1 /* 2 * internal execution defines for qemu 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #ifndef EXEC_ALL_H 21 #define EXEC_ALL_H 22 23 #include "cpu.h" 24 #ifdef CONFIG_TCG 25 #include "exec/cpu_ldst.h" 26 #endif 27 #include "sysemu/cpu-timers.h" 28 29 /* allow to see translation results - the slowdown should be negligible, so we leave it */ 30 #define DEBUG_DISAS 31 32 /* Page tracking code uses ram addresses in system mode, and virtual 33 addresses in userspace mode. Define tb_page_addr_t to be an appropriate 34 type. */ 35 #if defined(CONFIG_USER_ONLY) 36 typedef abi_ulong tb_page_addr_t; 37 #define TB_PAGE_ADDR_FMT TARGET_ABI_FMT_lx 38 #else 39 typedef ram_addr_t tb_page_addr_t; 40 #define TB_PAGE_ADDR_FMT RAM_ADDR_FMT 41 #endif 42 43 #include "qemu/log.h" 44 45 void gen_intermediate_code(CPUState *cpu, TranslationBlock *tb, int max_insns); 46 void restore_state_to_opc(CPUArchState *env, TranslationBlock *tb, 47 target_ulong *data); 48 49 /** 50 * cpu_restore_state: 51 * @cpu: the vCPU state is to be restore to 52 * @searched_pc: the host PC the fault occurred at 53 * @will_exit: true if the TB executed will be interrupted after some 54 cpu adjustments. Required for maintaining the correct 55 icount valus 56 * @return: true if state was restored, false otherwise 57 * 58 * Attempt to restore the state for a fault occurring in translated 59 * code. If the searched_pc is not in translated code no state is 60 * restored and the function returns false. 61 */ 62 bool cpu_restore_state(CPUState *cpu, uintptr_t searched_pc, bool will_exit); 63 64 void QEMU_NORETURN cpu_loop_exit_noexc(CPUState *cpu); 65 void QEMU_NORETURN cpu_loop_exit(CPUState *cpu); 66 void QEMU_NORETURN cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc); 67 void QEMU_NORETURN cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc); 68 69 /** 70 * cpu_loop_exit_requested: 71 * @cpu: The CPU state to be tested 72 * 73 * Indicate if somebody asked for a return of the CPU to the main loop 74 * (e.g., via cpu_exit() or cpu_interrupt()). 75 * 76 * This is helpful for architectures that support interruptible 77 * instructions. After writing back all state to registers/memory, this 78 * call can be used to check if it makes sense to return to the main loop 79 * or to continue executing the interruptible instruction. 80 */ 81 static inline bool cpu_loop_exit_requested(CPUState *cpu) 82 { 83 return (int32_t)qatomic_read(&cpu_neg(cpu)->icount_decr.u32) < 0; 84 } 85 86 #if !defined(CONFIG_USER_ONLY) 87 void cpu_reloading_memory_map(void); 88 /** 89 * cpu_address_space_init: 90 * @cpu: CPU to add this address space to 91 * @asidx: integer index of this address space 92 * @prefix: prefix to be used as name of address space 93 * @mr: the root memory region of address space 94 * 95 * Add the specified address space to the CPU's cpu_ases list. 96 * The address space added with @asidx 0 is the one used for the 97 * convenience pointer cpu->as. 98 * The target-specific code which registers ASes is responsible 99 * for defining what semantics address space 0, 1, 2, etc have. 100 * 101 * Before the first call to this function, the caller must set 102 * cpu->num_ases to the total number of address spaces it needs 103 * to support. 104 * 105 * Note that with KVM only one address space is supported. 106 */ 107 void cpu_address_space_init(CPUState *cpu, int asidx, 108 const char *prefix, MemoryRegion *mr); 109 #endif 110 111 #if !defined(CONFIG_USER_ONLY) && defined(CONFIG_TCG) 112 /* cputlb.c */ 113 /** 114 * tlb_init - initialize a CPU's TLB 115 * @cpu: CPU whose TLB should be initialized 116 */ 117 void tlb_init(CPUState *cpu); 118 /** 119 * tlb_destroy - destroy a CPU's TLB 120 * @cpu: CPU whose TLB should be destroyed 121 */ 122 void tlb_destroy(CPUState *cpu); 123 /** 124 * tlb_flush_page: 125 * @cpu: CPU whose TLB should be flushed 126 * @addr: virtual address of page to be flushed 127 * 128 * Flush one page from the TLB of the specified CPU, for all 129 * MMU indexes. 130 */ 131 void tlb_flush_page(CPUState *cpu, target_ulong addr); 132 /** 133 * tlb_flush_page_all_cpus: 134 * @cpu: src CPU of the flush 135 * @addr: virtual address of page to be flushed 136 * 137 * Flush one page from the TLB of the specified CPU, for all 138 * MMU indexes. 