xref: /openbmc/qemu/include/exec/exec-all.h (revision d25f2a72)
1 /*
2  * internal execution defines for qemu
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef EXEC_ALL_H
21 #define EXEC_ALL_H
22 
23 #include "qemu-common.h"
24 #include "exec/tb-context.h"
25 #include "sysemu/cpus.h"
26 
27 /* allow to see translation results - the slowdown should be negligible, so we leave it */
28 #define DEBUG_DISAS
29 
30 /* Page tracking code uses ram addresses in system mode, and virtual
31    addresses in userspace mode.  Define tb_page_addr_t to be an appropriate
32    type.  */
33 #if defined(CONFIG_USER_ONLY)
34 typedef abi_ulong tb_page_addr_t;
35 #define TB_PAGE_ADDR_FMT TARGET_ABI_FMT_lx
36 #else
37 typedef ram_addr_t tb_page_addr_t;
38 #define TB_PAGE_ADDR_FMT RAM_ADDR_FMT
39 #endif
40 
41 #include "qemu/log.h"
42 
43 void gen_intermediate_code(CPUState *cpu, struct TranslationBlock *tb);
44 void restore_state_to_opc(CPUArchState *env, struct TranslationBlock *tb,
45                           target_ulong *data);
46 
47 void cpu_gen_init(void);
48 
49 /**
50  * cpu_restore_state:
51  * @cpu: the vCPU state is to be restore to
52  * @searched_pc: the host PC the fault occurred at
53  * @return: true if state was restored, false otherwise
54  *
55  * Attempt to restore the state for a fault occurring in translated
56  * code. If the searched_pc is not in translated code no state is
57  * restored and the function returns false.
58  */
59 bool cpu_restore_state(CPUState *cpu, uintptr_t searched_pc);
60 
61 void QEMU_NORETURN cpu_loop_exit_noexc(CPUState *cpu);
62 void QEMU_NORETURN cpu_io_recompile(CPUState *cpu, uintptr_t retaddr);
63 TranslationBlock *tb_gen_code(CPUState *cpu,
64                               target_ulong pc, target_ulong cs_base,
65                               uint32_t flags,
66                               int cflags);
67 
68 void QEMU_NORETURN cpu_loop_exit(CPUState *cpu);
69 void QEMU_NORETURN cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc);
70 void QEMU_NORETURN cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc);
71 
72 #if !defined(CONFIG_USER_ONLY)
73 void cpu_reloading_memory_map(void);
74 /**
75  * cpu_address_space_init:
76  * @cpu: CPU to add this address space to
77  * @as: address space to add
78  * @asidx: integer index of this address space
79  *
80  * Add the specified address space to the CPU's cpu_ases list.
81  * The address space added with @asidx 0 is the one used for the
82  * convenience pointer cpu->as.
83  * The target-specific code which registers ASes is responsible
84  * for defining what semantics address space 0, 1, 2, etc have.
85  *
86  * Before the first call to this function, the caller must set
87  * cpu->num_ases to the total number of address spaces it needs
88  * to support.
89  *
90  * Note that with KVM only one address space is supported.
91  */
92 void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx);
93 #endif
94 
95 #if !defined(CONFIG_USER_ONLY) && defined(CONFIG_TCG)
96 /* cputlb.c */
97 /**
98  * tlb_flush_page:
99  * @cpu: CPU whose TLB should be flushed
100  * @addr: virtual address of page to be flushed
101  *
102  * Flush one page from the TLB of the specified CPU, for all
103  * MMU indexes.
104  */
105 void tlb_flush_page(CPUState *cpu, target_ulong addr);
106 /**
107  * tlb_flush_page_all_cpus:
108  * @cpu: src CPU of the flush
109  * @addr: virtual address of page to be flushed
110  *
111  * Flush one page from the TLB of the specified CPU, for all
112  * MMU indexes.
113  */
114 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr);
115 /**
116  * tlb_flush_page_all_cpus_synced:
117  * @cpu: src CPU of the flush
118  * @addr: virtual address of page to be flushed
119  *
120  * Flush one page from the TLB of the specified CPU, for all MMU
121  * indexes like tlb_flush_page_all_cpus except the source vCPUs work
122  * is scheduled as safe work meaning all flushes will be complete once
123  * the source vCPUs safe work is complete. This will depend on when
124  * the guests translation ends the TB.
125  */
126 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr);
127 /**
128  * tlb_flush:
129  * @cpu: CPU whose TLB should be flushed
130  *
131  * Flush the entire TLB for the specified CPU. Most CPU architectures
132  * allow the implementation to drop entries from the TLB at any time
133  * so this is generally safe. If more selective flushing is required
134  * use one of the other functions for efficiency.
