1 /* 2 * internal execution defines for qemu 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #ifndef EXEC_ALL_H 21 #define EXEC_ALL_H 22 23 #include "cpu.h" 24 #ifdef CONFIG_TCG 25 #include "exec/cpu_ldst.h" 26 #endif 27 28 /* allow to see translation results - the slowdown should be negligible, so we leave it */ 29 #define DEBUG_DISAS 30 31 /* Page tracking code uses ram addresses in system mode, and virtual 32 addresses in userspace mode. Define tb_page_addr_t to be an appropriate 33 type. */ 34 #if defined(CONFIG_USER_ONLY) 35 typedef abi_ulong tb_page_addr_t; 36 #define TB_PAGE_ADDR_FMT TARGET_ABI_FMT_lx 37 #else 38 typedef ram_addr_t tb_page_addr_t; 39 #define TB_PAGE_ADDR_FMT RAM_ADDR_FMT 40 #endif 41 42 void gen_intermediate_code(CPUState *cpu, TranslationBlock *tb, int max_insns); 43 void restore_state_to_opc(CPUArchState *env, TranslationBlock *tb, 44 target_ulong *data); 45 46 /** 47 * cpu_restore_state: 48 * @cpu: the vCPU state is to be restore to 49 * @searched_pc: the host PC the fault occurred at 50 * @will_exit: true if the TB executed will be interrupted after some 51 cpu adjustments. Required for maintaining the correct 52 icount valus 53 * @return: true if state was restored, false otherwise 54 * 55 * Attempt to restore the state for a fault occurring in translated 56 * code. If the searched_pc is not in translated code no state is 57 * restored and the function returns false. 58 */ 59 bool cpu_restore_state(CPUState *cpu, uintptr_t searched_pc, bool will_exit); 60 61 void QEMU_NORETURN cpu_loop_exit_noexc(CPUState *cpu); 62 void QEMU_NORETURN cpu_loop_exit(CPUState *cpu); 63 void QEMU_NORETURN cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc); 64 void QEMU_NORETURN cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc); 65 66 /** 67 * cpu_loop_exit_requested: 68 * @cpu: The CPU state to be tested 69 * 70 * Indicate if somebody asked for a return of the CPU to the main loop 71 * (e.g., via cpu_exit() or cpu_interrupt()). 72 * 73 * This is helpful for architectures that support interruptible 74 * instructions. After writing back all state to registers/memory, this 75 * call can be used to check if it makes sense to return to the main loop 76 * or to continue executing the interruptible instruction. 77 */ 78 static inline bool cpu_loop_exit_requested(CPUState *cpu) 79 { 80 return (int32_t)qatomic_read(&cpu_neg(cpu)->icount_decr.u32) < 0; 81 } 82 83 #if !defined(CONFIG_USER_ONLY) && defined(CONFIG_TCG) 84 /* cputlb.c */ 85 /** 86 * tlb_init - initialize a CPU's TLB 87 * @cpu: CPU whose TLB should be initialized 88 */ 89 void tlb_init(CPUState *cpu); 90 /** 91 * tlb_destroy - destroy a CPU's TLB 92 * @cpu: CPU whose TLB should be destroyed 93 */ 94 void tlb_destroy(CPUState *cpu); 95 /** 96 * tlb_flush_page: 97 * @cpu: CPU whose TLB should be flushed 98 * @addr: virtual address of page to be flushed 99 * 100 * Flush one page from the TLB of the specified CPU, for all 101 * MMU indexes. 102 */ 103 void tlb_flush_page(CPUState *cpu, target_ulong addr); 104 /** 105 * tlb_flush_page_all_cpus: 106 * @cpu: src CPU of the flush 107 * @addr: virtual address of page to be flushed 108 * 109 * Flush one page from the TLB of the specified CPU, for all 110 * MMU indexes. 