139 */ 140 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr); 141 /** 142 * tlb_flush_page_all_cpus_synced: 143 * @cpu: src CPU of the flush 144 * @addr: virtual address of page to be flushed 145 * 146 * Flush one page from the TLB of the specified CPU, for all MMU 147 * indexes like tlb_flush_page_all_cpus except the source vCPUs work 148 * is scheduled as safe work meaning all flushes will be complete once 149 * the source vCPUs safe work is complete. This will depend on when 150 * the guests translation ends the TB. 151 */ 152 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr); 153 /** 154 * tlb_flush: 155 * @cpu: CPU whose TLB should be flushed 156 * 157 * Flush the entire TLB for the specified CPU. Most CPU architectures 158 * allow the implementation to drop entries from the TLB at any time 159 * so this is generally safe. If more selective flushing is required 160 * use one of the other functions for efficiency. 161 */ 162 void tlb_flush(CPUState *cpu); 163 /** 164 * tlb_flush_all_cpus: 165 * @cpu: src CPU of the flush 166 */ 167 void tlb_flush_all_cpus(CPUState *src_cpu); 168 /** 169 * tlb_flush_all_cpus_synced: 170 * @cpu: src CPU of the flush 171 * 172 * Like tlb_flush_all_cpus except this except the source vCPUs work is 173 * scheduled as safe work meaning all flushes will be complete once 174 * the source vCPUs safe work is complete. This will depend on when 175 * the guests translation ends the TB. 176 */ 177 void tlb_flush_all_cpus_synced(CPUState *src_cpu); 178 /** 179 * tlb_flush_page_by_mmuidx: 180 * @cpu: CPU whose TLB should be flushed 181 * @addr: virtual address of page to be flushed 182 * @idxmap: bitmap of MMU indexes to flush 183 * 184 * Flush one page from the TLB of the specified CPU, for the specified 185 * MMU indexes. 186 */ 187 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, 188 uint16_t idxmap); 189 /** 190 * tlb_flush_page_by_mmuidx_all_cpus: 191 * @cpu: Originating CPU of the flush 192 * @addr: virtual address of page to be flushed 193 * @idxmap: bitmap of MMU indexes to flush 194 * 195 * Flush one page from the TLB of all CPUs, for the specified 196 * MMU indexes. 197 */ 198 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr, 199 uint16_t idxmap); 200 /** 201 * tlb_flush_page_by_mmuidx_all_cpus_synced: 202 * @cpu: Originating CPU of the flush 203 * @addr: virtual address of page to be flushed 204 * @idxmap: bitmap of MMU indexes to flush 205 * 206 * Flush one page from the TLB of all CPUs, for the specified MMU 207 * indexes like tlb_flush_page_by_mmuidx_all_cpus except the source 208 * vCPUs work is scheduled as safe work meaning all flushes will be 209 * complete once the source vCPUs safe work is complete. This will 210 * depend on when the guests translation ends the TB. 211 */ 212 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu, target_ulong addr, 213 uint16_t idxmap); 214 /** 215 * tlb_flush_by_mmuidx: 216 * @cpu: CPU whose TLB should be flushed 217 * @wait: If true ensure synchronisation by exiting the cpu_loop 218 * @idxmap: bitmap of MMU indexes to flush 219 * 220 * Flush all entries from the TLB of the specified CPU, for the specified 221 * MMU indexes. 222 */ 223 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap); 224 /** 225 * tlb_flush_by_mmuidx_all_cpus: 226 * @cpu: Originating CPU of the flush 227 * @idxmap: bitmap of MMU indexes to flush 228 * 229 * Flush all entries from all TLBs of all CPUs, for the specified 230 * MMU indexes. 231 */ 232 void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap); 233 /** 234 * tlb_flush_by_mmuidx_all_cpus_synced: 235 * @cpu: Originating CPU of the flush 236 * @idxmap: bitmap of MMU indexes to flush 237 * 238 * Flush all entries from all TLBs of all CPUs, for the specified 239 * MMU indexes like tlb_flush_by_mmuidx_all_cpus except except the source 240 * vCPUs work is scheduled as safe work meaning all flushes will be 241 * complete once the source vCPUs safe work is complete. This will 242 * depend on when the guests translation ends the TB. 243 */ 244 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu, uint16_t idxmap); 245 246 /** 247 * tlb_flush_page_bits_by_mmuidx 248 * @cpu: CPU whose TLB should be flushed 249 * @addr: virtual address of page to be flushed 250 * @idxmap: bitmap of mmu indexes to flush 251 * @bits: number of significant bits in address 252 * 253 * Similar to tlb_flush_page_mask, but with a bitmap of indexes. 