135  */
136 void tlb_flush(CPUState *cpu);
137 /**
138  * tlb_flush_all_cpus:
139  * @cpu: src CPU of the flush
140  */
141 void tlb_flush_all_cpus(CPUState *src_cpu);
142 /**
143  * tlb_flush_all_cpus_synced:
144  * @cpu: src CPU of the flush
145  *
146  * Like tlb_flush_all_cpus except this except the source vCPUs work is
147  * scheduled as safe work meaning all flushes will be complete once
148  * the source vCPUs safe work is complete. This will depend on when
149  * the guests translation ends the TB.
150  */
151 void tlb_flush_all_cpus_synced(CPUState *src_cpu);
152 /**
153  * tlb_flush_page_by_mmuidx:
154  * @cpu: CPU whose TLB should be flushed
155  * @addr: virtual address of page to be flushed
156  * @idxmap: bitmap of MMU indexes to flush
157  *
158  * Flush one page from the TLB of the specified CPU, for the specified
159  * MMU indexes.
160  */
161 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr,
162                               uint16_t idxmap);
163 /**
164  * tlb_flush_page_by_mmuidx_all_cpus:
165  * @cpu: Originating CPU of the flush
166  * @addr: virtual address of page to be flushed
167  * @idxmap: bitmap of MMU indexes to flush
168  *
169  * Flush one page from the TLB of all CPUs, for the specified
170  * MMU indexes.
171  */
172 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr,
173                                        uint16_t idxmap);
174 /**
175  * tlb_flush_page_by_mmuidx_all_cpus_synced:
176  * @cpu: Originating CPU of the flush
177  * @addr: virtual address of page to be flushed
178  * @idxmap: bitmap of MMU indexes to flush
179  *
180  * Flush one page from the TLB of all CPUs, for the specified MMU
181  * indexes like tlb_flush_page_by_mmuidx_all_cpus except the source
182  * vCPUs work is scheduled as safe work meaning all flushes will be
183  * complete once  the source vCPUs safe work is complete. This will
184  * depend on when the guests translation ends the TB.
185  */
186 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu, target_ulong addr,
187                                               uint16_t idxmap);
188 /**
189  * tlb_flush_by_mmuidx:
190  * @cpu: CPU whose TLB should be flushed
191  * @wait: If true ensure synchronisation by exiting the cpu_loop
192  * @idxmap: bitmap of MMU indexes to flush
193  *
194  * Flush all entries from the TLB of the specified CPU, for the specified
195  * MMU indexes.
196  */
197 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap);
198 /**
199  * tlb_flush_by_mmuidx_all_cpus:
200  * @cpu: Originating CPU of the flush
201  * @idxmap: bitmap of MMU indexes to flush
202  *
203  * Flush all entries from all TLBs of all CPUs, for the specified
204  * MMU indexes.
205  */
206 void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap);
207 /**
208  * tlb_flush_by_mmuidx_all_cpus_synced:
209  * @cpu: Originating CPU of the flush
210  * @idxmap: bitmap of MMU indexes to flush
211  *
212  * Flush all entries from all TLBs of all CPUs, for the specified
213  * MMU indexes like tlb_flush_by_mmuidx_all_cpus except except the source
214  * vCPUs work is scheduled as safe work meaning all flushes will be
215  * complete once  the source vCPUs safe work is complete. This will
216  * depend on when the guests translation ends the TB.
217  */
218 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu, uint16_t idxmap);
219 /**
220  * tlb_set_page_with_attrs:
221  * @cpu: CPU to add this TLB entry for
222  * @vaddr: virtual address of page to add entry for
223  * @paddr: physical address of the page
224  * @attrs: memory transaction attributes
225  * @prot: access permissions (PAGE_READ/PAGE_WRITE/PAGE_EXEC bits)
226  * @mmu_idx: MMU index to insert TLB entry for
227  * @size: size of the page in bytes
228  *
229  * Add an entry to this CPU's TLB (a mapping from virtual address
230  * @vaddr to physical address @paddr) with the specified memory
231  * transaction attributes. This is generally called by the target CPU
232  * specific code after it has been called through the tlb_fill()
233  * entry point and performed a successful page table walk to find
234  * the physical address and attributes for the virtual address
235  * which provoked the TLB miss.
236  *
237  * At most one entry for a given virtual address is permitted. Only a
238  * single TARGET_PAGE_SIZE region is mapped; the supplied @size is only
239  * used by tlb_flush_page.