111 */ 112 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr); 113 /** 114 * tlb_flush_page_all_cpus_synced: 115 * @cpu: src CPU of the flush 116 * @addr: virtual address of page to be flushed 117 * 118 * Flush one page from the TLB of the specified CPU, for all MMU 119 * indexes like tlb_flush_page_all_cpus except the source vCPUs work 120 * is scheduled as safe work meaning all flushes will be complete once 121 * the source vCPUs safe work is complete. This will depend on when 122 * the guests translation ends the TB. 123 */ 124 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr); 125 /** 126 * tlb_flush: 127 * @cpu: CPU whose TLB should be flushed 128 * 129 * Flush the entire TLB for the specified CPU. Most CPU architectures 130 * allow the implementation to drop entries from the TLB at any time 131 * so this is generally safe. If more selective flushing is required 132 * use one of the other functions for efficiency. 133 */ 134 void tlb_flush(CPUState *cpu); 135 /** 136 * tlb_flush_all_cpus: 137 * @cpu: src CPU of the flush 138 */ 139 void tlb_flush_all_cpus(CPUState *src_cpu); 140 /** 141 * tlb_flush_all_cpus_synced: 142 * @cpu: src CPU of the flush 143 * 144 * Like tlb_flush_all_cpus except this except the source vCPUs work is 145 * scheduled as safe work meaning all flushes will be complete once 146 * the source vCPUs safe work is complete. This will depend on when 147 * the guests translation ends the TB. 148 */ 149 void tlb_flush_all_cpus_synced(CPUState *src_cpu); 150 /** 151 * tlb_flush_page_by_mmuidx: 152 * @cpu: CPU whose TLB should be flushed 153 * @addr: virtual address of page to be flushed 154 * @idxmap: bitmap of MMU indexes to flush 155 * 156 * Flush one page from the TLB of the specified CPU, for the specified 157 * MMU indexes. 158 */ 159 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, 160 uint16_t idxmap); 161 /** 162 * tlb_flush_page_by_mmuidx_all_cpus: 163 * @cpu: Originating CPU of the flush 164 * @addr: virtual address of page to be flushed 165 * @idxmap: bitmap of MMU indexes to flush 166 * 167 * Flush one page from the TLB of all CPUs, for the specified 168 * MMU indexes. 169 */ 170 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr, 171 uint16_t idxmap); 172 /** 173 * tlb_flush_page_by_mmuidx_all_cpus_synced: 174 * @cpu: Originating CPU of the flush 175 * @addr: virtual address of page to be flushed 176 * @idxmap: bitmap of MMU indexes to flush 177 * 178 * Flush one page from the TLB of all CPUs, for the specified MMU 179 * indexes like tlb_flush_page_by_mmuidx_all_cpus except the source 180 * vCPUs work is scheduled as safe work meaning all flushes will be 181 * complete once the source vCPUs safe work is complete. This will 182 * depend on when the guests translation ends the TB. 183 */ 184 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu, target_ulong addr, 185 uint16_t idxmap); 186 /** 187 * tlb_flush_by_mmuidx: 188 * @cpu: CPU whose TLB should be flushed 189 * @wait: If true ensure synchronisation by exiting the cpu_loop 190 * @idxmap: bitmap of MMU indexes to flush 191 * 192 * Flush all entries from the TLB of the specified CPU, for the specified 193 * MMU indexes. 194 */ 195 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap); 196 /** 197 * tlb_flush_by_mmuidx_all_cpus: 198 * @cpu: Originating CPU of the flush 199 * @idxmap: bitmap of MMU indexes to flush 200 * 201 * Flush all entries from all TLBs of all CPUs, for the specified 202 * MMU indexes. 203 */ 204 void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap); 205 /** 206 * tlb_flush_by_mmuidx_all_cpus_synced: 207 * @cpu: Originating CPU of the flush 208 * @idxmap: bitmap of MMU indexes to flush 209 * 210 * Flush all entries from all TLBs of all CPUs, for the specified 211 * MMU indexes like tlb_flush_by_mmuidx_all_cpus except except the source 212 * vCPUs work is scheduled as safe work meaning all flushes will be 213 * complete once the source vCPUs safe work is complete. This will 214 * depend on when the guests translation ends the TB. 215 */ 216 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu, uint16_t idxmap); 217 218 /** 219 * tlb_flush_page_bits_by_mmuidx 220 * @cpu: CPU whose TLB should be flushed 221 * @addr: virtual address of page to be flushed 222 * @idxmap: bitmap of mmu indexes to flush 223 * @bits: number of significant bits in address 224 * 225 * Similar to tlb_flush_page_mask, but with a bitmap of indexes. 