xref: /openbmc/qemu/include/exec/exec-all.h (revision ebe15582)
1 /*
2  * internal execution defines for qemu
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef EXEC_ALL_H
21 #define EXEC_ALL_H
22 
23 #include "cpu.h"
24 #include "exec/tb-context.h"
25 #include "sysemu/cpus.h"
26 
27 /* allow to see translation results - the slowdown should be negligible, so we leave it */
28 #define DEBUG_DISAS
29 
30 /* Page tracking code uses ram addresses in system mode, and virtual
31    addresses in userspace mode.  Define tb_page_addr_t to be an appropriate
32    type.  */
33 #if defined(CONFIG_USER_ONLY)
34 typedef abi_ulong tb_page_addr_t;
35 #define TB_PAGE_ADDR_FMT TARGET_ABI_FMT_lx
36 #else
37 typedef ram_addr_t tb_page_addr_t;
38 #define TB_PAGE_ADDR_FMT RAM_ADDR_FMT
39 #endif
40 
41 #include "qemu/log.h"
42 
43 void gen_intermediate_code(CPUState *cpu, TranslationBlock *tb, int max_insns);
44 void restore_state_to_opc(CPUArchState *env, TranslationBlock *tb,
45                           target_ulong *data);
46 
47 void cpu_gen_init(void);
48 
49 /**
50  * cpu_restore_state:
51  * @cpu: the vCPU state is to be restore to
52  * @searched_pc: the host PC the fault occurred at
53  * @will_exit: true if the TB executed will be interrupted after some
54                cpu adjustments. Required for maintaining the correct
55                icount valus
56  * @return: true if state was restored, false otherwise
57  *
58  * Attempt to restore the state for a fault occurring in translated
59  * code. If the searched_pc is not in translated code no state is
60  * restored and the function returns false.
61  */
62 bool cpu_restore_state(CPUState *cpu, uintptr_t searched_pc, bool will_exit);
63 
64 void QEMU_NORETURN cpu_loop_exit_noexc(CPUState *cpu);
65 void QEMU_NORETURN cpu_io_recompile(CPUState *cpu, uintptr_t retaddr);
66 TranslationBlock *tb_gen_code(CPUState *cpu,
67                               target_ulong pc, target_ulong cs_base,
68                               uint32_t flags,
69                               int cflags);
70 
71 void QEMU_NORETURN cpu_loop_exit(CPUState *cpu);
72 void QEMU_NORETURN cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc);
73 void QEMU_NORETURN cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc);
74 
75 #if !defined(CONFIG_USER_ONLY)
76 void cpu_reloading_memory_map(void);
77 /**
78  * cpu_address_space_init:
79  * @cpu: CPU to add this address space to
80  * @asidx: integer index of this address space
81  * @prefix: prefix to be used as name of address space
82  * @mr: the root memory region of address space
83  *
84  * Add the specified address space to the CPU's cpu_ases list.
85  * The address space added with @asidx 0 is the one used for the
86  * convenience pointer cpu->as.
87  * The target-specific code which registers ASes is responsible
88  * for defining what semantics address space 0, 1, 2, etc have.
89  *
90  * Before the first call to this function, the caller must set
91  * cpu->num_ases to the total number of address spaces it needs
92  * to support.
93  *
94  * Note that with KVM only one address space is supported.
95  */
96 void cpu_address_space_init(CPUState *cpu, int asidx,
97                             const char *prefix, MemoryRegion *mr);
98 #endif
99 
100 #if !defined(CONFIG_USER_ONLY) && defined(CONFIG_TCG)
101 /* cputlb.c */
102 /**
103  * tlb_init - initialize a CPU's TLB
104  * @cpu: CPU whose TLB should be initialized
105  */
106 void tlb_init(CPUState *cpu);
107 /**
108  * tlb_flush_page:
109  * @cpu: CPU whose TLB should be flushed
110  * @addr: virtual address of page to be flushed
111  *
112  * Flush one page from the TLB of the specified CPU, for all
113  * MMU indexes.
