 struct IOMMUMemoryRegion {
493     MemoryRegion parent_obj;
494 
495     QLIST_HEAD(, IOMMUNotifier) iommu_notify;
496     IOMMUNotifierFlag iommu_notify_flags;
497 };
498 
499 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
500     QLIST_FOREACH((n), &(mr)->iommu_notify, node)
501 
502 /**
503  * struct MemoryListener: callbacks structure for updates to the physical memory map
504  *
505  * Allows a component to adjust to changes in the guest-visible memory map.
506  * Use with memory_listener_register() and memory_listener_unregister().
507  */
508 struct MemoryListener {
509     /**
510      * @begin:
511      *
512      * Called at the beginning of an address space update transaction.
513      * Followed by calls to #MemoryListener.region_add(),
514      * #MemoryListener.region_del(), #MemoryListener.region_nop(),
515      * #MemoryListener.log_start() and #MemoryListener.log_stop() in
516      * increasing address order.
517      *
518      * @listener: The #MemoryListener.
519      */
520     void (*begin)(MemoryListener *listener);
521 
522     /**
523      * @commit:
524      *
525      * Called at the end of an address space update transaction,
526      * after the last call to #MemoryListener.region_add(),
527      * #MemoryListener.region_del() or #MemoryListener.region_nop(),
528      * #MemoryListener.log_start() and #MemoryListener.log_stop().
529      *
530      * @listener: The #MemoryListener.
531      */
532     void (*commit)(MemoryListener *listener);
533 
534     /**
535      * @region_add:
536      *
537      * Called during an address space update transaction,
538      * for a section of the address space that is new in this address space
539      * space since the last transaction.
540      *
541      * @listener: The #MemoryListener.
542      * @section: The new #MemoryRegionSection.
543      */
544     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
545 
546     /**
547      * @region_del:
548      *
549      * Called during an address space update transaction,
550      * for a section of the address space that has disappeared in the address
551      * space since the last transaction.
552      *
553      * @listener: The #MemoryListener.
554      * @section: The old #MemoryRegionSection.
555      */
556     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
557 
558     /**
559      * @region_nop:
560      *
561      * Called during an address space update transaction,
562      * for a section of the address space that is in the same place in the address
563      * space as in the last transaction.
564      *
565      * @listener: The #MemoryListener.
566      * @section: The #MemoryRegionSection.
567      */
568     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
569 
570     /**
571      * @log_start:
572      *
573      * Called during an address space update transaction, after
574      * one of #MemoryListener.region_add(),#MemoryListener.region_del() or
575      * #MemoryListener.region_nop(), if dirty memory logging clients have
576      * become active since the last transaction.
577      *
578      * @listener: The #MemoryListener.
579      * @section: The #MemoryRegionSection.
580      * @old: A bitmap of dirty memory logging clients that were active in
581      * the previous transaction.
582      * @new: A bitmap of dirty memory logging clients that are active in
583      * the current transaction.
584      */
585     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
586                       int old, int new);
587 
588     /**
589      * @log_stop:
590      *
591      * Called during an address space update transaction, after
592      * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
593      * #MemoryListener.region_nop() and possibly after
594      * #MemoryListener.log_start(), if dirty memory logging clients have
595      * become inactive since the last transaction.
596      *
597      * @listener: The #MemoryListener.
598      * @section: The #MemoryRegionSection.
599      * @old: A bitmap of dirty memory logging clients that were active in
600      * the previous transaction.
601      * @new: A bitmap of dirty memory logging clients that are active in
602      * the current transaction.
603      */
604     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
605                      int old, int new);
606 
607     /**
608      * @log_sync:
609      *
610      * Called by memory_region_snapshot_and_clear_dirty() and
611      * memory_global_dirty_log_sync(), before accessing QEMU's "official"
612      * copy of the dirty memory bitmap for a #MemoryRegionSection.
613      *
614      * @listener: The #MemoryListener.
615      * @section: The #MemoryRegionSection.
616      */
617     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
618 
619     /**
620      * @log_clear:
621      *
622      * Called before reading the dirty memory bitmap for a
623      * #MemoryRegionSection.
624      *
625      * @listener: The #MemoryListener.
626      * @section: The #MemoryRegionSection.
627      */
628     void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
629 
630     /**
631      * @log_global_start:
632      *
633      * Called by memory_global_dirty_log_start(), which
634      * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
635      * the address space.  #MemoryListener.log_global_start() is also
636      * called when a #MemoryListener is added, if global dirty logging is
637      * active at that time.
638      *
639      * @listener: The #MemoryListener.
640      */
641     void (*log_global_start)(MemoryListener *listener);
642 
643     /**
644      * @log_global_stop:
645      *
646      * Called by memory_global_dirty_log_stop(), which
647      * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
648      * the address space.
649      *
650      * @listener: The #MemoryListener.
651      */
652     void (*log_global_stop)(MemoryListener *listener);
653 
654     /**
655      * @log_global_after_sync:
656      *
657      * Called after reading the dirty memory bitmap
658      * for any #MemoryRegionSection.
659      *
660      * @listener: The #MemoryListener.
661      */
662     void (*log_global_after_sync)(MemoryListener *listener);
663 
664     /**
665      * @eventfd_add:
666      *
667      * Called during an address space update transaction,
668      * for a section of the address space that has had a new ioeventfd
669      * registration since the last transaction.
670      *
671      * @listener: The #MemoryListener.
672      * @section: The new #MemoryRegionSection.
673      * @match_data: The @match_data parameter for the new ioeventfd.
674      * @data: The @data parameter for the new ioeventfd.
675      * @e: The #EventNotifier parameter for the new ioeventfd.
676      */
677     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
678                         bool match_data, uint64_t data, EventNotifier *e);
679 
680     /**
681      * @eventfd_del:
682      *
683      * Called during an address space update transaction,
684      * for a section of the address space that has dropped an ioeventfd
685      * registration since the last transaction.
686      *
687      * @listener: The #MemoryListener.
688      * @section: The new #MemoryRegionSection.
689      * @match_data: The @match_data parameter for the dropped ioeventfd.
690      * @data: The @data parameter for the dropped ioeventfd.
691      * @e: The #EventNotifier parameter for the dropped ioeventfd.
692      */
693     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
694                         bool match_data, uint64_t data, EventNotifier *e);
695 
696     /**
697      * @coalesced_io_add:
698      *
699      * Called during an address space update transaction,
700      * for a section of the address space that has had a new coalesced
701      * MMIO range registration since the last transaction.
702      *
703      * @listener: The #MemoryListener.
704      * @section: The new #MemoryRegionSection.
705      * @addr: The starting address for the coalesced MMIO range.
706      * @len: The length of the coalesced MMIO range.
707      */
708     void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
709                                hwaddr addr, hwaddr len);
710 
711     /**
712      * @coalesced_io_del:
713      *
714      * Called during an address space update transaction,
715      * for a section of the address space that has dropped a coalesced
716      * MMIO range since the last transaction.
717      *
718      * @listener: The #MemoryListener.
719      * @section: The new #MemoryRegionSection.
720      * @addr: The starting address for the coalesced MMIO range.
721      * @len: The length of the coalesced MMIO range.
722      */
723     void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
724                                hwaddr addr, hwaddr len);
725     /**
726      * @priority:
727      *
728      * Govern the order in which memory listeners are invoked. Lower priorities
729      * are invoked earlier for "add" or "start" callbacks, and later for "delete"
730      * or "stop" callbacks.
731      */
732     unsigned priority;
733 
734     /* private: */
735     AddressSpace *address_space;
736     QTAILQ_ENTRY(MemoryListener) link;
737     QTAILQ_ENTRY(MemoryListener) link_as;
738 };
739 
740 /**
741  * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects
742  */
743 struct AddressSpace {
744     /* private: */
745     struct rcu_head rcu;
746     char *name;
747     MemoryRegion *root;
748 
749     /* Accessed via RCU.  */
750     struct FlatView *current_map;
751 
752     int ioeventfd_nb;
753     struct MemoryRegionIoeventfd *ioeventfds;
754     QTAILQ_HEAD(, MemoryListener) listeners;
755     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
756 };
757 
758 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
759 typedef struct FlatRange FlatRange;
760 
761 /* Flattened global view of current active memory hierarchy.  Kept in sorted
762  * order.
