1 /* 2 * internal execution defines for qemu 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #ifndef _EXEC_ALL_H_ 21 #define _EXEC_ALL_H_ 22 23 #include "qemu-common.h" 24 25 /* allow to see translation results - the slowdown should be negligible, so we leave it */ 26 #define DEBUG_DISAS 27 28 /* Page tracking code uses ram addresses in system mode, and virtual 29 addresses in userspace mode. Define tb_page_addr_t to be an appropriate 30 type. */ 31 #if defined(CONFIG_USER_ONLY) 32 typedef abi_ulong tb_page_addr_t; 33 #else 34 typedef ram_addr_t tb_page_addr_t; 35 #endif 36 37 /* is_jmp field values */ 38 #define DISAS_NEXT 0 /* next instruction can be analyzed */ 39 #define DISAS_JUMP 1 /* only pc was modified dynamically */ 40 #define DISAS_UPDATE 2 /* cpu state was modified dynamically */ 41 #define DISAS_TB_JUMP 3 /* only pc was modified statically */ 42 43 struct TranslationBlock; 44 typedef struct TranslationBlock TranslationBlock; 45 46 /* XXX: make safe guess about sizes */ 47 #define MAX_OP_PER_INSTR 208 48 49 #if HOST_LONG_BITS == 32 50 #define MAX_OPC_PARAM_PER_ARG 2 51 #else 52 #define MAX_OPC_PARAM_PER_ARG 1 53 #endif 54 #define MAX_OPC_PARAM_IARGS 5 55 #define MAX_OPC_PARAM_OARGS 1 56 #define MAX_OPC_PARAM_ARGS (MAX_OPC_PARAM_IARGS + MAX_OPC_PARAM_OARGS) 57 58 /* A Call op needs up to 4 + 2N parameters on 32-bit archs, 59 * and up to 4 + N parameters on 64-bit archs 60 * (N = number of input arguments + output arguments). */ 61 #define MAX_OPC_PARAM (4 + (MAX_OPC_PARAM_PER_ARG * MAX_OPC_PARAM_ARGS)) 62 #define OPC_BUF_SIZE 640 63 #define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR) 64 65 /* Maximum size a TCG op can expand to. This is complicated because a 66 single op may require several host instructions and register reloads. 67 For now take a wild guess at 192 bytes, which should allow at least 68 a couple of fixup instructions per argument. */ 69 #define TCG_MAX_OP_SIZE 192 70 71 #define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * MAX_OPC_PARAM) 72 73 #include "qemu/log.h" 74 75 void gen_intermediate_code(CPUArchState *env, struct TranslationBlock *tb); 76 void gen_intermediate_code_pc(CPUArchState *env, struct TranslationBlock *tb); 77 void restore_state_to_opc(CPUArchState *env, struct TranslationBlock *tb, 78 int pc_pos); 79 80 void cpu_gen_init(void); 81 int cpu_gen_code(CPUArchState *env, struct TranslationBlock *tb, 82 int *gen_code_size_ptr); 83 bool cpu_restore_state(CPUArchState *env, uintptr_t searched_pc); 84 85 void QEMU_NORETURN cpu_resume_from_signal(CPUArchState *env1, void *puc); 86 void QEMU_NORETURN cpu_io_recompile(CPUArchState *env, uintptr_t retaddr); 87 TranslationBlock *tb_gen_code(CPUArchState *env, 88 target_ulong pc, target_ulong cs_base, int flags, 89 int cflags); 90 void cpu_exec_init(CPUArchState *env); 91 void QEMU_NORETURN cpu_loop_exit(CPUArchState *env1); 92 int page_unprotect(target_ulong address, uintptr_t pc, void *puc); 93 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end, 94 int is_cpu_write_access); 95 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end, 96 int is_cpu_write_access); 97 #if !defined(CONFIG_USER_ONLY) 98 /* cputlb.c */ 99 void tlb_flush_page(CPUArchState *env, target_ulong addr); 100 void tlb_flush(CPUArchState *env, int flush_global); 101 void tlb_set_page(CPUArchState *env, target_ulong vaddr, 102 hwaddr paddr, int prot, 103 int mmu_idx, target_ulong size); 104 void tb_invalidate_phys_addr(hwaddr addr); 105 #else 106 static inline void tlb_flush_page(CPUArchState *env, target_ulong addr) 107 { 108 } 109 110 static inline void tlb_flush(CPUArchState *env, int flush_global) 111 { 112 } 113 #endif 114 115 #define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */ 116 117 #define CODE_GEN_PHYS_HASH_BITS 15 