114  */
115 void tlb_flush_page(CPUState *cpu, target_ulong addr);
116 /**
117  * tlb_flush_page_all_cpus:
118  * @cpu: src CPU of the flush
119  * @addr: virtual address of page to be flushed
120  *
121  * Flush one page from the TLB of the specified CPU, for all
122  * MMU indexes.
123  */
124 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr);
125 /**
126  * tlb_flush_page_all_cpus_synced:
127  * @cpu: src CPU of the flush
128  * @addr: virtual address of page to be flushed
129  *
130  * Flush one page from the TLB of the specified CPU, for all MMU
131  * indexes like tlb_flush_page_all_cpus except the source vCPUs work
132  * is scheduled as safe work meaning all flushes will be complete once
133  * the source vCPUs safe work is complete. This will depend on when
134  * the guests translation ends the TB.
135  */
136 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr);
137 /**
138  * tlb_flush:
139  * @cpu: CPU whose TLB should be flushed
140  *
141  * Flush the entire TLB for the specified CPU. Most CPU architectures
142  * allow the implementation to drop entries from the TLB at any time
143  * so this is generally safe. If more selective flushing is required
144  * use one of the other functions for efficiency.
145  */
146 void tlb_flush(CPUState *cpu);
147 /**
148  * tlb_flush_all_cpus:
149  * @cpu: src CPU of the flush
150  */
151 void tlb_flush_all_cpus(CPUState *src_cpu);
152 /**
153  * tlb_flush_all_cpus_synced:
154  * @cpu: src CPU of the flush
155  *
156  * Like tlb_flush_all_cpus except this except the source vCPUs work is
157  * scheduled as safe work meaning all flushes will be complete once
158  * the source vCPUs safe work is complete. This will depend on when
159  * the guests translation ends the TB.
160  */
161 void tlb_flush_all_cpus_synced(CPUState *src_cpu);
162 /**
163  * tlb_flush_page_by_mmuidx:
164  * @cpu: CPU whose TLB should be flushed
165  * @addr: virtual address of page to be flushed
166  * @idxmap: bitmap of MMU indexes to flush
167  *
168  * Flush one page from the TLB of the specified CPU, for the specified
169  * MMU indexes.
170  */
171 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr,
172                               uint16_t idxmap);
173 /**
174  * tlb_flush_page_by_mmuidx_all_cpus:
175  * @cpu: Originating CPU of the flush
176  * @addr: virtual address of page to be flushed
177  * @idxmap: bitmap of MMU indexes to flush
178  *
179  * Flush one page from the TLB of all CPUs, for the specified
180  * MMU indexes.
181  */
182 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr,
183                                        uint16_t idxmap);
184 /**
185  * tlb_flush_page_by_mmuidx_all_cpus_synced:
186  * @cpu: Originating CPU of the flush
187  * @addr: virtual address of page to be flushed
188  * @idxmap: bitmap of MMU indexes to flush
189  *
190  * Flush one page from the TLB of all CPUs, for the specified MMU
191  * indexes like tlb_flush_page_by_mmuidx_all_cpus except the source
192  * vCPUs work is scheduled as safe work meaning all flushes will be
193  * complete once  the source vCPUs safe work is complete. This will
194  * depend on when the guests translation ends the TB.
195  */
196 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu, target_ulong addr,
197                                               uint16_t idxmap);
198 /**
199  * tlb_flush_by_mmuidx:
200  * @cpu: CPU whose TLB should be flushed
201  * @wait: If true ensure synchronisation by exiting the cpu_loop
202  * @idxmap: bitmap of MMU indexes to flush
203  *
204  * Flush all entries from the TLB of the specified CPU, for the specified
205  * MMU indexes.
206  */
207 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap);
208 /**
209  * tlb_flush_by_mmuidx_all_cpus:
210  * @cpu: Originating CPU of the flush
211  * @idxmap: bitmap of MMU indexes to flush
212  *
213  * Flush all entries from all TLBs of all CPUs, for the specified
214  * MMU indexes.