763  */
764 struct FlatView {
765     struct rcu_head rcu;
766     unsigned ref;
767     FlatRange *ranges;
768     unsigned nr;
769     unsigned nr_allocated;
770     struct AddressSpaceDispatch *dispatch;
771     MemoryRegion *root;
772 };
773 
774 static inline FlatView *address_space_to_flatview(AddressSpace *as)
775 {
776     return qatomic_rcu_read(&as->current_map);
777 }
778 
779 typedef int (*flatview_cb)(Int128 start,
780                            Int128 len,
781                            const MemoryRegion*, void*);
782 
783 void flatview_for_each_range(FlatView *fv, flatview_cb cb , void *opaque);
784 
785 /**
786  * struct MemoryRegionSection: describes a fragment of a #MemoryRegion
787  *
788  * @mr: the region, or %NULL if empty
789  * @fv: the flat view of the address space the region is mapped in
790  * @offset_within_region: the beginning of the section, relative to @mr's start
791  * @size: the size of the section; will not exceed @mr's boundaries
792  * @offset_within_address_space: the address of the first byte of the section
793  *     relative to the region's address space
794  * @readonly: writes to this section are ignored
795  * @nonvolatile: this section is non-volatile
796  */
797 struct MemoryRegionSection {
798     Int128 size;
799     MemoryRegion *mr;
800     FlatView *fv;
801     hwaddr offset_within_region;
802     hwaddr offset_within_address_space;
803     bool readonly;
804     bool nonvolatile;
805 };
806 
807 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
808                                           MemoryRegionSection *b)
809 {
810     return a->mr == b->mr &&
811            a->fv == b->fv &&
812            a->offset_within_region == b->offset_within_region &&
813            a->offset_within_address_space == b->offset_within_address_space &&
814            int128_eq(a->size, b->size) &&
815            a->readonly == b->readonly &&
816            a->nonvolatile == b->nonvolatile;
817 }
818 
819 /**
820  * memory_region_init: Initialize a memory region
821  *
822  * The region typically acts as a container for other memory regions.  Use
823  * memory_region_add_subregion() to add subregions.
824  *
825  * @mr: the #MemoryRegion to be initialized
826  * @owner: the object that tracks the region's reference count
827  * @name: used for debugging; not visible to the user or ABI
828  * @size: size of the region; any subregions beyond this size will be clipped
829  */
830 void memory_region_init(MemoryRegion *mr,
831                         struct Object *owner,
832                         const char *name,
833                         uint64_t size);
834 
835 /**
836  * memory_region_ref: Add 1 to a memory region's reference count
837  *
838  * Whenever memory regions are accessed outside the BQL, they need to be
839  * preserved against hot-unplug.  MemoryRegions actually do not have their
840  * own reference count; they piggyback on a QOM object, their "owner".
841  * This function adds a reference to the owner.
842  *
843  * All MemoryRegions must have an owner if they can disappear, even if the
844  * device they belong to operates exclusively under the BQL.  This is because
845  * the region could be returned at any time by memory_region_find, and this
846  * is usually under guest control.
847  *
848  * @mr: the #MemoryRegion
849  */
850 void memory_region_ref(MemoryRegion *mr);
851 
852 /**
853  * memory_region_unref: Remove 1 to a memory region's reference count
854  *
855  * Whenever memory regions are accessed outside the BQL, they need to be
856  * preserved against hot-unplug.  MemoryRegions actually do not have their
857  * own reference count; they piggyback on a QOM object, their "owner".
858  * This function removes a reference to the owner and possibly destroys it.
859  *
860  * @mr: the #MemoryRegion
861  */
862 void memory_region_unref(MemoryRegion *mr);
863 
864 /**
865  * memory_region_init_io: Initialize an I/O memory region.
866  *
867  * Accesses into the region will cause the callbacks in @ops to be called.
868  * if @size is nonzero, subregions will be clipped to @size.
869  *
870  * @mr: the #MemoryRegion to be initialized.
871  * @owner: the object that tracks the region's reference count
872  * @ops: a structure containing read and write callbacks to be used when
873  *       I/O is performed on the region.
874  * @opaque: passed to the read and write callbacks of the @ops structure.
875  * @name: used for debugging; not visible to the user or ABI
876  * @size: size of the region.
877  */
878 void memory_region_init_io(MemoryRegion *mr,
879                            struct Object *owner,
880                            const MemoryRegionOps *ops,
881                            void *opaque,
882                            const char *name,
883                            uint64_t size);
884 
885 /**
886  * memory_region_init_ram_nomigrate:  Initialize RAM memory region.  Accesses
887  *                                    into the region will modify memory
888  *                                    directly.
889  *
890  * @mr: the #MemoryRegion to be initialized.
891  * @owner: the object that tracks the region's reference count
892  * @name: Region name, becomes part of RAMBlock name used in migration stream
893  *        must be unique within any device
894  * @size: size of the region.
895  * @errp: pointer to Error*, to store an error if it happens.
896  *
897  * Note that this function does not do anything to cause the data in the
898  * RAM memory region to be migrated; that is the responsibility of the caller.
899  */
900 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
901                                       struct Object *owner,
902                                       const char *name,
903                                       uint64_t size,
904                                       Error **errp);
905 
906 /**
907  * memory_region_init_ram_shared_nomigrate:  Initialize RAM memory region.
908  *                                           Accesses into the region will
909  *                                           modify memory directly.
910  *
911  * @mr: the #MemoryRegion to be initialized.
912  * @owner: the object that tracks the region's reference count
913  * @name: Region name, becomes part of RAMBlock name used in migration stream
914  *        must be unique within any device
915  * @size: size of the region.
916  * @share: allow remapping RAM to different addresses
917  * @errp: pointer to Error*, to store an error if it happens.
918  *
919  * Note that this function is similar to memory_region_init_ram_nomigrate.
920  * The only difference is part of the RAM region can be remapped.
921  */
922 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
923                                              struct Object *owner,
924                                              const char *name,
925                                              uint64_t size,
926                                              bool share,
927                                              Error **errp);
928 
929 /**
930  * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
931  *                                     RAM.  Accesses into the region will
932  *                                     modify memory directly.  Only an initial
933  *                                     portion of this RAM is actually used.
934  *                                     The used size can change across reboots.
935  *
936  * @mr: the #MemoryRegion to be initialized.
937  * @owner: the object that tracks the region's reference count
938  * @name: Region name, becomes part of RAMBlock name used in migration stream
939  *        must be unique within any device
940  * @size: used size of the region.
941  * @max_size: max size of the region.
942  * @resized: callback to notify owner about used size change.
943  * @errp: pointer to Error*, to store an error if it happens.
944  *
945  * Note that this function does not do anything to cause the data in the
946  * RAM memory region to be migrated; that is the responsibility of the caller.
947  */
948 void memory_region_init_resizeable_ram(MemoryRegion *mr,
949                                        struct Object *owner,
950                                        const char *name,
951                                        uint64_t size,
952                                        uint64_t max_size,
953                                        void (*resized)(const char*,
954                                                        uint64_t length,
955                                                        void *host),
956                                        Error **errp);
957 #ifdef CONFIG_POSIX
958 
959 /**
960  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
961  *                                    mmap-ed backend.
962  *
963  * @mr: the #MemoryRegion to be initialized.
964  * @owner: the object that tracks the region's reference count
965  * @name: Region name, becomes part of RAMBlock name used in migration stream
966  *        must be unique within any device
967  * @size: size of the region.
968  * @align: alignment of the region base address; if 0, the default alignment
969  *         (getpagesize()) will be used.
970  * @ram_flags: Memory region features:
971  *             - RAM_SHARED: memory must be mmaped with the MAP_SHARED flag
972  *             - RAM_PMEM: the memory is persistent memory
973  *             Other bits are ignored now.
974  * @path: the path in which to allocate the RAM.
975  * @readonly: true to open @path for reading, false for read/write.
976  * @errp: pointer to Error*, to store an error if it happens.
977  *
978  * Note that this function does not do anything to cause the data in the
979  * RAM memory region to be migrated; that is the responsibility of the caller.
980  */
981 void memory_region_init_ram_from_file(MemoryRegion *mr,
982                                       struct Object *owner,
983                                       const char *name,
984                                       uint64_t size,
985                                       uint64_t align,
986                                       uint32_t ram_flags,
987                                       const char *path,
988                                       bool readonly,
989                                       Error **errp);
990 
991 /**
992  * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
993  *                                  mmap-ed backend.
994  *
995  * @mr: the #MemoryRegion to be initialized.
996  * @owner: the object that tracks the region's reference count
997  * @name: the name of the region.
998  * @size: size of the region.
999  * @share: %true if memory must be mmaped with the MAP_SHARED flag
1000  * @fd: the fd to mmap.
1001  * @errp: pointer to Error*, to store an error if it happens.
1002  *
1003  * Note that this function does not do anything to cause the data in the
1004  * RAM memory region to be migrated; that is the responsibility of the caller.
1005  */
1006 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1007                                     struct Object *owner,
1008                                     const char *name,
1009                                     uint64_t size,
1010                                     bool share,
1011                                     int fd,
1012                                     Error **errp);
1013 #endif
1014 
1015 /**
1016  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
1017  *                              user-provided pointer.  Accesses into the
1018  *                              region will modify memory directly.
1019  *
1020  * @mr: the #MemoryRegion to be initialized.
1021  * @owner: the object that tracks the region's reference count
1022  * @name: Region name, becomes part of RAMBlock name used in migration stream
1023  *        must be unique within any device
1024  * @size: size of the region.
1025  * @ptr: memory to be mapped; must contain at least @size bytes.
1026  *
1027  * Note that this function does not do anything to cause the data in the
1028  * RAM memory region to be migrated; that is the responsibility of the caller.
1029  */
1030 void memory_region_init_ram_ptr(MemoryRegion *mr,
1031                                 struct Object *owner,
1032                                 const char *name,
1033                                 uint64_t size,
1034                                 void *ptr);
1035 
1036 /**
1037  * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
1038  *                                     a user-provided pointer.