226 */ 227 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, target_ulong addr, 228 uint16_t idxmap, unsigned bits); 229 230 /* Similarly, with broadcast and syncing. */ 231 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr, 232 uint16_t idxmap, unsigned bits); 233 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced 234 (CPUState *cpu, target_ulong addr, uint16_t idxmap, unsigned bits); 235 236 /** 237 * tlb_flush_range_by_mmuidx 238 * @cpu: CPU whose TLB should be flushed 239 * @addr: virtual address of the start of the range to be flushed 240 * @len: length of range to be flushed 241 * @idxmap: bitmap of mmu indexes to flush 242 * @bits: number of significant bits in address 243 * 244 * For each mmuidx in @idxmap, flush all pages within [@addr,@addr+@len), 245 * comparing only the low @bits worth of each virtual page. 246 */ 247 void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr, 248 target_ulong len, uint16_t idxmap, 249 unsigned bits); 250 251 /* Similarly, with broadcast and syncing. */ 252 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr, 253 target_ulong len, uint16_t idxmap, 254 unsigned bits); 255 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *cpu, 256 target_ulong addr, 257 target_ulong len, 258 uint16_t idxmap, 259 unsigned bits); 260 261 /** 262 * tlb_set_page_with_attrs: 263 * @cpu: CPU to add this TLB entry for 264 * @vaddr: virtual address of page to add entry for 265 * @paddr: physical address of the page 266 * @attrs: memory transaction attributes 267 * @prot: access permissions (PAGE_READ/PAGE_WRITE/PAGE_EXEC bits) 268 * @mmu_idx: MMU index to insert TLB entry for 269 * @size: size of the page in bytes 270 * 271 * Add an entry to this CPU's TLB (a mapping from virtual address 272 * @vaddr to physical address @paddr) with the specified memory 273 * transaction attributes. This is generally called by the target CPU 274 * specific code after it has been called through the tlb_fill() 275 * entry point and performed a successful page table walk to find 276 * the physical address and attributes for the virtual address 277 * which provoked the TLB miss. 278 * 279 * At most one entry for a given virtual address is permitted. Only a 280 * single TARGET_PAGE_SIZE region is mapped; the supplied @size is only 281 * used by tlb_flush_page. 282 */ 283 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr, 284 hwaddr paddr, MemTxAttrs attrs, 285 int prot, int mmu_idx, target_ulong size); 286 /* tlb_set_page: 287 * 288 * This function is equivalent to calling tlb_set_page_with_attrs() 289 * with an @attrs argument of MEMTXATTRS_UNSPECIFIED. It's provided 290 * as a convenience for CPUs which don't use memory transaction attributes. 291 */ 292 void tlb_set_page(CPUState *cpu, target_ulong vaddr, 293 hwaddr paddr, int prot, 294 int mmu_idx, target_ulong size); 295 #else 296 static inline void tlb_init(CPUState *cpu) 297 { 298 } 299 static inline void tlb_destroy(CPUState *cpu) 300 { 301 } 302 static inline void tlb_flush_page(CPUState *cpu, target_ulong addr) 303 { 304 } 305 static inline void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr) 306 { 307 } 308 static inline void tlb_flush_page_all_cpus_synced(CPUState *src, 309 target_ulong addr) 310 { 311 } 312 static inline void tlb_flush(CPUState *cpu) 313 { 314 } 315 static inline void tlb_flush_all_cpus(CPUState *src_cpu) 316 { 317 } 318 static inline void tlb_flush_all_cpus_synced(CPUState *src_cpu) 319 { 320 } 321 static inline void tlb_flush_page_by_mmuidx(CPUState *cpu, 322 target_ulong addr, uint16_t idxmap) 323 { 324 } 325 326 static inline void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap) 327 { 328 } 329 static inline void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu, 330 target_ulong addr, 331 uint16_t idxmap) 332 { 333 } 334 static inline void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu, 335 target_ulong addr, 336 uint16_t idxmap) 337 { 338 } 339 static inline void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap) 340 { 341 } 342 343 static inline void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu, 344 uint16_t idxmap) 345 { 346 } 347 static inline void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, 348 target_ulong addr, 349 uint16_t idxmap, 350 unsigned bits) 351 { 352 } 353 static inline void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *cpu, 354 target_ulong addr, 355 uint16_t idxmap, 356 unsigned bits) 357 { 358 } 359 static inline void 360 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *cpu, target_ulong addr, 361 uint16_t idxmap, unsigned bits) 362 { 363 } 364 static inline void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr, 365 target_ulong len, uint16_t idxmap, 366 unsigned bits) 367 { 368 } 369 static inline void tlb_flush_range_by_mmuidx_all_cpus(CPUState *cpu, 370 target_ulong addr, 371 target_ulong len, 372 uint16_t idxmap, 373 unsigned bits) 374 { 375 } 376 static inline void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *cpu, 377 target_ulong addr, 378 target_long len, 379 uint16_t idxmap, 380 unsigned bits) 381 { 382 } 383 #endif 384 /** 385 * probe_access: 386 * @env: CPUArchState 387 * @addr: guest virtual address to look up 388 * @size: size of the access 389 * @access_type: read, write or execute permission 390 * @mmu_idx: MMU index to use for lookup 391 * @retaddr: return address for unwinding 392 * 393 * Look up the guest virtual address @addr. Raise an exception if the 394 * page does not satisfy @access_type. Raise an exception if the 395 * access (@addr, @size) hits a watchpoint. For writes, mark a clean 396 * page as dirty. 397 * 398 * Finally, return the host address for a page that is backed by RAM, 399 * or NULL if the page requires I/O. 400 */ 401 void *probe_access(CPUArchState *env, target_ulong addr, int size, 402 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr); 403 404 static inline void *probe_write(CPUArchState *env, target_ulong addr, int size, 405 int mmu_idx, uintptr_t retaddr) 406 { 407 return probe_access(env, addr, size, MMU_DATA_STORE, mmu_idx, retaddr); 408 } 409 410 static inline void *probe_read(CPUArchState *env, target_ulong addr, int size, 411 int mmu_idx, uintptr_t retaddr) 412 { 413 return probe_access(env, addr, size, MMU_DATA_LOAD, mmu_idx, retaddr); 414 } 415 416 /** 417 * probe_access_flags: 418 * @env: CPUArchState 419 * @addr: guest virtual address to look up 420 * @access_type: read, write or execute permission 421 * @mmu_idx: MMU index to use for lookup 422 * @nonfault: suppress the fault 423 * @phost: return value for host address 424 * @retaddr: return address for unwinding 425 * 426 * Similar to probe_access, loosely returning the TLB_FLAGS_MASK for 427 * the page, and storing the host address for RAM in @phost. 428 * 429 * If @nonfault is set, do not raise an exception but return TLB_INVALID_MASK. 430 * Do not handle watchpoints, but include TLB_WATCHPOINT in the returned flags. 431 * Do handle clean pages, so exclude TLB_NOTDIRY from the returned flags. 