254 */ 255 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, target_ulong addr, 256 uint16_t idxmap, unsigned bits); 257 258 /* Similarly, with broadcast and syncing. */ 259 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr, 260 uint16_t idxmap, unsigned bits); 261 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced 262 (CPUState *cpu, target_ulong addr, uint16_t idxmap, unsigned bits); 263 264 /** 265 * tlb_flush_range_by_mmuidx 266 * @cpu: CPU whose TLB should be flushed 267 * @addr: virtual address of the start of the range to be flushed 268 * @len: length of range to be flushed 269 * @idxmap: bitmap of mmu indexes to flush 270 * @bits: number of significant bits in address 271 * 272 * For each mmuidx in @idxmap, flush all pages within [@addr,@addr+@len), 273 * comparing only the low @bits worth of each virtual page. 274 */ 275 void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr, 276 target_ulong len, uint16_t idxmap, 277 unsigned bits); 278 279 /* Similarly, with broadcast and syncing. */ 280 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr, 281 target_ulong len, uint16_t idxmap, 282 unsigned bits); 283 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *cpu, 284 target_ulong addr, 285 target_ulong len, 286 uint16_t idxmap, 287 unsigned bits); 288 289 /** 290 * tlb_set_page_with_attrs: 291 * @cpu: CPU to add this TLB entry for 292 * @vaddr: virtual address of page to add entry for 293 * @paddr: physical address of the page 294 * @attrs: memory transaction attributes 295 * @prot: access permissions (PAGE_READ/PAGE_WRITE/PAGE_EXEC bits) 296 * @mmu_idx: MMU index to insert TLB entry for 297 * @size: size of the page in bytes 298 * 299 * Add an entry to this CPU's TLB (a mapping from virtual address 300 * @vaddr to physical address @paddr) with the specified memory 301 * transaction attributes. This is generally called by the target CPU 302 * specific code after it has been called through the tlb_fill() 303 * entry point and performed a successful page table walk to find 304 * the physical address and attributes for the virtual address 305 * which provoked the TLB miss. 306 * 307 * At most one entry for a given virtual address is permitted. Only a 308 * single TARGET_PAGE_SIZE region is mapped; the supplied @size is only 309 * used by tlb_flush_page. 310 */ 311 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr, 312 hwaddr paddr, MemTxAttrs attrs, 313 int prot, int mmu_idx, target_ulong size); 314 /* tlb_set_page: 315 * 316 * This function is equivalent to calling tlb_set_page_with_attrs() 317 * with an @attrs argument of MEMTXATTRS_UNSPECIFIED. It's provided 318 * as a convenience for CPUs which don't use memory transaction attributes. 319 */ 320 void tlb_set_page(CPUState *cpu, target_ulong vaddr, 321 hwaddr paddr, int prot, 322 int mmu_idx, target_ulong size); 323 #else 324 static inline void tlb_init(CPUState *cpu) 325 { 326 } 327 static inline void tlb_destroy(CPUState *cpu) 328 { 329 } 330 static inline void tlb_flush_page(CPUState *cpu, target_ulong addr) 331 { 332 } 333 static inline void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr) 334 { 335 } 336 static inline void tlb_flush_page_all_cpus_synced(CPUState *src, 337 target_ulong addr) 338 { 339 } 340 static inline void tlb_flush(CPUState *cpu) 341 { 342 } 343 static inline void tlb_flush_all_cpus(CPUState *src_cpu) 344 { 345 } 346 static inline void tlb_flush_all_cpus_synced(CPUState *src_cpu) 347 { 348 } 349 static inline void tlb_flush_page_by_mmuidx(CPUState *cpu, 350 target_ulong addr, uint16_t idxmap) 351 { 352 } 353 354 static inline void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap) 355 { 356 } 357 static inline void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu, 358 target_ulong addr, 359 uint16_t idxmap) 