1039  *
1040  * A RAM device represents a mapping to a physical device, such as to a PCI
1041  * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
1042  * into the VM address space and access to the region will modify memory
1043  * directly.  However, the memory region should not be included in a memory
1044  * dump (device may not be enabled/mapped at the time of the dump), and
1045  * operations incompatible with manipulating MMIO should be avoided.  Replaces
1046  * skip_dump flag.
1047  *
1048  * @mr: the #MemoryRegion to be initialized.
1049  * @owner: the object that tracks the region's reference count
1050  * @name: the name of the region.
1051  * @size: size of the region.
1052  * @ptr: memory to be mapped; must contain at least @size bytes.
1053  *
1054  * Note that this function does not do anything to cause the data in the
1055  * RAM memory region to be migrated; that is the responsibility of the caller.
1056  * (For RAM device memory regions, migrating the contents rarely makes sense.)
1057  */
1058 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1059                                        struct Object *owner,
1060                                        const char *name,
1061                                        uint64_t size,
1062                                        void *ptr);
1063 
1064 /**
1065  * memory_region_init_alias: Initialize a memory region that aliases all or a
1066  *                           part of another memory region.
1067  *
1068  * @mr: the #MemoryRegion to be initialized.
1069  * @owner: the object that tracks the region's reference count
1070  * @name: used for debugging; not visible to the user or ABI
1071  * @orig: the region to be referenced; @mr will be equivalent to
1072  *        @orig between @offset and @offset + @size - 1.
1073  * @offset: start of the section in @orig to be referenced.
1074  * @size: size of the region.
1075  */
1076 void memory_region_init_alias(MemoryRegion *mr,
1077                               struct Object *owner,
1078                               const char *name,
1079                               MemoryRegion *orig,
1080                               hwaddr offset,
1081                               uint64_t size);
1082 
1083 /**
1084  * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
1085  *
1086  * This has the same effect as calling memory_region_init_ram_nomigrate()
1087  * and then marking the resulting region read-only with
1088  * memory_region_set_readonly().
1089  *
1090  * Note that this function does not do anything to cause the data in the
1091  * RAM side of the memory region to be migrated; that is the responsibility
1092  * of the caller.
1093  *
1094  * @mr: the #MemoryRegion to be initialized.
1095  * @owner: the object that tracks the region's reference count
1096  * @name: Region name, becomes part of RAMBlock name used in migration stream
1097  *        must be unique within any device
1098  * @size: size of the region.
1099  * @errp: pointer to Error*, to store an error if it happens.
1100  */
1101 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1102                                       struct Object *owner,
1103                                       const char *name,
1104                                       uint64_t size,
1105                                       Error **errp);
1106 
1107 /**
1108  * memory_region_init_rom_device_nomigrate:  Initialize a ROM memory region.
1109  *                                 Writes are handled via callbacks.
1110  *
1111  * Note that this function does not do anything to cause the data in the
1112  * RAM side of the memory region to be migrated; that is the responsibility
1113  * of the caller.
1114  *
1115  * @mr: the #MemoryRegion to be initialized.
1116  * @owner: the object that tracks the region's reference count
1117  * @ops: callbacks for write access handling (must not be NULL).
1118  * @opaque: passed to the read and write callbacks of the @ops structure.
1119  * @name: Region name, becomes part of RAMBlock name used in migration stream
1120  *        must be unique within any device
1121  * @size: size of the region.
1122  * @errp: pointer to Error*, to store an error if it happens.
1123  */
1124 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1125                                              struct Object *owner,
1126                                              const MemoryRegionOps *ops,
1127                                              void *opaque,
1128                                              const char *name,
1129                                              uint64_t size,
1130                                              Error **errp);
1131 
1132 /**
1133  * memory_region_init_iommu: Initialize a memory region of a custom type
1134  * that translates addresses
1135  *
1136  * An IOMMU region translates addresses and forwards accesses to a target
1137  * memory region.
1138  *
1139  * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
1140  * @_iommu_mr should be a pointer to enough memory for an instance of
1141  * that subclass, @instance_size is the size of that subclass, and
1142  * @mrtypename is its name. This function will initialize @_iommu_mr as an
1143  * instance of the subclass, and its methods will then be called to handle
1144  * accesses to the memory region. See the documentation of
1145  * #IOMMUMemoryRegionClass for further details.
1146  *
1147  * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
1148  * @instance_size: the IOMMUMemoryRegion subclass instance size
1149  * @mrtypename: the type name of the #IOMMUMemoryRegion
1150  * @owner: the object that tracks the region's reference count
1151  * @name: used for debugging; not visible to the user or ABI
1152  * @size: size of the region.
1153  */
1154 void memory_region_init_iommu(void *_iommu_mr,
1155                               size_t instance_size,
1156                               const char *mrtypename,
1157                               Object *owner,
1158                               const char *name,
1159                               uint64_t size);
1160 
1161 /**
1162  * memory_region_init_ram - Initialize RAM memory region.  Accesses into the
1163  *                          region will modify memory directly.
1164  *
1165  * @mr: the #MemoryRegion to be initialized
1166  * @owner: the object that tracks the region's reference count (must be
1167  *         TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
1168  * @name: name of the memory region
1169  * @size: size of the region in bytes
1170  * @errp: pointer to Error*, to store an error if it happens.
1171  *
1172  * This function allocates RAM for a board model or device, and
1173  * arranges for it to be migrated (by calling vmstate_register_ram()
1174  * if @owner is a DeviceState, or vmstate_register_ram_global() if
1175  * @owner is NULL).
1176  *
1177  * TODO: Currently we restrict @owner to being either NULL (for
1178  * global RAM regions with no owner) or devices, so that we can
1179  * give the RAM block a unique name for migration purposes.
1180  * We should lift this restriction and allow arbitrary Objects.
1181  * If you pass a non-NULL non-device @owner then we will assert.
1182  */
1183 void memory_region_init_ram(MemoryRegion *mr,
1184                             struct Object *owner,
1185                             const char *name,
1186                             uint64_t size,
1187                             Error **errp);
1188 
1189 /**
1190  * memory_region_init_rom: Initialize a ROM memory region.
1191  *
1192  * This has the same effect as calling memory_region_init_ram()
1193  * and then marking the resulting region read-only with
1194  * memory_region_set_readonly(). This includes arranging for the
1195  * contents to be migrated.
1196  *
1197  * TODO: Currently we restrict @owner to being either NULL (for
1198  * global RAM regions with no owner) or devices, so that we can
1199  * give the RAM block a unique name for migration purposes.
1200  * We should lift this restriction and allow arbitrary Objects.
1201  * If you pass a non-NULL non-device @owner then we will assert.
1202  *
1203  * @mr: the #MemoryRegion to be initialized.
1204  * @owner: the object that tracks the region's reference count
1205  * @name: Region name, becomes part of RAMBlock name used in migration stream
1206  *        must be unique within any device
1207  * @size: size of the region.
1208  * @errp: pointer to Error*, to store an error if it happens.
1209  */
1210 void memory_region_init_rom(MemoryRegion *mr,
1211                             struct Object *owner,
1212                             const char *name,
1213                             uint64_t size,
1214                             Error **errp);
1215 
1216 /**
1217  * memory_region_init_rom_device:  Initialize a ROM memory region.
1218  *                                 Writes are handled via callbacks.
1219  *
1220  * This function initializes a memory region backed by RAM for reads
1221  * and callbacks for writes, and arranges for the RAM backing to
1222  * be migrated (by calling vmstate_register_ram()
1223  * if @owner is a DeviceState, or vmstate_register_ram_global() if
1224  * @owner is NULL).
1225  *
1226  * TODO: Currently we restrict @owner to being either NULL (for
1227  * global RAM regions with no owner) or devices, so that we can
1228  * give the RAM block a unique name for migration purposes.
1229  * We should lift this restriction and allow arbitrary Objects.
1230  * If you pass a non-NULL non-device @owner then we will assert.
1231  *
1232  * @mr: the #MemoryRegion to be initialized.
1233  * @owner: the object that tracks the region's reference count
1234  * @ops: callbacks for write access handling (must not be NULL).
1235  * @opaque: passed to the read and write callbacks of the @ops structure.
1236  * @name: Region name, becomes part of RAMBlock name used in migration stream
1237  *        must be unique within any device
1238  * @size: size of the region.
1239  * @errp: pointer to Error*, to store an error if it happens.
1240  */
1241 void memory_region_init_rom_device(MemoryRegion *mr,
1242                                    struct Object *owner,
1243                                    const MemoryRegionOps *ops,
1244                                    void *opaque,
1245                                    const char *name,
1246                                    uint64_t size,
1247                                    Error **errp);
1248 
1249 
1250 /**
1251  * memory_region_owner: get a memory region's owner.
1252  *
1253  * @mr: the memory region being queried.
1254  */
1255 struct Object *memory_region_owner(MemoryRegion *mr);
1256 
1257 /**
1258  * memory_region_size: get a memory region's size.
1259  *
1260  * @mr: the memory region being queried.