215  */
216 void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap);
217 /**
218  * tlb_flush_by_mmuidx_all_cpus_synced:
219  * @cpu: Originating CPU of the flush
220  * @idxmap: bitmap of MMU indexes to flush
221  *
222  * Flush all entries from all TLBs of all CPUs, for the specified
223  * MMU indexes like tlb_flush_by_mmuidx_all_cpus except except the source
224  * vCPUs work is scheduled as safe work meaning all flushes will be
225  * complete once  the source vCPUs safe work is complete. This will
226  * depend on when the guests translation ends the TB.
227  */
228 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu, uint16_t idxmap);
229 /**
230  * tlb_set_page_with_attrs:
231  * @cpu: CPU to add this TLB entry for
232  * @vaddr: virtual address of page to add entry for
233  * @paddr: physical address of the page
234  * @attrs: memory transaction attributes
235  * @prot: access permissions (PAGE_READ/PAGE_WRITE/PAGE_EXEC bits)
236  * @mmu_idx: MMU index to insert TLB entry for
237  * @size: size of the page in bytes
238  *
239  * Add an entry to this CPU's TLB (a mapping from virtual address
240  * @vaddr to physical address @paddr) with the specified memory
241  * transaction attributes. This is generally called by the target CPU
242  * specific code after it has been called through the tlb_fill()
243  * entry point and performed a successful page table walk to find
244  * the physical address and attributes for the virtual address
245  * which provoked the TLB miss.
246  *
247  * At most one entry for a given virtual address is permitted. Only a
248  * single TARGET_PAGE_SIZE region is mapped; the supplied @size is only
249  * used by tlb_flush_page.
250  */
251 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
252                              hwaddr paddr, MemTxAttrs attrs,
253                              int prot, int mmu_idx, target_ulong size);
254 /* tlb_set_page:
255  *
256  * This function is equivalent to calling tlb_set_page_with_attrs()
257  * with an @attrs argument of MEMTXATTRS_UNSPECIFIED. It's provided
258  * as a convenience for CPUs which don't use memory transaction attributes.
259  */
260 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
261                   hwaddr paddr, int prot,
262                   int mmu_idx, target_ulong size);
263 #else
264 static inline void tlb_init(CPUState *cpu)
265 {
266 }
267 static inline void tlb_flush_page(CPUState *cpu, target_ulong addr)
268 {
269 }
270 static inline void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
271 {
272 }
273 static inline void tlb_flush_page_all_cpus_synced(CPUState *src,
274                                                   target_ulong addr)
275 {
276 }
277 static inline void tlb_flush(CPUState *cpu)
278 {
279 }
280 static inline void tlb_flush_all_cpus(CPUState *src_cpu)
281 {
282 }
283 static inline void tlb_flush_all_cpus_synced(CPUState *src_cpu)
284 {
285 }
286 static inline void tlb_flush_page_by_mmuidx(CPUState *cpu,
287                                             target_ulong addr, uint16_t idxmap)
288 {
289 }
290 
291 static inline void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
292 {
293 }
294 static inline void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu,
295                                                      target_ulong addr,
296                                                      uint16_t idxmap)
297 {
298 }
299 static inline void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu,
300                                                             target_ulong addr,
301                                                             uint16_t idxmap)
302 {
303 }
304 static inline void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap)
305 {
306 }
307 
308 static inline void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu,
309                                                        uint16_t idxmap)
310 {
311 }
312 #endif
313 void *probe_access(CPUArchState *env, target_ulong addr, int size,
314                    MMUAccessType access_type, int mmu_idx, uintptr_t retaddr);
315 
316 static inline void *probe_write(CPUArchState *env, target_ulong addr, int size,
317                                 int mmu_idx, uintptr_t retaddr)
318 {
319     return probe_access(env, addr, size, MMU_DATA_STORE, mmu_idx, retaddr);
320 }
321 
322 #define CODE_GEN_ALIGN           16 /* must be >= of the size of a icache line */
323 
324 /* Estimated block size for TB allocation.  */
325 /* ??? The following is based on a 2015 survey of x86_64 host output.