432 * For simplicity, all "mmio-like" flags are folded to TLB_MMIO. 433 */ 434 int probe_access_flags(CPUArchState *env, target_ulong addr, 435 MMUAccessType access_type, int mmu_idx, 436 bool nonfault, void **phost, uintptr_t retaddr); 437 438 #define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */ 439 440 /* Estimated block size for TB allocation. */ 441 /* ??? The following is based on a 2015 survey of x86_64 host output. 442 Better would seem to be some sort of dynamically sized TB array, 443 adapting to the block sizes actually being produced. */ 444 #if defined(CONFIG_SOFTMMU) 445 #define CODE_GEN_AVG_BLOCK_SIZE 400 446 #else 447 #define CODE_GEN_AVG_BLOCK_SIZE 150 448 #endif 449 450 /* 451 * Translation Cache-related fields of a TB. 452 * This struct exists just for convenience; we keep track of TB's in a binary 453 * search tree, and the only fields needed to compare TB's in the tree are 454 * @ptr and @size. 455 * Note: the address of search data can be obtained by adding @size to @ptr. 456 */ 457 struct tb_tc { 458 const void *ptr; /* pointer to the translated code */ 459 size_t size; 460 }; 461 462 struct TranslationBlock { 463 target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */ 464 target_ulong cs_base; /* CS base for this block */ 465 uint32_t flags; /* flags defining in which context the code was generated */ 466 uint32_t cflags; /* compile flags */ 467 468 /* Note that TCG_MAX_INSNS is 512; we validate this match elsewhere. */ 469 #define CF_COUNT_MASK 0x000001ff 470 #define CF_NO_GOTO_TB 0x00000200 /* Do not chain with goto_tb */ 471 #define CF_NO_GOTO_PTR 0x00000400 /* Do not chain with goto_ptr */ 472 #define CF_SINGLE_STEP 0x00000800 /* gdbstub single-step in effect */ 473 #define CF_LAST_IO 0x00008000 /* Last insn may be an IO access. */ 474 #define CF_MEMI_ONLY 0x00010000 /* Only instrument memory ops */ 475 #define CF_USE_ICOUNT 0x00020000 476 #define CF_INVALID 0x00040000 /* TB is stale. Set with @jmp_lock held */ 477 #define CF_PARALLEL 0x00080000 /* Generate code for a parallel context */ 478 #define CF_NOIRQ 0x00100000 /* Generate an uninterruptible TB */ 479 #define CF_CLUSTER_MASK 0xff000000 /* Top 8 bits are cluster ID */ 480 #define CF_CLUSTER_SHIFT 24 481 482 /* Per-vCPU dynamic tracing state used to generate this TB */ 483 uint32_t trace_vcpu_dstate; 484 485 /* 486 * Above fields used for comparing 487 */ 488 489 /* size of target code for this block (1 <= size <= TARGET_PAGE_SIZE) */ 490 uint16_t size; 491 uint16_t icount; 492 493 struct tb_tc tc; 494 495 /* first and second physical page containing code. The lower bit 496 of the pointer tells the index in page_next[]. 497 The list is protected by the TB's page('s) lock(s) */ 498 uintptr_t page_next[2]; 499 tb_page_addr_t page_addr[2]; 500 501 /* jmp_lock placed here to fill a 4-byte hole. Its documentation is below */ 502 QemuSpin jmp_lock; 503 504 /* The following data are used to directly call another TB from 505 * the code of this one. This can be done either by emitting direct or 506 * indirect native jump instructions. These jumps are reset so that the TB 507 * just continues its execution. The TB can be linked to another one by 508 * setting one of the jump targets (or patching the jump instruction). Only 509 * two of such jumps are supported. 510 */ 511 uint16_t jmp_reset_offset[2]; /* offset of original jump target */ 512 #define TB_JMP_RESET_OFFSET_INVALID 0xffff /* indicates no jump generated */ 513 uintptr_t jmp_target_arg[2]; /* target address or offset */ 514 515 /* 516 * Each TB has a NULL-terminated list (jmp_list_head) of incoming jumps. 