118 #define CODE_GEN_PHYS_HASH_SIZE (1 << CODE_GEN_PHYS_HASH_BITS) 119 120 /* estimated block size for TB allocation */ 121 /* XXX: use a per code average code fragment size and modulate it 122 according to the host CPU */ 123 #if defined(CONFIG_SOFTMMU) 124 #define CODE_GEN_AVG_BLOCK_SIZE 128 125 #else 126 #define CODE_GEN_AVG_BLOCK_SIZE 64 127 #endif 128 129 #if defined(__arm__) || defined(_ARCH_PPC) \ 130 || defined(__x86_64__) || defined(__i386__) \ 131 || defined(__sparc__) || defined(__aarch64__) \ 132 || defined(CONFIG_TCG_INTERPRETER) 133 #define USE_DIRECT_JUMP 134 #endif 135 136 struct TranslationBlock { 137 target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */ 138 target_ulong cs_base; /* CS base for this block */ 139 uint64_t flags; /* flags defining in which context the code was generated */ 140 uint16_t size; /* size of target code for this block (1 <= 141 size <= TARGET_PAGE_SIZE) */ 142 uint16_t cflags; /* compile flags */ 143 #define CF_COUNT_MASK 0x7fff 144 #define CF_LAST_IO 0x8000 /* Last insn may be an IO access. */ 145 146 uint8_t *tc_ptr; /* pointer to the translated code */ 147 /* next matching tb for physical address. */ 148 struct TranslationBlock *phys_hash_next; 149 /* first and second physical page containing code. The lower bit 150 of the pointer tells the index in page_next[] */ 151 struct TranslationBlock *page_next[2]; 152 tb_page_addr_t page_addr[2]; 153 154 /* the following data are used to directly call another TB from 155 the code of this one. */ 156 uint16_t tb_next_offset[2]; /* offset of original jump target */ 157 #ifdef USE_DIRECT_JUMP 158 uint16_t tb_jmp_offset[2]; /* offset of jump instruction */ 159 #else 160 uintptr_t tb_next[2]; /* address of jump generated code */ 161 #endif 162 /* list of TBs jumping to this one. This is a circular list using 163 the two least significant bits of the pointers to tell what is 164 the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 = 165 jmp_first */ 166 struct TranslationBlock *jmp_next[2]; 167 struct TranslationBlock *jmp_first; 168 uint32_t icount; 169 }; 170 171 #include "exec/spinlock.h" 172 173 typedef struct TBContext TBContext; 174 175 struct TBContext { 176 177 TranslationBlock *tbs; 178 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE]; 179 int nb_tbs; 180 /* any access to the tbs or the page table must use this lock */ 181 spinlock_t tb_lock; 182 183 /* statistics */ 184 int tb_flush_count; 185 int tb_phys_invalidate_count; 186 187 int tb_invalidated_flag; 188 }; 189 190 static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc) 191 { 192 target_ulong tmp; 193 tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)); 194 return (tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK; 195 } 196 197 static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc) 198 { 199 target_ulong tmp; 200 tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)); 201 return (((tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK) 202 | (tmp & TB_JMP_ADDR_MASK)); 203 } 204 205 static inline unsigned int tb_phys_hash_func(tb_page_addr_t pc) 206 { 207 return (pc >> 2) & (CODE_GEN_PHYS_HASH_SIZE - 1); 208 } 209 210 void tb_free(TranslationBlock *tb); 211 void tb_flush(CPUArchState *env); 212 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr); 213 214 #if defined(USE_DIRECT_JUMP) 215 216 #if defined(CONFIG_TCG_INTERPRETER) 217 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr) 218 { 219 /* patch the branch destination */ 220 *(uint32_t *)jmp_addr = addr - (jmp_addr + 4); 221 /* no need to flush icache explicitly */ 222 } 223 #elif defined(_ARCH_PPC) 224 void ppc_tb_set_jmp_target(unsigned long jmp_addr, unsigned long addr); 225 #define tb_set_jmp_target1 ppc_tb_set_jmp_target 226 #elif defined(__i386__) || defined(__x86_64__) 