1261  */
1262 uint64_t memory_region_size(MemoryRegion *mr);
1263 
1264 /**
1265  * memory_region_is_ram: check whether a memory region is random access
1266  *
1267  * Returns %true if a memory region is random access.
1268  *
1269  * @mr: the memory region being queried
1270  */
1271 static inline bool memory_region_is_ram(MemoryRegion *mr)
1272 {
1273     return mr->ram;
1274 }
1275 
1276 /**
1277  * memory_region_is_ram_device: check whether a memory region is a ram device
1278  *
1279  * Returns %true if a memory region is a device backed ram region
1280  *
1281  * @mr: the memory region being queried
1282  */
1283 bool memory_region_is_ram_device(MemoryRegion *mr);
1284 
1285 /**
1286  * memory_region_is_romd: check whether a memory region is in ROMD mode
1287  *
1288  * Returns %true if a memory region is a ROM device and currently set to allow
1289  * direct reads.
1290  *
1291  * @mr: the memory region being queried
1292  */
1293 static inline bool memory_region_is_romd(MemoryRegion *mr)
1294 {
1295     return mr->rom_device && mr->romd_mode;
1296 }
1297 
1298 /**
1299  * memory_region_get_iommu: check whether a memory region is an iommu
1300  *
1301  * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1302  * otherwise NULL.
1303  *
1304  * @mr: the memory region being queried
1305  */
1306 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1307 {
1308     if (mr->alias) {
1309         return memory_region_get_iommu(mr->alias);
1310     }
1311     if (mr->is_iommu) {
1312         return (IOMMUMemoryRegion *) mr;
1313     }
1314     return NULL;
1315 }
1316 
1317 /**
1318  * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1319  *   if an iommu or NULL if not
1320  *
1321  * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1322  * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1323  *
1324  * @iommu_mr: the memory region being queried
1325  */
1326 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1327         IOMMUMemoryRegion *iommu_mr)
1328 {
1329     return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1330 }
1331 
1332 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1333 
1334 /**
1335  * memory_region_iommu_get_min_page_size: get minimum supported page size
1336  * for an iommu
1337  *
1338  * Returns minimum supported page size for an iommu.
1339  *
1340  * @iommu_mr: the memory region being queried
1341  */
1342 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1343 
1344 /**
1345  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1346  *
1347  * Note: for any IOMMU implementation, an in-place mapping change
1348  * should be notified with an UNMAP followed by a MAP.
1349  *
1350  * @iommu_mr: the memory region that was changed
1351  * @iommu_idx: the IOMMU index for the translation table which has changed
1352  * @event: TLB event with the new entry in the IOMMU translation table.
1353  *         The entry replaces all old entries for the same virtual I/O address
1354  *         range.
1355  */
1356 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1357                                 int iommu_idx,
1358                                 IOMMUTLBEvent event);
1359 
1360 /**
1361  * memory_region_notify_iommu_one: notify a change in an IOMMU translation
1362  *                           entry to a single notifier
1363  *
1364  * This works just like memory_region_notify_iommu(), but it only
1365  * notifies a specific notifier, not all of them.
1366  *
1367  * @notifier: the notifier to be notified
1368  * @event: TLB event with the new entry in the IOMMU translation table.
1369  *         The entry replaces all old entries for the same virtual I/O address
1370  *         range.
1371  */
1372 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1373                                     IOMMUTLBEvent *event);
1374 
1375 /**
1376  * memory_region_register_iommu_notifier: register a notifier for changes to
1377  * IOMMU translation entries.
1378  *
1379  * Returns 0 on success, or a negative errno otherwise. In particular,
1380  * -EINVAL indicates that at least one of the attributes of the notifier
1381  * is not supported (flag/range) by the IOMMU memory region. In case of error
1382  * the error object must be created.
1383  *
1384  * @mr: the memory region to observe
1385  * @n: the IOMMUNotifier to be added; the notify callback receives a
1386  *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1387  *     ceases to be valid on exit from the notifier.
1388  * @errp: pointer to Error*, to store an error if it happens.
1389  */
1390 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1391                                           IOMMUNotifier *n, Error **errp);
1392 
1393 /**
1394  * memory_region_iommu_replay: replay existing IOMMU translations to
1395  * a notifier with the minimum page granularity returned by
1396  * mr->iommu_ops->get_page_size().
1397  *
1398  * Note: this is not related to record-and-replay functionality.
1399  *
1400  * @iommu_mr: the memory region to observe
1401  * @n: the notifier to which to replay iommu mappings
1402  */
1403 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1404 
1405 /**
1406  * memory_region_unregister_iommu_notifier: unregister a notifier for
1407  * changes to IOMMU translation entries.
1408  *
1409  * @mr: the memory region which was observed and for which notity_stopped()
1410  *      needs to be called
1411  * @n: the notifier to be removed.
1412  */
1413 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1414                                              IOMMUNotifier *n);
1415 
1416 /**
1417  * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1418  * defined on the IOMMU.
1419  *
1420  * Returns 0 on success, or a negative errno otherwise. In particular,
1421  * -EINVAL indicates that the IOMMU does not support the requested
1422  * attribute.
1423  *
1424  * @iommu_mr: the memory region
1425  * @attr: the requested attribute
1426  * @data: a pointer to the requested attribute data
1427  */
1428 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1429                                  enum IOMMUMemoryRegionAttr attr,
1430                                  void *data);
1431 
1432 /**
1433  * memory_region_iommu_attrs_to_index: return the IOMMU index to
1434  * use for translations with the given memory transaction attributes.
1435  *
1436  * @iommu_mr: the memory region
1437  * @attrs: the memory transaction attributes
1438  */
1439 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1440                                        MemTxAttrs attrs);
1441 
1442 /**
1443  * memory_region_iommu_num_indexes: return the total number of IOMMU
1444  * indexes that this IOMMU supports.
1445  *
1446  * @iommu_mr: the memory region
1447  */
1448 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1449 
1450 /**
1451  * memory_region_iommu_set_page_size_mask: set the supported page
1452  * sizes for a given IOMMU memory region
1453  *
1454  * @iommu_mr: IOMMU memory region
1455  * @page_size_mask: supported page size mask
1456  * @errp: pointer to Error*, to store an error if it happens.
1457  */
1458 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1459                                            uint64_t page_size_mask,
1460                                            Error **errp);
1461 
1462 /**
1463  * memory_region_name: get a memory region's name
1464  *
1465  * Returns the string that was used to initialize the memory region.
1466  *
1467  * @mr: the memory region being queried
1468  */
1469 const char *memory_region_name(const MemoryRegion *mr);
1470 
1471 /**
1472  * memory_region_is_logging: return whether a memory region is logging writes
1473  *
1474  * Returns %true if the memory region is logging writes for the given client
1475  *
1476  * @mr: the memory region being queried
1477  * @client: the client being queried
1478  */
1479 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1480 
1481 /**
1482  * memory_region_get_dirty_log_mask: return the clients for which a
1483  * memory region is logging writes.
1484  *
1485  * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1486  * are the bit indices.
1487  *
1488  * @mr: the memory region being queried
1489  */
1490 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1491 
1492 /**
1493  * memory_region_is_rom: check whether a memory region is ROM
1494  *
1495  * Returns %true if a memory region is read-only memory.
1496  *
1497  * @mr: the memory region being queried
1498  */
1499 static inline bool memory_region_is_rom(MemoryRegion *mr)
1500 {
1501     return mr->ram && mr->readonly;
1502 }
1503 
1504 /**
1505  * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1506  *
1507  * Returns %true is a memory region is non-volatile memory.
1508  *
1509  * @mr: the memory region being queried
1510  */
1511 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1512 {
1513     return mr->nonvolatile;
1514 }
1515 
1516 /**
1517  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1518  *
1519  * Returns a file descriptor backing a file-based RAM memory region,
1520  * or -1 if the region is not a file-based RAM memory region.
1521  *
1522  * @mr: the RAM or alias memory region being queried.
1523  */
1524 int memory_region_get_fd(MemoryRegion *mr);
1525 
1526 /**
1527  * memory_region_from_host: Convert a pointer into a RAM memory region
1528  * and an offset within it.
1529  *
1530  * Given a host pointer inside a RAM memory region (created with
1531  * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1532  * the MemoryRegion and the offset within it.
1533  *
1534  * Use with care; by the time this function returns, the returned pointer is
1535  * not protected by RCU anymore.  If the caller is not within an RCU critical
1536  * section and does not hold the iothread lock, it must have other means of
1537  * protecting the pointer, such as a reference to the region that includes
1538  * the incoming ram_addr_t.
1539  *
1540  * @ptr: the host pointer to be converted
1541  * @offset: the offset within memory region
1542  */
1543 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1544 
1545 /**
1546  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1547  *
1548  * Returns a host pointer to a RAM memory region (created with
1549  * memory_region_init_ram() or memory_region_init_ram_ptr()).
1550  *
1551  * Use with care; by the time this function returns, the returned pointer is
1552  * not protected by RCU anymore.  If the caller is not within an RCU critical
1553  * section and does not hold the iothread lock, it must have other means of
1554  * protecting the pointer, such as a reference to the region that includes
1555  * the incoming ram_addr_t.
1556  *
1557  * @mr: the memory region being queried.