517 * Each TB can have two outgoing jumps, and therefore can participate 518 * in two lists. The list entries are kept in jmp_list_next[2]. The least 519 * significant bit (LSB) of the pointers in these lists is used to encode 520 * which of the two list entries is to be used in the pointed TB. 521 * 522 * List traversals are protected by jmp_lock. The destination TB of each 523 * outgoing jump is kept in jmp_dest[] so that the appropriate jmp_lock 524 * can be acquired from any origin TB. 525 * 526 * jmp_dest[] are tagged pointers as well. The LSB is set when the TB is 527 * being invalidated, so that no further outgoing jumps from it can be set. 528 * 529 * jmp_lock also protects the CF_INVALID cflag; a jump must not be chained 530 * to a destination TB that has CF_INVALID set. 531 */ 532 uintptr_t jmp_list_head; 533 uintptr_t jmp_list_next[2]; 534 uintptr_t jmp_dest[2]; 535 }; 536 537 /* Hide the qatomic_read to make code a little easier on the eyes */ 538 static inline uint32_t tb_cflags(const TranslationBlock *tb) 539 { 540 return qatomic_read(&tb->cflags); 541 } 542 543 /* current cflags for hashing/comparison */ 544 uint32_t curr_cflags(CPUState *cpu); 545 546 /* TranslationBlock invalidate API */ 547 #if defined(CONFIG_USER_ONLY) 548 void tb_invalidate_phys_addr(target_ulong addr); 549 void tb_invalidate_phys_range(target_ulong start, target_ulong end); 550 #else 551 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs); 552 #endif 553 void tb_flush(CPUState *cpu); 554 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr); 555 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc, 556 target_ulong cs_base, uint32_t flags, 557 uint32_t cflags); 558 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr); 559 560 /* GETPC is the true target of the return instruction that we'll execute. */ 561 #if defined(CONFIG_TCG_INTERPRETER) 562 extern __thread uintptr_t tci_tb_ptr; 563 # define GETPC() tci_tb_ptr 564 #else 565 # define GETPC() \ 566 ((uintptr_t)__builtin_extract_return_addr(__builtin_return_address(0))) 567 #endif 568 569 /* The true return address will often point to a host insn that is part of 570 the next translated guest insn. Adjust the address backward to point to 571 the middle of the call insn. Subtracting one would do the job except for 572 several compressed mode architectures (arm, mips) which set the low bit 573 to indicate the compressed mode; subtracting two works around that. It 574 is also the case that there are no host isas that contain a call insn 575 smaller than 4 bytes, so we don't worry about special-casing this. */ 576 #define GETPC_ADJ 2 577 578 #if !defined(CONFIG_USER_ONLY) && defined(CONFIG_DEBUG_TCG) 579 void assert_no_pages_locked(void); 580 #else 581 static inline void assert_no_pages_locked(void) 582 { 583 } 584 #endif 585 586 #if !defined(CONFIG_USER_ONLY) 587 588 /** 589 * iotlb_to_section: 590 * @cpu: CPU performing the access 591 * @index: TCG CPU IOTLB entry 592 * 593 * Given a TCG CPU IOTLB entry, return the MemoryRegionSection that 594 * it refers to. @index will have been initially created and returned 595 * by memory_region_section_get_iotlb(). 596 */ 597 struct MemoryRegionSection *iotlb_to_section(CPUState *cpu, 598 hwaddr index, MemTxAttrs attrs); 599 #endif 600 601 #if defined(CONFIG_USER_ONLY) 602 void mmap_lock(void); 603 void mmap_unlock(void); 604 bool have_mmap_lock(void); 605 606 /** 607 * get_page_addr_code() - user-mode version 608 * @env: CPUArchState 609 * @addr: guest virtual address of guest code 610 * 611 * Returns @addr. 612 */ 613 static inline tb_page_addr_t get_page_addr_code(CPUArchState *env, 614 target_ulong addr) 615 { 616 return addr; 617 } 618 619 /** 620 * get_page_addr_code_hostp() - user-mode version 621 * @env: CPUArchState 622 * @addr: guest virtual address of guest code 623 * 624 * Returns @addr. 625 * 626 * If @hostp is non-NULL, sets *@hostp to the host address where @addr's content 627 * is kept. 628 */ 629 static inline tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, 630 target_ulong addr, 631 void **hostp) 632 { 633 if (hostp) { 634 *hostp = g2h_untagged(addr); 635 } 636 return addr; 637 } 638 639 /** 640 * adjust_signal_pc: 641 * @pc: raw pc from the host signal ucontext_t. 642 * @is_write: host memory operation was write, or read-modify-write. 