360 { 361 } 362 static inline void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu, 363 target_ulong addr, 364 uint16_t idxmap) 365 { 366 } 367 static inline void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap) 368 { 369 } 370 371 static inline void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu, 372 uint16_t idxmap) 373 { 374 } 375 static inline void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, 376 target_ulong addr, 377 uint16_t idxmap, 378 unsigned bits) 379 { 380 } 381 static inline void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *cpu, 382 target_ulong addr, 383 uint16_t idxmap, 384 unsigned bits) 385 { 386 } 387 static inline void 388 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *cpu, target_ulong addr, 389 uint16_t idxmap, unsigned bits) 390 { 391 } 392 static inline void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr, 393 target_ulong len, uint16_t idxmap, 394 unsigned bits) 395 { 396 } 397 static inline void tlb_flush_range_by_mmuidx_all_cpus(CPUState *cpu, 398 target_ulong addr, 399 target_ulong len, 400 uint16_t idxmap, 401 unsigned bits) 402 { 403 } 404 static inline void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *cpu, 405 target_ulong addr, 406 target_long len, 407 uint16_t idxmap, 408 unsigned bits) 409 { 410 } 411 #endif 412 /** 413 * probe_access: 414 * @env: CPUArchState 415 * @addr: guest virtual address to look up 416 * @size: size of the access 417 * @access_type: read, write or execute permission 418 * @mmu_idx: MMU index to use for lookup 419 * @retaddr: return address for unwinding 420 * 421 * Look up the guest virtual address @addr. Raise an exception if the 422 * page does not satisfy @access_type. Raise an exception if the 423 * access (@addr, @size) hits a watchpoint. For writes, mark a clean 424 * page as dirty. 425 * 426 * Finally, return the host address for a page that is backed by RAM, 427 * or NULL if the page requires I/O. 428 */ 429 void *probe_access(CPUArchState *env, target_ulong addr, int size, 430 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr); 431 432 static inline void *probe_write(CPUArchState *env, target_ulong addr, int size, 433 int mmu_idx, uintptr_t retaddr) 434 { 435 return probe_access(env, addr, size, MMU_DATA_STORE, mmu_idx, retaddr); 436 } 437 438 static inline void *probe_read(CPUArchState *env, target_ulong addr, int size, 439 int mmu_idx, uintptr_t retaddr) 440 { 441 return probe_access(env, addr, size, MMU_DATA_LOAD, mmu_idx, retaddr); 442 } 443 444 /** 445 * probe_access_flags: 446 * @env: CPUArchState 447 * @addr: guest virtual address to look up 448 * @access_type: read, write or execute permission 449 * @mmu_idx: MMU index to use for lookup 450 * @nonfault: suppress the fault 451 * @phost: return value for host address 452 * @retaddr: return address for unwinding 453 * 454 * Similar to probe_access, loosely returning the TLB_FLAGS_MASK for 455 * the page, and storing the host address for RAM in @phost. 456 * 457 * If @nonfault is set, do not raise an exception but return TLB_INVALID_MASK. 458 * Do not handle watchpoints, but include TLB_WATCHPOINT in the returned flags. 459 * Do handle clean pages, so exclude TLB_NOTDIRY from the returned flags. 460 * For simplicity, all "mmio-like" flags are folded to TLB_MMIO. 461 */ 462 int probe_access_flags(CPUArchState *env, target_ulong addr, 463 MMUAccessType access_type, int mmu_idx, 464 bool nonfault, void **phost, uintptr_t retaddr); 465 466 #define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */ 467 468 /* Estimated block size for TB allocation. */ 469 /* ??? The following is based on a 2015 survey of x86_64 host output. 