326    Better would seem to be some sort of dynamically sized TB array,
327    adapting to the block sizes actually being produced.  */
328 #if defined(CONFIG_SOFTMMU)
329 #define CODE_GEN_AVG_BLOCK_SIZE 400
330 #else
331 #define CODE_GEN_AVG_BLOCK_SIZE 150
332 #endif
333 
334 /*
335  * Translation Cache-related fields of a TB.
336  * This struct exists just for convenience; we keep track of TB's in a binary
337  * search tree, and the only fields needed to compare TB's in the tree are
338  * @ptr and @size.
339  * Note: the address of search data can be obtained by adding @size to @ptr.
340  */
341 struct tb_tc {
342     void *ptr;    /* pointer to the translated code */
343     size_t size;
344 };
345 
346 struct TranslationBlock {
347     target_ulong pc;   /* simulated PC corresponding to this block (EIP + CS base) */
348     target_ulong cs_base; /* CS base for this block */
349     uint32_t flags; /* flags defining in which context the code was generated */
350     uint16_t size;      /* size of target code for this block (1 <=
351                            size <= TARGET_PAGE_SIZE) */
352     uint16_t icount;
353     uint32_t cflags;    /* compile flags */
354 #define CF_COUNT_MASK  0x00007fff
355 #define CF_LAST_IO     0x00008000 /* Last insn may be an IO access.  */
356 #define CF_NOCACHE     0x00010000 /* To be freed after execution */
357 #define CF_USE_ICOUNT  0x00020000
358 #define CF_INVALID     0x00040000 /* TB is stale. Set with @jmp_lock held */
359 #define CF_PARALLEL    0x00080000 /* Generate code for a parallel context */
360 #define CF_CLUSTER_MASK 0xff000000 /* Top 8 bits are cluster ID */
361 #define CF_CLUSTER_SHIFT 24
362 /* cflags' mask for hashing/comparison */
363 #define CF_HASH_MASK   \
364     (CF_COUNT_MASK | CF_LAST_IO | CF_USE_ICOUNT | CF_PARALLEL | CF_CLUSTER_MASK)
365 
366     /* Per-vCPU dynamic tracing state used to generate this TB */
367     uint32_t trace_vcpu_dstate;
368 
369     struct tb_tc tc;
370 
371     /* original tb when cflags has CF_NOCACHE */
372     struct TranslationBlock *orig_tb;
373     /* first and second physical page containing code. The lower bit
374        of the pointer tells the index in page_next[].
375        The list is protected by the TB's page('s) lock(s) */
376     uintptr_t page_next[2];
377     tb_page_addr_t page_addr[2];
378 
379     /* jmp_lock placed here to fill a 4-byte hole. Its documentation is below */
380     QemuSpin jmp_lock;
381 
382     /* The following data are used to directly call another TB from
383      * the code of this one. This can be done either by emitting direct or
384      * indirect native jump instructions. These jumps are reset so that the TB
385      * just continues its execution. The TB can be linked to another one by
386      * setting one of the jump targets (or patching the jump instruction). Only
387      * two of such jumps are supported.
388      */
389     uint16_t jmp_reset_offset[2]; /* offset of original jump target */
390 #define TB_JMP_RESET_OFFSET_INVALID 0xffff /* indicates no jump generated */
391     uintptr_t jmp_target_arg[2];  /* target address or offset */
392 
393     /*
394      * Each TB has a NULL-terminated list (jmp_list_head) of incoming jumps.
395      * Each TB can have two outgoing jumps, and therefore can participate
396      * in two lists. The list entries are kept in jmp_list_next[2]. The least
397      * significant bit (LSB) of the pointers in these lists is used to encode
398      * which of the two list entries is to be used in the pointed TB.
399      *
400      * List traversals are protected by jmp_lock. The destination TB of each
401      * outgoing jump is kept in jmp_dest[] so that the appropriate jmp_lock
402      * can be acquired from any origin TB.
403      *
404      * jmp_dest[] are tagged pointers as well. The LSB is set when the TB is
405      * being invalidated, so that no further outgoing jumps from it can be set.