227 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr) 228 { 229 /* patch the branch destination */ 230 *(uint32_t *)jmp_addr = addr - (jmp_addr + 4); 231 /* no need to flush icache explicitly */ 232 } 233 #elif defined(__aarch64__) 234 void aarch64_tb_set_jmp_target(uintptr_t jmp_addr, uintptr_t addr); 235 #define tb_set_jmp_target1 aarch64_tb_set_jmp_target 236 #elif defined(__arm__) 237 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr) 238 { 239 #if !QEMU_GNUC_PREREQ(4, 1) 240 register unsigned long _beg __asm ("a1"); 241 register unsigned long _end __asm ("a2"); 242 register unsigned long _flg __asm ("a3"); 243 #endif 244 245 /* we could use a ldr pc, [pc, #-4] kind of branch and avoid the flush */ 246 *(uint32_t *)jmp_addr = 247 (*(uint32_t *)jmp_addr & ~0xffffff) 248 | (((addr - (jmp_addr + 8)) >> 2) & 0xffffff); 249 250 #if QEMU_GNUC_PREREQ(4, 1) 251 __builtin___clear_cache((char *) jmp_addr, (char *) jmp_addr + 4); 252 #else 253 /* flush icache */ 254 _beg = jmp_addr; 255 _end = jmp_addr + 4; 256 _flg = 0; 257 __asm __volatile__ ("swi 0x9f0002" : : "r" (_beg), "r" (_end), "r" (_flg)); 258 #endif 259 } 260 #elif defined(__sparc__) 261 void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr); 262 #else 263 #error tb_set_jmp_target1 is missing 264 #endif 265 266 static inline void tb_set_jmp_target(TranslationBlock *tb, 267 int n, uintptr_t addr) 268 { 269 uint16_t offset = tb->tb_jmp_offset[n]; 270 tb_set_jmp_target1((uintptr_t)(tb->tc_ptr + offset), addr); 271 } 272 273 #else 274 275 /* set the jump target */ 276 static inline void tb_set_jmp_target(TranslationBlock *tb, 277 int n, uintptr_t addr) 278 { 279 tb->tb_next[n] = addr; 280 } 281 282 #endif 283 284 static inline void tb_add_jump(TranslationBlock *tb, int n, 285 TranslationBlock *tb_next) 286 { 287 /* NOTE: this test is only needed for thread safety */ 288 if (!tb->jmp_next[n]) { 289 /* patch the native jump address */ 290 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc_ptr); 291 292 /* add in TB jmp circular list */ 293 tb->jmp_next[n] = tb_next->jmp_first; 294 tb_next->jmp_first = (TranslationBlock *)((uintptr_t)(tb) | (n)); 295 } 296 } 297 298 /* The return address may point to the start of the next instruction. 299 Subtracting one gets us the call instruction itself. */ 300 #if defined(CONFIG_TCG_INTERPRETER) 301 extern uintptr_t tci_tb_ptr; 302 # define GETPC() tci_tb_ptr 303 #elif defined(__s390__) && !defined(__s390x__) 304 # define GETPC() \ 305 (((uintptr_t)__builtin_return_address(0) & 0x7fffffffUL) - 1) 306 #elif defined(__arm__) 307 /* Thumb return addresses have the low bit set, so we need to subtract two. 308 This is still safe in ARM mode because instructions are 4 bytes. */ 309 # define GETPC() ((uintptr_t)__builtin_return_address(0) - 2) 310 #else 311 # define GETPC() ((uintptr_t)__builtin_return_address(0) - 1) 312 #endif 313 314 #if defined(CONFIG_QEMU_LDST_OPTIMIZATION) && defined(CONFIG_SOFTMMU) 315 /* qemu_ld/st optimization split code generation to fast and slow path, thus, 316 it needs special handling for an MMU helper which is called from the slow 317 path, to get the fast path's pc without any additional argument. 318 It uses a tricky solution which embeds the fast path pc into the slow path. 319 320 Code flow in slow path: 321 (1) pre-process 322 (2) call MMU helper 323 (3) jump to (5) 324 (4) fast path information (implementation specific) 325 (5) post-process (e.g. stack adjust) 326 (6) jump to corresponding code of the next of fast path 327 */ 328 # if defined(__i386__) || defined(__x86_64__) 329 /* To avoid broken disassembling, long jmp is used for embedding fast path pc, 330 so that the destination is the next code of fast path, though this jmp is 331 never executed. 