470 Better would seem to be some sort of dynamically sized TB array, 471 adapting to the block sizes actually being produced. */ 472 #if defined(CONFIG_SOFTMMU) 473 #define CODE_GEN_AVG_BLOCK_SIZE 400 474 #else 475 #define CODE_GEN_AVG_BLOCK_SIZE 150 476 #endif 477 478 /* 479 * Translation Cache-related fields of a TB. 480 * This struct exists just for convenience; we keep track of TB's in a binary 481 * search tree, and the only fields needed to compare TB's in the tree are 482 * @ptr and @size. 483 * Note: the address of search data can be obtained by adding @size to @ptr. 484 */ 485 struct tb_tc { 486 const void *ptr; /* pointer to the translated code */ 487 size_t size; 488 }; 489 490 struct TranslationBlock { 491 target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */ 492 target_ulong cs_base; /* CS base for this block */ 493 uint32_t flags; /* flags defining in which context the code was generated */ 494 uint32_t cflags; /* compile flags */ 495 496 /* Note that TCG_MAX_INSNS is 512; we validate this match elsewhere. */ 497 #define CF_COUNT_MASK 0x000001ff 498 #define CF_NO_GOTO_TB 0x00000200 /* Do not chain with goto_tb */ 499 #define CF_NO_GOTO_PTR 0x00000400 /* Do not chain with goto_ptr */ 500 #define CF_SINGLE_STEP 0x00000800 /* gdbstub single-step in effect */ 501 #define CF_LAST_IO 0x00008000 /* Last insn may be an IO access. */ 502 #define CF_MEMI_ONLY 0x00010000 /* Only instrument memory ops */ 503 #define CF_USE_ICOUNT 0x00020000 504 #define CF_INVALID 0x00040000 /* TB is stale. Set with @jmp_lock held */ 505 #define CF_PARALLEL 0x00080000 /* Generate code for a parallel context */ 506 #define CF_CLUSTER_MASK 0xff000000 /* Top 8 bits are cluster ID */ 507 #define CF_CLUSTER_SHIFT 24 508 509 /* Per-vCPU dynamic tracing state used to generate this TB */ 510 uint32_t trace_vcpu_dstate; 511 512 /* 513 * Above fields used for comparing 514 */ 515 516 /* size of target code for this block (1 <= size <= TARGET_PAGE_SIZE) */ 517 uint16_t size; 518 uint16_t icount; 519 520 struct tb_tc tc; 521 522 /* first and second physical page containing code. The lower bit 523 of the pointer tells the index in page_next[]. 524 The list is protected by the TB's page('s) lock(s) */ 525 uintptr_t page_next[2]; 526 tb_page_addr_t page_addr[2]; 527 528 /* jmp_lock placed here to fill a 4-byte hole. Its documentation is below */ 529 QemuSpin jmp_lock; 530 531 /* The following data are used to directly call another TB from 532 * the code of this one. This can be done either by emitting direct or 533 * indirect native jump instructions. These jumps are reset so that the TB 534 * just continues its execution. The TB can be linked to another one by 535 * setting one of the jump targets (or patching the jump instruction). Only 536 * two of such jumps are supported. 537 */ 538 uint16_t jmp_reset_offset[2]; /* offset of original jump target */ 539 #define TB_JMP_RESET_OFFSET_INVALID 0xffff /* indicates no jump generated */ 540 uintptr_t jmp_target_arg[2]; /* target address or offset */ 541 542 /* 543 * Each TB has a NULL-terminated list (jmp_list_head) of incoming jumps. 544 * Each TB can have two outgoing jumps, and therefore can participate 545 * in two lists. The list entries are kept in jmp_list_next[2]. The least 546 * significant bit (LSB) of the pointers in these lists is used to encode 547 * which of the two list entries is to be used in the pointed TB. 548 * 549 * List traversals are protected by jmp_lock. The destination TB of each 550 * outgoing jump is kept in jmp_dest[] so that the appropriate jmp_lock 551 * can be acquired from any origin TB. 552 * 553 * jmp_dest[] are tagged pointers as well. The LSB is set when the TB is 554 * being invalidated, so that no further outgoing jumps from it can be set. 555 * 556 * jmp_lock also protects the CF_INVALID cflag; a jump must not be chained 557 * to a destination TB that has CF_INVALID set. 558 */ 559 uintptr_t jmp_list_head; 560 uintptr_t jmp_list_next[2]; 561 uintptr_t jmp_dest[2]; 562 }; 563 564 /* Hide the qatomic_read to make code a little easier on the eyes */ 565 static inline uint32_t tb_cflags(const TranslationBlock *tb) 566 { 567 return qatomic_read(&tb->cflags); 568 } 569 570 /* current cflags for hashing/comparison */ 571 uint32_t curr_cflags(CPUState *cpu); 572 573 /* TranslationBlock invalidate API */ 574 #if defined(CONFIG_USER_ONLY) 575 void tb_invalidate_phys_addr(target_ulong addr); 576 void tb_invalidate_phys_range(target_ulong start, target_ulong end); 577 #else 578 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs); 579 #endif 580 void tb_flush(CPUState *cpu); 581 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr); 