643 * 644 * Alter @pc as required for unwinding. Return the type of the 645 * guest memory access -- host reads may be for guest execution. 646 */ 647 MMUAccessType adjust_signal_pc(uintptr_t *pc, bool is_write); 648 649 /** 650 * handle_sigsegv_accerr_write: 651 * @cpu: the cpu context 652 * @old_set: the sigset_t from the signal ucontext_t 653 * @host_pc: the host pc, adjusted for the signal 654 * @host_addr: the host address of the fault 655 * 656 * Return true if the write fault has been handled, and should be re-tried. 657 */ 658 bool handle_sigsegv_accerr_write(CPUState *cpu, sigset_t *old_set, 659 uintptr_t host_pc, abi_ptr guest_addr); 660 661 /** 662 * cpu_loop_exit_sigsegv: 663 * @cpu: the cpu context 664 * @addr: the guest address of the fault 665 * @access_type: access was read/write/execute 666 * @maperr: true for invalid page, false for permission fault 667 * @ra: host pc for unwinding 668 * 669 * Use the TCGCPUOps hook to record cpu state, do guest operating system 670 * specific things to raise SIGSEGV, and jump to the main cpu loop. 671 */ 672 void QEMU_NORETURN cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr, 673 MMUAccessType access_type, 674 bool maperr, uintptr_t ra); 675 676 /** 677 * cpu_loop_exit_sigbus: 678 * @cpu: the cpu context 679 * @addr: the guest address of the alignment fault 680 * @access_type: access was read/write/execute 681 * @ra: host pc for unwinding 682 * 683 * Use the TCGCPUOps hook to record cpu state, do guest operating system 684 * specific things to raise SIGBUS, and jump to the main cpu loop. 685 */ 686 void QEMU_NORETURN cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr, 687 MMUAccessType access_type, 688 uintptr_t ra); 689 690 #else 691 static inline void mmap_lock(void) {} 692 static inline void mmap_unlock(void) {} 693 694 /** 695 * get_page_addr_code() - full-system version 696 * @env: CPUArchState 697 * @addr: guest virtual address of guest code 698 * 699 * If we cannot translate and execute from the entire RAM page, or if 700 * the region is not backed by RAM, returns -1. Otherwise, returns the 701 * ram_addr_t corresponding to the guest code at @addr. 702 * 703 * Note: this function can trigger an exception. 704 */ 705 tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr); 706 707 /** 708 * get_page_addr_code_hostp() - full-system version 709 * @env: CPUArchState 710 * @addr: guest virtual address of guest code 711 * 712 * See get_page_addr_code() (full-system version) for documentation on the 713 * return value. 714 * 715 * Sets *@hostp (when @hostp is non-NULL) as follows. 716 * If the return value is -1, sets *@hostp to NULL. Otherwise, sets *@hostp 717 * to the host address where @addr's content is kept. 718 * 719 * Note: this function can trigger an exception. 720 */ 721 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr, 722 void **hostp); 723 724 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length); 725 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr); 726 727 MemoryRegionSection * 728 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr, 729 hwaddr *xlat, hwaddr *plen, 730 MemTxAttrs attrs, int *prot); 731 hwaddr memory_region_section_get_iotlb(CPUState *cpu, 732 MemoryRegionSection *section); 733 #endif 734 735 #endif 736