1558  */
1559 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1560 
1561 /* memory_region_ram_resize: Resize a RAM region.
1562  *
1563  * Only legal before guest might have detected the memory size: e.g. on
1564  * incoming migration, or right after reset.
1565  *
1566  * @mr: a memory region created with @memory_region_init_resizeable_ram.
1567  * @newsize: the new size the region
1568  * @errp: pointer to Error*, to store an error if it happens.
1569  */
1570 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1571                               Error **errp);
1572 
1573 /**
1574  * memory_region_msync: Synchronize selected address range of
1575  * a memory mapped region
1576  *
1577  * @mr: the memory region to be msync
1578  * @addr: the initial address of the range to be sync
1579  * @size: the size of the range to be sync
1580  */
1581 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
1582 
1583 /**
1584  * memory_region_writeback: Trigger cache writeback for
1585  * selected address range
1586  *
1587  * @mr: the memory region to be updated
1588  * @addr: the initial address of the range to be written back
1589  * @size: the size of the range to be written back
1590  */
1591 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
1592 
1593 /**
1594  * memory_region_set_log: Turn dirty logging on or off for a region.
1595  *
1596  * Turns dirty logging on or off for a specified client (display, migration).
1597  * Only meaningful for RAM regions.
1598  *
1599  * @mr: the memory region being updated.
1600  * @log: whether dirty logging is to be enabled or disabled.
1601  * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1602  */
1603 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1604 
1605 /**
1606  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1607  *
1608  * Marks a range of bytes as dirty, after it has been dirtied outside
1609  * guest code.
1610  *
1611  * @mr: the memory region being dirtied.
1612  * @addr: the address (relative to the start of the region) being dirtied.
1613  * @size: size of the range being dirtied.
1614  */
1615 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1616                              hwaddr size);
1617 
1618 /**
1619  * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
1620  *
1621  * This function is called when the caller wants to clear the remote
1622  * dirty bitmap of a memory range within the memory region.  This can
1623  * be used by e.g. KVM to manually clear dirty log when
1624  * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
1625  * kernel.
1626  *
1627  * @mr:     the memory region to clear the dirty log upon
1628  * @start:  start address offset within the memory region
1629  * @len:    length of the memory region to clear dirty bitmap
1630  */
1631 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
1632                                       hwaddr len);
1633 
1634 /**
1635  * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1636  *                                         bitmap and clear it.
1637  *
1638  * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1639  * returns the snapshot.  The snapshot can then be used to query dirty
1640  * status, using memory_region_snapshot_get_dirty.  Snapshotting allows
1641  * querying the same page multiple times, which is especially useful for
1642  * display updates where the scanlines often are not page aligned.
1643  *
1644  * The dirty bitmap region which gets copyed into the snapshot (and
1645  * cleared afterwards) can be larger than requested.  The boundaries
1646  * are rounded up/down so complete bitmap longs (covering 64 pages on
1647  * 64bit hosts) can be copied over into the bitmap snapshot.  Which
1648  * isn't a problem for display updates as the extra pages are outside
1649  * the visible area, and in case the visible area changes a full
1650  * display redraw is due anyway.  Should other use cases for this
1651  * function emerge we might have to revisit this implementation
1652  * detail.
1653  *
1654  * Use g_free to release DirtyBitmapSnapshot.
1655  *
1656  * @mr: the memory region being queried.
1657  * @addr: the address (relative to the start of the region) being queried.
1658  * @size: the size of the range being queried.
1659  * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1660  */
1661 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1662                                                             hwaddr addr,
1663                                                             hwaddr size,
1664                                                             unsigned client);
1665 
1666 /**
1667  * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1668  *                                   in the specified dirty bitmap snapshot.
1669  *
1670  * @mr: the memory region being queried.
1671  * @snap: the dirty bitmap snapshot
1672  * @addr: the address (relative to the start of the region) being queried.
1673  * @size: the size of the range being queried.
1674  */
1675 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1676                                       DirtyBitmapSnapshot *snap,
1677                                       hwaddr addr, hwaddr size);
1678 
1679 /**
1680  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1681  *                            client.
1682  *
1683  * Marks a range of pages as no longer dirty.
1684  *
1685  * @mr: the region being updated.
1686  * @addr: the start of the subrange being cleaned.
1687  * @size: the size of the subrange being cleaned.
1688  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1689  *          %DIRTY_MEMORY_VGA.
1690  */
1691 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1692                                hwaddr size, unsigned client);
1693 
1694 /**
1695  * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
1696  *                                 TBs (for self-modifying code).
1697  *
1698  * The MemoryRegionOps->write() callback of a ROM device must use this function
1699  * to mark byte ranges that have been modified internally, such as by directly
1700  * accessing the memory returned by memory_region_get_ram_ptr().
1701  *
1702  * This function marks the range dirty and invalidates TBs so that TCG can
1703  * detect self-modifying code.
1704  *
1705  * @mr: the region being flushed.
1706  * @addr: the start, relative to the start of the region, of the range being
1707  *        flushed.
1708  * @size: the size, in bytes, of the range being flushed.
1709  */
1710 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
1711 
1712 /**
1713  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1714  *
1715  * Allows a memory region to be marked as read-only (turning it into a ROM).
1716  * only useful on RAM regions.
1717  *
1718  * @mr: the region being updated.
1719  * @readonly: whether rhe region is to be ROM or RAM.
1720  */
1721 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1722 
1723 /**
1724  * memory_region_set_nonvolatile: Turn a memory region non-volatile
1725  *
1726  * Allows a memory region to be marked as non-volatile.
1727  * only useful on RAM regions.
1728  *
1729  * @mr: the region being updated.
1730  * @nonvolatile: whether rhe region is to be non-volatile.
1731  */
1732 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
1733 
1734 /**
1735  * memory_region_rom_device_set_romd: enable/disable ROMD mode
1736  *
1737  * Allows a ROM device (initialized with memory_region_init_rom_device() to
1738  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
1739  * device is mapped to guest memory and satisfies read access directly.
1740  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1741  * Writes are always handled by the #MemoryRegion.write function.
1742  *
1743  * @mr: the memory region to be updated
1744  * @romd_mode: %true to put the region into ROMD mode
1745  */
1746 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1747 
1748 /**
1749  * memory_region_set_coalescing: Enable memory coalescing for the region.
1750  *
1751  * Enabled writes to a region to be queued for later processing. MMIO ->write
1752  * callbacks may be delayed until a non-coalesced MMIO is issued.
1753  * Only useful for IO regions.  Roughly similar to write-combining hardware.
1754  *
1755  * @mr: the memory region to be write coalesced
1756  */
1757 void memory_region_set_coalescing(MemoryRegion *mr);
1758 
1759 /**
1760  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1761  *                               a region.
1762  *
1763  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1764  * Multiple calls can be issued coalesced disjoint ranges.
1765  *
1766  * @mr: the memory region to be updated.
1767  * @offset: the start of the range within the region to be coalesced.
1768  * @size: the size of the subrange to be coalesced.
1769  */
1770 void memory_region_add_coalescing(MemoryRegion *mr,
1771                                   hwaddr offset,
1772                                   uint64_t size);
1773 
1774 /**
1775  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1776  *
1777  * Disables any coalescing caused by memory_region_set_coalescing() or
1778  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
1779  * hardware.
1780  *
1781  * @mr: the memory region to be updated.
1782  */
1783 void memory_region_clear_coalescing(MemoryRegion *mr);
1784 
1785 /**
1786  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1787  *                                    accesses.
1788  *
1789  * Ensure that pending coalesced MMIO request are flushed before the memory
1790  * region is accessed. This property is automatically enabled for all regions
1791  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1792  *
1793  * @mr: the memory region to be updated.
1794  */
1795 void memory_region_set_flush_coalesced(MemoryRegion *mr);
1796 
1797 /**
1798  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1799  *                                      accesses.
1800  *
1801  * Clear the automatic coalesced MMIO flushing enabled via
1802  * memory_region_set_flush_coalesced. Note that this service has no effect on
1803  * memory regions that have MMIO coalescing enabled for themselves. For them,
1804  * automatic flushing will stop once coalescing is disabled.
1805  *
1806  * @mr: the memory region to be updated.
1807  */
1808 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1809 
1810 /**
1811  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1812  *                            is written to a location.
1813  *
1814  * Marks a word in an IO region (initialized with memory_region_init_io())
1815  * as a trigger for an eventfd event.  The I/O callback will not be called.
1816  * The caller must be prepared to handle failure (that is, take the required
1817  * action if the callback _is_ called).
1818  *
1819  * @mr: the memory region being updated.
1820  * @addr: the address within @mr that is to be monitored
1821  * @size: the size of the access to trigger the eventfd
1822  * @match_data: whether to match against @data, instead of just @addr
1823  * @data: the data to match against the guest write
1824  * @e: event notifier to be triggered when @addr, @size, and @data all match.
1825  **/
1826 void memory_region_add_eventfd(MemoryRegion *mr,
1827                                hwaddr addr,
1828                                unsigned size,
1829                                bool match_data,
1830                                uint64_t data,
1831                                EventNotifier *e);
1832 
1833 /**
1834  * memory_region_del_eventfd: Cancel an eventfd.