240  */
241 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
242                              hwaddr paddr, MemTxAttrs attrs,
243                              int prot, int mmu_idx, target_ulong size);
244 /* tlb_set_page:
245  *
246  * This function is equivalent to calling tlb_set_page_with_attrs()
247  * with an @attrs argument of MEMTXATTRS_UNSPECIFIED. It's provided
248  * as a convenience for CPUs which don't use memory transaction attributes.
249  */
250 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
251                   hwaddr paddr, int prot,
252                   int mmu_idx, target_ulong size);
253 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr);
254 void probe_write(CPUArchState *env, target_ulong addr, int mmu_idx,
255                  uintptr_t retaddr);
256 #else
257 static inline void tlb_flush_page(CPUState *cpu, target_ulong addr)
258 {
259 }
260 static inline void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
261 {
262 }
263 static inline void tlb_flush_page_all_cpus_synced(CPUState *src,
264                                                   target_ulong addr)
265 {
266 }
267 static inline void tlb_flush(CPUState *cpu)
268 {
269 }
270 static inline void tlb_flush_all_cpus(CPUState *src_cpu)
271 {
272 }
273 static inline void tlb_flush_all_cpus_synced(CPUState *src_cpu)
274 {
275 }
276 static inline void tlb_flush_page_by_mmuidx(CPUState *cpu,
277                                             target_ulong addr, uint16_t idxmap)
278 {
279 }
280 
281 static inline void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
282 {
283 }
284 static inline void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu,
285                                                      target_ulong addr,
286                                                      uint16_t idxmap)
287 {
288 }
289 static inline void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu,
290                                                             target_ulong addr,
291                                                             uint16_t idxmap)
292 {
293 }
294 static inline void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap)
295 {
296 }
297 static inline void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu,
298                                                        uint16_t idxmap)
299 {
300 }
301 static inline void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
302 {
303 }
304 #endif
305 
306 #define CODE_GEN_ALIGN           16 /* must be >= of the size of a icache line */
307 
308 /* Estimated block size for TB allocation.  */
309 /* ??? The following is based on a 2015 survey of x86_64 host output.
310    Better would seem to be some sort of dynamically sized TB array,
311    adapting to the block sizes actually being produced.  */
312 #if defined(CONFIG_SOFTMMU)
313 #define CODE_GEN_AVG_BLOCK_SIZE 400
314 #else
315 #define CODE_GEN_AVG_BLOCK_SIZE 150
316 #endif
317 
318 /*
319  * Translation Cache-related fields of a TB.
320  * This struct exists just for convenience; we keep track of TB's in a binary
321  * search tree, and the only fields needed to compare TB's in the tree are
322  * @ptr and @size.
323  * Note: the address of search data can be obtained by adding @size to @ptr.
324  */
325 struct tb_tc {
326     void *ptr;    /* pointer to the translated code */
327     size_t size;
328 };
329 
330 struct TranslationBlock {
331     target_ulong pc;   /* simulated PC corresponding to this block (EIP + CS base) */
332     target_ulong cs_base; /* CS base for this block */
333     uint32_t flags; /* flags defining in which context the code was generated */
334     uint16_t size;      /* size of target code for this block (1 <=
335                            size <= TARGET_PAGE_SIZE) */
336     uint16_t icount;
337     uint32_t cflags;    /* compile flags */
338 #define CF_COUNT_MASK  0x00007fff
339 #define CF_LAST_IO     0x00008000 /* Last insn may be an IO access.  */
340 #define CF_NOCACHE     0x00010000 /* To be freed after execution */
341 #define CF_USE_ICOUNT  0x00020000
342 #define CF_INVALID     0x00040000 /* TB is stale. Setters need tb_lock */
343 #define CF_PARALLEL    0x00080000 /* Generate code for a parallel context */
344 /* cflags' mask for hashing/comparison */
345 #define CF_HASH_MASK   \
346     (CF_COUNT_MASK | CF_LAST_IO | CF_USE_ICOUNT | CF_PARALLEL)
347 
348     /* Per-vCPU dynamic tracing state used to generate this TB */
349     uint32_t trace_vcpu_dstate;
350 
351     struct tb_tc tc;
352 
353     /* original tb when cflags has CF_NOCACHE */
354     struct TranslationBlock *orig_tb;
355     /* first and second physical page containing code. The lower bit
356        of the pointer tells the index in page_next[] */
357     struct TranslationBlock *page_next[2];
358     tb_page_addr_t page_addr[2];
359 
360     /* The following data are used to directly call another TB from
361      * the code of this one. This can be done either by emitting direct or
362      * indirect native jump instructions. These jumps are reset so that the TB
363      * just continues its execution. The TB can be linked to another one by
364      * setting one of the jump targets (or patching the jump instruction). Only
365      * two of such jumps are supported.