406      *
407      * jmp_lock also protects the CF_INVALID cflag; a jump must not be chained
408      * to a destination TB that has CF_INVALID set.
409      */
410     uintptr_t jmp_list_head;
411     uintptr_t jmp_list_next[2];
412     uintptr_t jmp_dest[2];
413 };
414 
415 extern bool parallel_cpus;
416 
417 /* Hide the atomic_read to make code a little easier on the eyes */
418 static inline uint32_t tb_cflags(const TranslationBlock *tb)
419 {
420     return atomic_read(&tb->cflags);
421 }
422 
423 /* current cflags for hashing/comparison */
424 static inline uint32_t curr_cflags(void)
425 {
426     return (parallel_cpus ? CF_PARALLEL : 0)
427          | (use_icount ? CF_USE_ICOUNT : 0);
428 }
429 
430 /* TranslationBlock invalidate API */
431 #if defined(CONFIG_USER_ONLY)
432 void tb_invalidate_phys_addr(target_ulong addr);
433 void tb_invalidate_phys_range(target_ulong start, target_ulong end);
434 #else
435 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs);
436 #endif
437 void tb_flush(CPUState *cpu);
438 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr);
439 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
440                                    target_ulong cs_base, uint32_t flags,
441                                    uint32_t cf_mask);
442 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr);
443 
444 /* GETPC is the true target of the return instruction that we'll execute.  */
445 #if defined(CONFIG_TCG_INTERPRETER)
446 extern uintptr_t tci_tb_ptr;
447 # define GETPC() tci_tb_ptr
448 #else
449 # define GETPC() \
450     ((uintptr_t)__builtin_extract_return_addr(__builtin_return_address(0)))
451 #endif
452 
453 /* The true return address will often point to a host insn that is part of
454    the next translated guest insn.  Adjust the address backward to point to
455    the middle of the call insn.  Subtracting one would do the job except for
456    several compressed mode architectures (arm, mips) which set the low bit
457    to indicate the compressed mode; subtracting two works around that.  It
458    is also the case that there are no host isas that contain a call insn
459    smaller than 4 bytes, so we don't worry about special-casing this.  */
460 #define GETPC_ADJ   2
461 
462 #if !defined(CONFIG_USER_ONLY) && defined(CONFIG_DEBUG_TCG)
463 void assert_no_pages_locked(void);
464 #else
465 static inline void assert_no_pages_locked(void)
466 {
467 }
468 #endif
469 
470 #if !defined(CONFIG_USER_ONLY)
471 
472 /**
473  * iotlb_to_section:
474  * @cpu: CPU performing the access
475  * @index: TCG CPU IOTLB entry
476  *
477  * Given a TCG CPU IOTLB entry, return the MemoryRegionSection that
478  * it refers to. @index will have been initially created and returned
479  * by memory_region_section_get_iotlb().
480  */
481 struct MemoryRegionSection *iotlb_to_section(CPUState *cpu,
482                                              hwaddr index, MemTxAttrs attrs);
483 #endif
484 
485 #if defined(CONFIG_USER_ONLY)
486 void mmap_lock(void);
487 void mmap_unlock(void);
488 bool have_mmap_lock(void);
489 
490 static inline tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
491 {
492     return addr;
493 }
494 #else
495 static inline void mmap_lock(void) {}
496 static inline void mmap_unlock(void) {}
497 
498 /* cputlb.c */
499 tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr);
500 
501 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length);
502 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr);
503 
504 /* exec.c */
505 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr);
506 
507 MemoryRegionSection *
508 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
509                                   hwaddr *xlat, hwaddr *plen,
510                                   MemTxAttrs attrs, int *prot);
511 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
512                                        MemoryRegionSection *section,
513                                        target_ulong vaddr,
514                                        hwaddr paddr, hwaddr xlat,
515                                        int prot,
516                                        target_ulong *address);
517 #endif
518 
519 /* vl.c */
520 extern int singlestep;
521 
522 #endif
523