1835  *
1836  * Cancels an eventfd trigger requested by a previous
1837  * memory_region_add_eventfd() call.
1838  *
1839  * @mr: the memory region being updated.
1840  * @addr: the address within @mr that is to be monitored
1841  * @size: the size of the access to trigger the eventfd
1842  * @match_data: whether to match against @data, instead of just @addr
1843  * @data: the data to match against the guest write
1844  * @e: event notifier to be triggered when @addr, @size, and @data all match.
1845  */
1846 void memory_region_del_eventfd(MemoryRegion *mr,
1847                                hwaddr addr,
1848                                unsigned size,
1849                                bool match_data,
1850                                uint64_t data,
1851                                EventNotifier *e);
1852 
1853 /**
1854  * memory_region_add_subregion: Add a subregion to a container.
1855  *
1856  * Adds a subregion at @offset.  The subregion may not overlap with other
1857  * subregions (except for those explicitly marked as overlapping).  A region
1858  * may only be added once as a subregion (unless removed with
1859  * memory_region_del_subregion()); use memory_region_init_alias() if you
1860  * want a region to be a subregion in multiple locations.
1861  *
1862  * @mr: the region to contain the new subregion; must be a container
1863  *      initialized with memory_region_init().
1864  * @offset: the offset relative to @mr where @subregion is added.
1865  * @subregion: the subregion to be added.
1866  */
1867 void memory_region_add_subregion(MemoryRegion *mr,
1868                                  hwaddr offset,
1869                                  MemoryRegion *subregion);
1870 /**
1871  * memory_region_add_subregion_overlap: Add a subregion to a container
1872  *                                      with overlap.
1873  *
1874  * Adds a subregion at @offset.  The subregion may overlap with other
1875  * subregions.  Conflicts are resolved by having a higher @priority hide a
1876  * lower @priority. Subregions without priority are taken as @priority 0.
1877  * A region may only be added once as a subregion (unless removed with
1878  * memory_region_del_subregion()); use memory_region_init_alias() if you
1879  * want a region to be a subregion in multiple locations.
1880  *
1881  * @mr: the region to contain the new subregion; must be a container
1882  *      initialized with memory_region_init().
1883  * @offset: the offset relative to @mr where @subregion is added.
1884  * @subregion: the subregion to be added.
1885  * @priority: used for resolving overlaps; highest priority wins.
1886  */
1887 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1888                                          hwaddr offset,
1889                                          MemoryRegion *subregion,
1890                                          int priority);
1891 
1892 /**
1893  * memory_region_get_ram_addr: Get the ram address associated with a memory
1894  *                             region
1895  *
1896  * @mr: the region to be queried
1897  */
1898 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1899 
1900 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1901 /**
1902  * memory_region_del_subregion: Remove a subregion.
1903  *
1904  * Removes a subregion from its container.
1905  *
1906  * @mr: the container to be updated.
1907  * @subregion: the region being removed; must be a current subregion of @mr.
1908  */
1909 void memory_region_del_subregion(MemoryRegion *mr,
1910                                  MemoryRegion *subregion);
1911 
1912 /*
1913  * memory_region_set_enabled: dynamically enable or disable a region
1914  *
1915  * Enables or disables a memory region.  A disabled memory region
1916  * ignores all accesses to itself and its subregions.  It does not
1917  * obscure sibling subregions with lower priority - it simply behaves as
1918  * if it was removed from the hierarchy.
1919  *
1920  * Regions default to being enabled.
1921  *
1922  * @mr: the region to be updated
1923  * @enabled: whether to enable or disable the region
1924  */
1925 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1926 
1927 /*
1928  * memory_region_set_address: dynamically update the address of a region
1929  *
1930  * Dynamically updates the address of a region, relative to its container.
1931  * May be used on regions are currently part of a memory hierarchy.
1932  *
1933  * @mr: the region to be updated
1934  * @addr: new address, relative to container region
1935  */
1936 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1937 
1938 /*
1939  * memory_region_set_size: dynamically update the size of a region.
1940  *
1941  * Dynamically updates the size of a region.
1942  *
1943  * @mr: the region to be updated
1944  * @size: used size of the region.
1945  */
1946 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1947 
1948 /*
1949  * memory_region_set_alias_offset: dynamically update a memory alias's offset
1950  *
1951  * Dynamically updates the offset into the target region that an alias points
1952  * to, as if the fourth argument to memory_region_init_alias() has changed.
1953  *
1954  * @mr: the #MemoryRegion to be updated; should be an alias.
1955  * @offset: the new offset into the target memory region
1956  */
1957 void memory_region_set_alias_offset(MemoryRegion *mr,
1958                                     hwaddr offset);
1959 
1960 /**
1961  * memory_region_present: checks if an address relative to a @container
1962  * translates into #MemoryRegion within @container
1963  *
1964  * Answer whether a #MemoryRegion within @container covers the address
1965  * @addr.
1966  *
1967  * @container: a #MemoryRegion within which @addr is a relative address
1968  * @addr: the area within @container to be searched
1969  */
1970 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1971 
1972 /**
1973  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1974  * into any address space.
1975  *
1976  * @mr: a #MemoryRegion which should be checked if it's mapped
1977  */
1978 bool memory_region_is_mapped(MemoryRegion *mr);
1979 
1980 /**
1981  * memory_region_find: translate an address/size relative to a
1982  * MemoryRegion into a #MemoryRegionSection.
1983  *
1984  * Locates the first #MemoryRegion within @mr that overlaps the range
1985  * given by @addr and @size.
1986  *
1987  * Returns a #MemoryRegionSection that describes a contiguous overlap.
1988  * It will have the following characteristics:
1989  * - @size = 0 iff no overlap was found
1990  * - @mr is non-%NULL iff an overlap was found
1991  *
1992  * Remember that in the return value the @offset_within_region is
1993  * relative to the returned region (in the .@mr field), not to the
1994  * @mr argument.
1995  *
1996  * Similarly, the .@offset_within_address_space is relative to the
1997  * address space that contains both regions, the passed and the
1998  * returned one.  However, in the special case where the @mr argument
1999  * has no container (and thus is the root of the address space), the
2000  * following will hold:
2001  * - @offset_within_address_space >= @addr
2002  * - @offset_within_address_space + .@size <= @addr + @size
2003  *
2004  * @mr: a MemoryRegion within which @addr is a relative address
2005  * @addr: start of the area within @as to be searched
2006  * @size: size of the area to be searched
2007  */
2008 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2009                                        hwaddr addr, uint64_t size);
2010 
2011 /**
2012  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2013  *
2014  * Synchronizes the dirty page log for all address spaces.
2015  */
2016 void memory_global_dirty_log_sync(void);
2017 
2018 /**
2019  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2020  *
2021  * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
2022  * This function must be called after the dirty log bitmap is cleared, and
2023  * before dirty guest memory pages are read.  If you are using
2024  * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
2025  * care of doing this.
2026  */
2027 void memory_global_after_dirty_log_sync(void);
2028 
2029 /**
2030  * memory_region_transaction_begin: Start a transaction.
2031  *
2032  * During a transaction, changes will be accumulated and made visible
2033  * only when the transaction ends (is committed).
2034  */
2035 void memory_region_transaction_begin(void);
2036 
2037 /**
2038  * memory_region_transaction_commit: Commit a transaction and make changes
2039  *                                   visible to the guest.
2040  */
2041 void memory_region_transaction_commit(void);
2042 
2043 /**
2044  * memory_listener_register: register callbacks to be called when memory
2045  *                           sections are mapped or unmapped into an address
2046  *                           space
2047  *
2048  * @listener: an object containing the callbacks to be called
2049  * @filter: if non-%NULL, only regions in this address space will be observed
2050  */
2051 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
2052 
2053 /**
2054  * memory_listener_unregister: undo the effect of memory_listener_register()
2055  *
2056  * @listener: an object containing the callbacks to be removed
2057  */
2058 void memory_listener_unregister(MemoryListener *listener);
2059 
2060 /**
2061  * memory_global_dirty_log_start: begin dirty logging for all regions
2062  */
2063 void memory_global_dirty_log_start(void);
2064 
2065 /**
2066  * memory_global_dirty_log_stop: end dirty logging for all regions
2067  */
2068 void memory_global_dirty_log_stop(void);
2069 
2070 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled);
2071 
2072 /**
2073  * memory_region_dispatch_read: perform a read directly to the specified
2074  * MemoryRegion.
2075  *
2076  * @mr: #MemoryRegion to access
2077  * @addr: address within that region
2078  * @pval: pointer to uint64_t which the data is written to
2079  * @op: size, sign, and endianness of the memory operation
2080  * @attrs: memory transaction attributes to use for the access
2081  */
2082 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
2083                                         hwaddr addr,
2084                                         uint64_t *pval,
2085                                         MemOp op,
2086                                         MemTxAttrs attrs);
2087 /**
2088  * memory_region_dispatch_write: perform a write directly to the specified
2089  * MemoryRegion.
