1 /* 2 * Declarations for obsolete exec.c functions 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or 10 * later. See the COPYING file in the top-level directory. 11 * 12 */ 13 14 /* 15 * This header is for use by exec.c and memory.c ONLY. Do not include it. 16 * The functions declared here will be removed soon. 17 */ 18 19 #ifndef MEMORY_INTERNAL_H 20 #define MEMORY_INTERNAL_H 21 22 #ifndef CONFIG_USER_ONLY 23 #include "hw/xen/xen.h" 24 25 typedef struct PhysPageEntry PhysPageEntry; 26 27 struct PhysPageEntry { 28 uint16_t is_leaf : 1; 29 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */ 30 uint16_t ptr : 15; 31 }; 32 33 typedef struct AddressSpaceDispatch AddressSpaceDispatch; 34 35 struct AddressSpaceDispatch { 36 /* This is a multi-level map on the physical address space. 37 * The bottom level has pointers to MemoryRegionSections. 38 */ 39 PhysPageEntry phys_map; 40 MemoryListener listener; 41 }; 42 43 void address_space_init_dispatch(AddressSpace *as); 44 void address_space_destroy_dispatch(AddressSpace *as); 45 46 extern const MemoryRegionOps unassigned_mem_ops; 47 48 bool memory_region_access_valid(MemoryRegion *mr, hwaddr addr, 49 unsigned size, bool is_write); 50 51 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, 52 MemoryRegion *mr); 53 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr); 54 void *qemu_get_ram_ptr(ram_addr_t addr); 55 void qemu_ram_free(ram_addr_t addr); 56 void qemu_ram_free_from_ptr(ram_addr_t addr); 57 58 #define VGA_DIRTY_FLAG 0x01 59 #define CODE_DIRTY_FLAG 0x02 60 #define MIGRATION_DIRTY_FLAG 0x08 61 62 static inline int cpu_physical_memory_get_dirty_flags(ram_addr_t addr) 63 { 64 return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS]; 65 } 66 67 /* read dirty bit (return 0 or 1) */ 68 static inline int cpu_physical_memory_is_dirty(ram_addr_t addr) 69 { 70 return cpu_physical_memory_get_dirty_flags(addr) == 0xff; 71 } 72 73 static inline int cpu_physical_memory_get_dirty(ram_addr_t start, 74 ram_addr_t length, 75 int dirty_flags) 76 { 77 int ret = 0; 78 ram_addr_t addr, end; 79 80 end = TARGET_PAGE_ALIGN(start + length); 81 start &= TARGET_PAGE_MASK; 82 for (addr = start; addr < end; addr += TARGET_PAGE_SIZE) { 83 ret |= cpu_physical_memory_get_dirty_flags(addr) & dirty_flags; 84 } 85 return ret; 86 } 87 88 static inline int cpu_physical_memory_set_dirty_flags(ram_addr_t addr, 89 int dirty_flags) 90 { 91 return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] |= dirty_flags; 92 } 93 94 static inline void cpu_physical_memory_set_dirty(ram_addr_t addr) 95 { 96 cpu_physical_memory_set_dirty_flags(addr, 0xff); 97 } 98 99 static inline int cpu_physical_memory_clear_dirty_flags(ram_addr_t addr, 100 int dirty_flags) 101 { 102 int mask = ~dirty_flags; 103 104 return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] &= mask; 105 } 106 107 static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start, 108 ram_addr_t length, 109 int dirty_flags) 110 { 111 ram_addr_t addr, end; 112 113 end = TARGET_PAGE_ALIGN(start + length); 114 start &= TARGET_PAGE_MASK; 115 for (addr = start; addr < end; addr += TARGET_PAGE_SIZE) { 116 cpu_physical_memory_set_dirty_flags(addr, dirty_flags); 117 } 118 xen_modified_memory(addr, length); 119 } 120 121 static inline void cpu_physical_memory_mask_dirty_range(ram_addr_t start, 122 ram_addr_t length, 123 int dirty_flags) 124 { 125 ram_addr_t addr, end; 126 127 end = TARGET_PAGE_ALIGN(start + length); 128 start &= TARGET_PAGE_MASK; 129 for (addr = start; addr < end; addr += TARGET_PAGE_SIZE) { 130 cpu_physical_memory_clear_dirty_flags(addr, dirty_flags); 131 } 132 } 133 134 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end, 135 int dirty_flags); 136 137 extern const IORangeOps memory_region_iorange_ops; 138 139 #endif 140 141 #endif 142