332 333 call MMU helper 334 jmp POST_PROC (2byte) <- GETRA() 335 jmp NEXT_CODE (5byte) 336 POST_PROCESS ... <- GETRA() + 7 337 */ 338 # define GETRA() ((uintptr_t)__builtin_return_address(0)) 339 # define GETPC_LDST() ((uintptr_t)(GETRA() + 7 + \ 340 *(int32_t *)((void *)GETRA() + 3) - 1)) 341 # elif defined (_ARCH_PPC) && !defined (_ARCH_PPC64) 342 # define GETRA() ((uintptr_t)__builtin_return_address(0)) 343 # define GETPC_LDST() ((uintptr_t) ((*(int32_t *)(GETRA() - 4)) - 1)) 344 # elif defined(__arm__) 345 /* We define two insns between the return address and the branch back to 346 straight-line. Find and decode that branch insn. */ 347 # define GETRA() ((uintptr_t)__builtin_return_address(0)) 348 # define GETPC_LDST() tcg_getpc_ldst(GETRA()) 349 static inline uintptr_t tcg_getpc_ldst(uintptr_t ra) 350 { 351 int32_t b; 352 ra += 8; /* skip the two insns */ 353 b = *(int32_t *)ra; /* load the branch insn */ 354 b = (b << 8) >> (8 - 2); /* extract the displacement */ 355 ra += 8; /* branches are relative to pc+8 */ 356 ra += b; /* apply the displacement */ 357 ra -= 4; /* return a pointer into the current opcode, 358 not the start of the next opcode */ 359 return ra; 360 } 361 #elif defined(__aarch64__) 362 # define GETRA() ((uintptr_t)__builtin_return_address(0)) 363 # define GETPC_LDST() tcg_getpc_ldst(GETRA()) 364 static inline uintptr_t tcg_getpc_ldst(uintptr_t ra) 365 { 366 int32_t b; 367 ra += 4; /* skip one instruction */ 368 b = *(int32_t *)ra; /* load the branch insn */ 369 b = (b << 6) >> (6 - 2); /* extract the displacement */ 370 ra += b; /* apply the displacement */ 371 ra -= 4; /* return a pointer into the current opcode, 372 not the start of the next opcode */ 373 return ra; 374 } 375 # else 376 # error "CONFIG_QEMU_LDST_OPTIMIZATION needs GETPC_LDST() implementation!" 377 # endif 378 bool is_tcg_gen_code(uintptr_t pc_ptr); 379 # define GETPC_EXT() (is_tcg_gen_code(GETRA()) ? GETPC_LDST() : GETPC()) 380 #else 381 # define GETPC_EXT() GETPC() 382 #endif 383 384 #if !defined(CONFIG_USER_ONLY) 385 386 struct MemoryRegion *iotlb_to_region(hwaddr index); 387 bool io_mem_read(struct MemoryRegion *mr, hwaddr addr, 388 uint64_t *pvalue, unsigned size); 389 bool io_mem_write(struct MemoryRegion *mr, hwaddr addr, 390 uint64_t value, unsigned size); 391 392 void tlb_fill(CPUArchState *env1, target_ulong addr, int is_write, int mmu_idx, 393 uintptr_t retaddr); 394 395 #include "exec/softmmu_defs.h" 396 397 #define ACCESS_TYPE (NB_MMU_MODES + 1) 398 #define MEMSUFFIX _code 399 400 #define DATA_SIZE 1 401 #include "exec/softmmu_header.h" 402 403 #define DATA_SIZE 2 404 #include "exec/softmmu_header.h" 405 406 #define DATA_SIZE 4 407 #include "exec/softmmu_header.h" 408 409 #define DATA_SIZE 8 410 #include "exec/softmmu_header.h" 411 412 #undef ACCESS_TYPE 413 #undef MEMSUFFIX 414 415 #endif 416 417 #if defined(CONFIG_USER_ONLY) 418 static inline tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr) 419 { 420 return addr; 421 } 422 #else 423 /* cputlb.c */ 424 tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr); 425 #endif 426 427 typedef void (CPUDebugExcpHandler)(CPUArchState *env); 428 429 void cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler); 430 431 /* vl.c */ 432 extern int singlestep; 433 434 /* cpu-exec.c */ 435 extern volatile sig_atomic_t exit_request; 436 437 /* Deterministic execution requires that IO only be performed on the last 438 instruction of a TB so that interrupts take effect immediately. */ 439 static inline int can_do_io(CPUArchState *env) 440 { 441 CPUState *cpu = ENV_GET_CPU(env); 442 443 if (!use_icount) { 444 return 1; 445 } 446 /* If not executing code then assume we are ok. */ 447 if (cpu->current_tb == NULL) { 448 return 1; 449 } 450 return env->can_do_io != 0; 451 } 452 453 #endif 454