2090  *
2091  * @mr: #MemoryRegion to access
2092  * @addr: address within that region
2093  * @data: data to write
2094  * @op: size, sign, and endianness of the memory operation
2095  * @attrs: memory transaction attributes to use for the access
2096  */
2097 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
2098                                          hwaddr addr,
2099                                          uint64_t data,
2100                                          MemOp op,
2101                                          MemTxAttrs attrs);
2102 
2103 /**
2104  * address_space_init: initializes an address space
2105  *
2106  * @as: an uninitialized #AddressSpace
2107  * @root: a #MemoryRegion that routes addresses for the address space
2108  * @name: an address space name.  The name is only used for debugging
2109  *        output.
2110  */
2111 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
2112 
2113 /**
2114  * address_space_destroy: destroy an address space
2115  *
2116  * Releases all resources associated with an address space.  After an address space
2117  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
2118  * as well.
2119  *
2120  * @as: address space to be destroyed
2121  */
2122 void address_space_destroy(AddressSpace *as);
2123 
2124 /**
2125  * address_space_remove_listeners: unregister all listeners of an address space
2126  *
2127  * Removes all callbacks previously registered with memory_listener_register()
2128  * for @as.
2129  *
2130  * @as: an initialized #AddressSpace
2131  */
2132 void address_space_remove_listeners(AddressSpace *as);
2133 
2134 /**
2135  * address_space_rw: read from or write to an address space.
2136  *
2137  * Return a MemTxResult indicating whether the operation succeeded
2138  * or failed (eg unassigned memory, device rejected the transaction,
2139  * IOMMU fault).
2140  *
2141  * @as: #AddressSpace to be accessed
2142  * @addr: address within that address space
2143  * @attrs: memory transaction attributes
2144  * @buf: buffer with the data transferred
2145  * @len: the number of bytes to read or write
2146  * @is_write: indicates the transfer direction
2147  */
2148 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
2149                              MemTxAttrs attrs, void *buf,
2150                              hwaddr len, bool is_write);
2151 
2152 /**
2153  * address_space_write: write to address space.
2154  *
2155  * Return a MemTxResult indicating whether the operation succeeded
2156  * or failed (eg unassigned memory, device rejected the transaction,
2157  * IOMMU fault).
2158  *
2159  * @as: #AddressSpace to be accessed
2160  * @addr: address within that address space
2161  * @attrs: memory transaction attributes
2162  * @buf: buffer with the data transferred
2163  * @len: the number of bytes to write
2164  */
2165 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2166                                 MemTxAttrs attrs,
2167                                 const void *buf, hwaddr len);
2168 
2169 /**
2170  * address_space_write_rom: write to address space, including ROM.
2171  *
2172  * This function writes to the specified address space, but will
2173  * write data to both ROM and RAM. This is used for non-guest
2174  * writes like writes from the gdb debug stub or initial loading
2175  * of ROM contents.
2176  *
2177  * Note that portions of the write which attempt to write data to
2178  * a device will be silently ignored -- only real RAM and ROM will
2179  * be written to.
2180  *
2181  * Return a MemTxResult indicating whether the operation succeeded
2182  * or failed (eg unassigned memory, device rejected the transaction,
2183  * IOMMU fault).
2184  *
2185  * @as: #AddressSpace to be accessed
2186  * @addr: address within that address space
2187  * @attrs: memory transaction attributes
2188  * @buf: buffer with the data transferred
2189  * @len: the number of bytes to write
2190  */
2191 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2192                                     MemTxAttrs attrs,
2193                                     const void *buf, hwaddr len);
2194 
2195 /* address_space_ld*: load from an address space
2196  * address_space_st*: store to an address space
2197  *
2198  * These functions perform a load or store of the byte, word,
2199  * longword or quad to the specified address within the AddressSpace.
2200  * The _le suffixed functions treat the data as little endian;
2201  * _be indicates big endian; no suffix indicates "same endianness
2202  * as guest CPU".
2203  *
2204  * The "guest CPU endianness" accessors are deprecated for use outside
2205  * target-* code; devices should be CPU-agnostic and use either the LE
2206  * or the BE accessors.
2207  *
2208  * @as #AddressSpace to be accessed
2209  * @addr: address within that address space
2210  * @val: data value, for stores
2211  * @attrs: memory transaction attributes
2212  * @result: location to write the success/failure of the transaction;
2213  *   if NULL, this information is discarded
2214  */
2215 
2216 #define SUFFIX
2217 #define ARG1         as
2218 #define ARG1_DECL    AddressSpace *as
2219 #include "exec/memory_ldst.h.inc"
2220 
2221 #define SUFFIX
2222 #define ARG1         as
2223 #define ARG1_DECL    AddressSpace *as
2224 #include "exec/memory_ldst_phys.h.inc"
2225 
2226 struct MemoryRegionCache {
2227     void *ptr;
2228     hwaddr xlat;
2229     hwaddr len;
2230     FlatView *fv;
2231     MemoryRegionSection mrs;
2232     bool is_write;
2233 };
2234 
2235 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
2236 
2237 
2238 /* address_space_ld*_cached: load from a cached #MemoryRegion
2239  * address_space_st*_cached: store into a cached #MemoryRegion
2240  *
2241  * These functions perform a load or store of the byte, word,
2242  * longword or quad to the specified address.  The address is
2243  * a physical address in the AddressSpace, but it must lie within
2244  * a #MemoryRegion that was mapped with address_space_cache_init.
2245  *
2246  * The _le suffixed functions treat the data as little endian;
2247  * _be indicates big endian; no suffix indicates "same endianness
2248  * as guest CPU".
2249  *
2250  * The "guest CPU endianness" accessors are deprecated for use outside
2251  * target-* code; devices should be CPU-agnostic and use either the LE
2252  * or the BE accessors.
2253  *
2254  * @cache: previously initialized #MemoryRegionCache to be accessed
2255  * @addr: address within the address space
2256  * @val: data value, for stores
2257  * @attrs: memory transaction attributes
2258  * @result: location to write the success/failure of the transaction;
2259  *   if NULL, this information is discarded
2260  */
2261 
2262 #define SUFFIX       _cached_slow
2263 #define ARG1         cache
2264 #define ARG1_DECL    MemoryRegionCache *cache
2265 #include "exec/memory_ldst.h.inc"
2266 
2267 /* Inline fast path for direct RAM access.  */
2268 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
2269     hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
2270 {
2271     assert(addr < cache->len);
2272     if (likely(cache->ptr)) {
2273         return ldub_p(cache->ptr + addr);
2274     } else {
2275         return address_space_ldub_cached_slow(cache, addr, attrs, result);
2276     }
2277 }
2278 
2279 static inline void address_space_stb_cached(MemoryRegionCache *cache,
2280     hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result)
2281 {
2282     assert(addr < cache->len);
2283     if (likely(cache->ptr)) {
2284         stb_p(cache->ptr + addr, val);
2285     } else {
2286         address_space_stb_cached_slow(cache, addr, val, attrs, result);
2287     }
2288 }
2289 
2290 #define ENDIANNESS   _le
2291 #include "exec/memory_ldst_cached.h.inc"
2292 
2293 #define ENDIANNESS   _be
2294 #include "exec/memory_ldst_cached.h.inc"
2295 
2296 #define SUFFIX       _cached
2297 #define ARG1         cache
2298 #define ARG1_DECL    MemoryRegionCache *cache
2299 #include "exec/memory_ldst_phys.h.inc"
2300 
2301 /* address_space_cache_init: prepare for repeated access to a physical
2302  * memory region
2303  *
2304  * @cache: #MemoryRegionCache to be filled
2305  * @as: #AddressSpace to be accessed
2306  * @addr: address within that address space
2307  * @len: length of buffer
2308  * @is_write: indicates the transfer direction
2309  *
2310  * Will only work with RAM, and may map a subset of the requested range by
2311  * returning a value that is less than @len.  On failure, return a negative
2312  * errno value.
2313  *
2314  * Because it only works with RAM, this function can be used for
2315  * read-modify-write operations.  In this case, is_write should be %true.
2316  *
2317  * Note that addresses passed to the address_space_*_cached functions
2318  * are relative to @addr.
2319  */
2320 int64_t address_space_cache_init(MemoryRegionCache *cache,
2321                                  AddressSpace *as,
2322                                  hwaddr addr,
2323                                  hwaddr len,
2324                                  bool is_write);
2325 
2326 /**
2327  * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2328  *
2329  * @cache: The #MemoryRegionCache to operate on.
2330  * @addr: The first physical address that was written, relative to the
2331  * address that was passed to @address_space_cache_init.
2332  * @access_len: The number of bytes that were written starting at @addr.
2333  */
2334 void address_space_cache_invalidate(MemoryRegionCache *cache,
2335                                     hwaddr addr,
2336                                     hwaddr access_len);
2337 
2338 /**
2339  * address_space_cache_destroy: free a #MemoryRegionCache
2340  *
2341  * @cache: The #MemoryRegionCache whose memory should be released.
2342  */
2343 void address_space_cache_destroy(MemoryRegionCache *cache);
2344 
2345 /* address_space_get_iotlb_entry: translate an address into an IOTLB
2346  * entry. Should be called from an RCU critical section.