366      */
367     uint16_t jmp_reset_offset[2]; /* offset of original jump target */
368 #define TB_JMP_RESET_OFFSET_INVALID 0xffff /* indicates no jump generated */
369     uintptr_t jmp_target_arg[2];  /* target address or offset */
370 
371     /* Each TB has an associated circular list of TBs jumping to this one.
372      * jmp_list_first points to the first TB jumping to this one.
373      * jmp_list_next is used to point to the next TB in a list.
374      * Since each TB can have two jumps, it can participate in two lists.
375      * jmp_list_first and jmp_list_next are 4-byte aligned pointers to a
376      * TranslationBlock structure, but the two least significant bits of
377      * them are used to encode which data field of the pointed TB should
378      * be used to traverse the list further from that TB:
379      * 0 => jmp_list_next[0], 1 => jmp_list_next[1], 2 => jmp_list_first.
380      * In other words, 0/1 tells which jump is used in the pointed TB,
381      * and 2 means that this is a pointer back to the target TB of this list.
382      */
383     uintptr_t jmp_list_next[2];
384     uintptr_t jmp_list_first;
385 };
386 
387 extern bool parallel_cpus;
388 
389 /* Hide the atomic_read to make code a little easier on the eyes */
390 static inline uint32_t tb_cflags(const TranslationBlock *tb)
391 {
392     return atomic_read(&tb->cflags);
393 }
394 
395 /* current cflags for hashing/comparison */
396 static inline uint32_t curr_cflags(void)
397 {
398     return (parallel_cpus ? CF_PARALLEL : 0)
399          | (use_icount ? CF_USE_ICOUNT : 0);
400 }
401 
402 void tb_remove(TranslationBlock *tb);
403 void tb_flush(CPUState *cpu);
404 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr);
405 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
406                                    target_ulong cs_base, uint32_t flags,
407                                    uint32_t cf_mask);
408 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr);
409 
410 /* GETPC is the true target of the return instruction that we'll execute.  */
411 #if defined(CONFIG_TCG_INTERPRETER)
412 extern uintptr_t tci_tb_ptr;
413 # define GETPC() tci_tb_ptr
414 #else
415 # define GETPC() \
416     ((uintptr_t)__builtin_extract_return_addr(__builtin_return_address(0)))
417 #endif
418 
419 /* The true return address will often point to a host insn that is part of
420    the next translated guest insn.  Adjust the address backward to point to
421    the middle of the call insn.  Subtracting one would do the job except for
422    several compressed mode architectures (arm, mips) which set the low bit
423    to indicate the compressed mode; subtracting two works around that.  It
424    is also the case that there are no host isas that contain a call insn
425    smaller than 4 bytes, so we don't worry about special-casing this.  */
426 #define GETPC_ADJ   2
427 
428 void tb_lock(void);
429 void tb_unlock(void);
430 void tb_lock_reset(void);
431 
432 #if !defined(CONFIG_USER_ONLY)
433 
434 struct MemoryRegion *iotlb_to_region(CPUState *cpu,
435                                      hwaddr index, MemTxAttrs attrs);
436 
437 void tlb_fill(CPUState *cpu, target_ulong addr, MMUAccessType access_type,
438               int mmu_idx, uintptr_t retaddr);
439 
440 #endif
441 
442 #if defined(CONFIG_USER_ONLY)
443 void mmap_lock(void);
444 void mmap_unlock(void);
445 bool have_mmap_lock(void);
446 
447 static inline tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
448 {
449     return addr;
450 }
451 #else
452 static inline void mmap_lock(void) {}
453 static inline void mmap_unlock(void) {}
454 
455 /* cputlb.c */
456 tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr);
457 
458 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length);
459 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr);
460 
461 /* exec.c */
462 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr);
463 
464 MemoryRegionSection *
465 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
466                                   hwaddr *xlat, hwaddr *plen);
467 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
468                                        MemoryRegionSection *section,
469                                        target_ulong vaddr,
470                                        hwaddr paddr, hwaddr xlat,
471                                        int prot,
472                                        target_ulong *address);
473 bool memory_region_is_unassigned(MemoryRegion *mr);
474 
475 #endif
476 
477 /* vl.c */
478 extern int singlestep;
479 
480 #endif
481