582 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc, 583 target_ulong cs_base, uint32_t flags, 584 uint32_t cflags); 585 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr); 586 587 /* GETPC is the true target of the return instruction that we'll execute. */ 588 #if defined(CONFIG_TCG_INTERPRETER) 589 extern __thread uintptr_t tci_tb_ptr; 590 # define GETPC() tci_tb_ptr 591 #else 592 # define GETPC() \ 593 ((uintptr_t)__builtin_extract_return_addr(__builtin_return_address(0))) 594 #endif 595 596 /* The true return address will often point to a host insn that is part of 597 the next translated guest insn. Adjust the address backward to point to 598 the middle of the call insn. Subtracting one would do the job except for 599 several compressed mode architectures (arm, mips) which set the low bit 600 to indicate the compressed mode; subtracting two works around that. It 601 is also the case that there are no host isas that contain a call insn 602 smaller than 4 bytes, so we don't worry about special-casing this. */ 603 #define GETPC_ADJ 2 604 605 #if !defined(CONFIG_USER_ONLY) && defined(CONFIG_DEBUG_TCG) 606 void assert_no_pages_locked(void); 607 #else 608 static inline void assert_no_pages_locked(void) 609 { 610 } 611 #endif 612 613 #if !defined(CONFIG_USER_ONLY) 614 615 /** 616 * iotlb_to_section: 617 * @cpu: CPU performing the access 618 * @index: TCG CPU IOTLB entry 619 * 620 * Given a TCG CPU IOTLB entry, return the MemoryRegionSection that 621 * it refers to. @index will have been initially created and returned 622 * by memory_region_section_get_iotlb(). 623 */ 624 struct MemoryRegionSection *iotlb_to_section(CPUState *cpu, 625 hwaddr index, MemTxAttrs attrs); 626 #endif 627 628 #if defined(CONFIG_USER_ONLY) 629 void mmap_lock(void); 630 void mmap_unlock(void); 631 bool have_mmap_lock(void); 632 633 /** 634 * get_page_addr_code() - user-mode version 635 * @env: CPUArchState 636 * @addr: guest virtual address of guest code 637 * 638 * Returns @addr. 639 */ 640 static inline tb_page_addr_t get_page_addr_code(CPUArchState *env, 641 target_ulong addr) 642 { 643 return addr; 644 } 645 646 /** 647 * get_page_addr_code_hostp() - user-mode version 648 * @env: CPUArchState 649 * @addr: guest virtual address of guest code 650 * 651 * Returns @addr. 652 * 653 * If @hostp is non-NULL, sets *@hostp to the host address where @addr's content 654 * is kept. 655 */ 656 static inline tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, 657 target_ulong addr, 658 void **hostp) 659 { 660 if (hostp) { 661 *hostp = g2h_untagged(addr); 662 } 663 return addr; 664 } 665 #else 666 static inline void mmap_lock(void) {} 667 static inline void mmap_unlock(void) {} 668 669 /** 670 * get_page_addr_code() - full-system version 671 * @env: CPUArchState 672 * @addr: guest virtual address of guest code 673 * 674 * If we cannot translate and execute from the entire RAM page, or if 675 * the region is not backed by RAM, returns -1. Otherwise, returns the 676 * ram_addr_t corresponding to the guest code at @addr. 677 * 678 * Note: this function can trigger an exception. 679 */ 680 tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr); 681 682 /** 683 * get_page_addr_code_hostp() - full-system version 684 * @env: CPUArchState 685 * @addr: guest virtual address of guest code 686 * 687 * See get_page_addr_code() (full-system version) for documentation on the 688 * return value. 689 * 690 * Sets *@hostp (when @hostp is non-NULL) as follows. 691 * If the return value is -1, sets *@hostp to NULL. Otherwise, sets *@hostp 692 * to the host address where @addr's content is kept. 693 * 694 * Note: this function can trigger an exception. 695 */ 696 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr, 697 void **hostp); 698 699 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length); 700 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr); 701 702 MemoryRegionSection * 703 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr, 704 hwaddr *xlat, hwaddr *plen, 705 MemTxAttrs attrs, int *prot); 706 hwaddr memory_region_section_get_iotlb(CPUState *cpu, 707 MemoryRegionSection *section); 708 #endif 709 710 #endif 711