2347  */
2348 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2349                                             bool is_write, MemTxAttrs attrs);
2350 
2351 /* address_space_translate: translate an address range into an address space
2352  * into a MemoryRegion and an address range into that section.  Should be
2353  * called from an RCU critical section, to avoid that the last reference
2354  * to the returned region disappears after address_space_translate returns.
2355  *
2356  * @fv: #FlatView to be accessed
2357  * @addr: address within that address space
2358  * @xlat: pointer to address within the returned memory region section's
2359  * #MemoryRegion.
2360  * @len: pointer to length
2361  * @is_write: indicates the transfer direction
2362  * @attrs: memory attributes
2363  */
2364 MemoryRegion *flatview_translate(FlatView *fv,
2365                                  hwaddr addr, hwaddr *xlat,
2366                                  hwaddr *len, bool is_write,
2367                                  MemTxAttrs attrs);
2368 
2369 static inline MemoryRegion *address_space_translate(AddressSpace *as,
2370                                                     hwaddr addr, hwaddr *xlat,
2371                                                     hwaddr *len, bool is_write,
2372                                                     MemTxAttrs attrs)
2373 {
2374     return flatview_translate(address_space_to_flatview(as),
2375                               addr, xlat, len, is_write, attrs);
2376 }
2377 
2378 /* address_space_access_valid: check for validity of accessing an address
2379  * space range
2380  *
2381  * Check whether memory is assigned to the given address space range, and
2382  * access is permitted by any IOMMU regions that are active for the address
2383  * space.
2384  *
2385  * For now, addr and len should be aligned to a page size.  This limitation
2386  * will be lifted in the future.
2387  *
2388  * @as: #AddressSpace to be accessed
2389  * @addr: address within that address space
2390  * @len: length of the area to be checked
2391  * @is_write: indicates the transfer direction
2392  * @attrs: memory attributes
2393  */
2394 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2395                                 bool is_write, MemTxAttrs attrs);
2396 
2397 /* address_space_map: map a physical memory region into a host virtual address
2398  *
2399  * May map a subset of the requested range, given by and returned in @plen.
2400  * May return %NULL and set *@plen to zero(0), if resources needed to perform
2401  * the mapping are exhausted.
2402  * Use only for reads OR writes - not for read-modify-write operations.
2403  * Use cpu_register_map_client() to know when retrying the map operation is
2404  * likely to succeed.
2405  *
2406  * @as: #AddressSpace to be accessed
2407  * @addr: address within that address space
2408  * @plen: pointer to length of buffer; updated on return
2409  * @is_write: indicates the transfer direction
2410  * @attrs: memory attributes
2411  */
2412 void *address_space_map(AddressSpace *as, hwaddr addr,
2413                         hwaddr *plen, bool is_write, MemTxAttrs attrs);
2414 
2415 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2416  *
2417  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
2418  * the amount of memory that was actually read or written by the caller.
2419  *
2420  * @as: #AddressSpace used
2421  * @buffer: host pointer as returned by address_space_map()
2422  * @len: buffer length as returned by address_space_map()
2423  * @access_len: amount of data actually transferred
2424  * @is_write: indicates the transfer direction
2425  */
2426 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2427                          bool is_write, hwaddr access_len);
2428 
2429 
2430 /* Internal functions, part of the implementation of address_space_read.  */
2431 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2432                                     MemTxAttrs attrs, void *buf, hwaddr len);
2433 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2434                                    MemTxAttrs attrs, void *buf,
2435                                    hwaddr len, hwaddr addr1, hwaddr l,
2436                                    MemoryRegion *mr);
2437 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2438 
2439 /* Internal functions, part of the implementation of address_space_read_cached
2440  * and address_space_write_cached.  */
2441 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache,
2442                                            hwaddr addr, void *buf, hwaddr len);
2443 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
2444                                             hwaddr addr, const void *buf,
2445                                             hwaddr len);
2446 
2447 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2448 {
2449     if (is_write) {
2450         return memory_region_is_ram(mr) && !mr->readonly &&
2451                !mr->rom_device && !memory_region_is_ram_device(mr);
2452     } else {
2453         return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2454                memory_region_is_romd(mr);
2455     }
2456 }
2457 
2458 /**
2459  * address_space_read: read from an address space.
2460  *
2461  * Return a MemTxResult indicating whether the operation succeeded
2462  * or failed (eg unassigned memory, device rejected the transaction,
2463  * IOMMU fault).  Called within RCU critical section.
2464  *
2465  * @as: #AddressSpace to be accessed
2466  * @addr: address within that address space
2467  * @attrs: memory transaction attributes
2468  * @buf: buffer with the data transferred
2469  * @len: length of the data transferred
2470  */
2471 static inline __attribute__((__always_inline__))
2472 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
2473                                MemTxAttrs attrs, void *buf,
2474                                hwaddr len)
2475 {
2476     MemTxResult result = MEMTX_OK;
2477     hwaddr l, addr1;
2478     void *ptr;
2479     MemoryRegion *mr;
2480     FlatView *fv;
2481 
2482     if (__builtin_constant_p(len)) {
2483         if (len) {
2484             RCU_READ_LOCK_GUARD();
2485             fv = address_space_to_flatview(as);
2486             l = len;
2487             mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2488             if (len == l && memory_access_is_direct(mr, false)) {
2489                 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2490                 memcpy(buf, ptr, len);
2491             } else {
2492                 result = flatview_read_continue(fv, addr, attrs, buf, len,
2493                                                 addr1, l, mr);
2494             }
2495         }
2496     } else {
2497         result = address_space_read_full(as, addr, attrs, buf, len);
2498     }
2499     return result;
2500 }
2501 
2502 /**
2503  * address_space_read_cached: read from a cached RAM region
2504  *
2505  * @cache: Cached region to be addressed
2506  * @addr: address relative to the base of the RAM region
2507  * @buf: buffer with the data transferred
2508  * @len: length of the data transferred
2509  */
2510 static inline MemTxResult
2511 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
2512                           void *buf, hwaddr len)
2513 {
2514     assert(addr < cache->len && len <= cache->len - addr);
2515     fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr);
2516     if (likely(cache->ptr)) {
2517         memcpy(buf, cache->ptr + addr, len);
2518         return MEMTX_OK;
2519     } else {
2520         return address_space_read_cached_slow(cache, addr, buf, len);
2521     }
2522 }
2523 
2524 /**
2525  * address_space_write_cached: write to a cached RAM region
2526  *
2527  * @cache: Cached region to be addressed
2528  * @addr: address relative to the base of the RAM region
2529  * @buf: buffer with the data transferred
2530  * @len: length of the data transferred
2531  */
2532 static inline MemTxResult
2533 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2534                            const void *buf, hwaddr len)
2535 {
2536     assert(addr < cache->len && len <= cache->len - addr);
2537     if (likely(cache->ptr)) {
2538         memcpy(cache->ptr + addr, buf, len);
2539         return MEMTX_OK;
2540     } else {
2541         return address_space_write_cached_slow(cache, addr, buf, len);
2542     }
2543 }
2544 
2545 #ifdef NEED_CPU_H
2546 /* enum device_endian to MemOp.  */
2547 static inline MemOp devend_memop(enum device_endian end)
2548 {
2549     QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
2550                       DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
2551 
2552 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
2553     /* Swap if non-host endianness or native (target) endianness */
2554     return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
2555 #else
2556     const int non_host_endianness =
2557         DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
2558 
2559     /* In this case, native (target) endianness needs no swap.  */
2560     return (end == non_host_endianness) ? MO_BSWAP : 0;
2561 #endif
2562 }
2563 #endif
2564 
2565 /*
2566  * Inhibit technologies that require discarding of pages in RAM blocks, e.g.,
2567  * to manage the actual amount of memory consumed by the VM (then, the memory
2568  * provided by RAM blocks might be bigger than the desired memory consumption).
2569  * This *must* be set if:
2570  * - Discarding parts of a RAM blocks does not result in the change being
2571  *   reflected in the VM and the pages getting freed.
2572  * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous
2573  *   discards blindly.
2574  * - Discarding parts of a RAM blocks will result in integrity issues (e.g.,
2575  *   encrypted VMs).
2576  * Technologies that only temporarily pin the current working set of a
2577  * driver are fine, because we don't expect such pages to be discarded
2578  * (esp. based on guest action like balloon inflation).
2579  *
2580  * This is *not* to be used to protect from concurrent discards (esp.,
2581  * postcopy).
2582  *
2583  * Returns 0 if successful. Returns -EBUSY if a technology that relies on
2584  * discards to work reliably is active.
2585  */
2586 int ram_block_discard_disable(bool state);
2587 
2588 /*
2589  * Inhibit technologies that disable discarding of pages in RAM blocks.
2590  *
2591  * Returns 0 if successful. Returns -EBUSY if discards are already set to
2592  * broken.
2593  */
2594 int ram_block_discard_require(bool state);
2595 
2596 /*
2597  * Test if discarding of memory in ram blocks is disabled.
2598  */
2599 bool ram_block_discard_is_disabled(void);
2600 
2601 /*
2602  * Test if discarding of memory in ram blocks is required to work reliably.
2603  */
2604 bool ram_block_discard_is_required(void);
2605 
2606 #endif
2607 
2608 #endif
2609