1 /* 2 * internal execution defines for qemu 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #ifndef EXEC_ALL_H 21 #define EXEC_ALL_H 22 23 #include "qemu-common.h" 24 #include "exec/tb-context.h" 25 26 /* allow to see translation results - the slowdown should be negligible, so we leave it */ 27 #define DEBUG_DISAS 28 29 /* Page tracking code uses ram addresses in system mode, and virtual 30 addresses in userspace mode. Define tb_page_addr_t to be an appropriate 31 type. */ 32 #if defined(CONFIG_USER_ONLY) 33 typedef abi_ulong tb_page_addr_t; 34 #else 35 typedef ram_addr_t tb_page_addr_t; 36 #endif 37 38 /* is_jmp field values */ 39 #define DISAS_NEXT 0 /* next instruction can be analyzed */ 40 #define DISAS_JUMP 1 /* only pc was modified dynamically */ 41 #define DISAS_UPDATE 2 /* cpu state was modified dynamically */ 42 #define DISAS_TB_JUMP 3 /* only pc was modified statically */ 43 44 #include "qemu/log.h" 45 46 void gen_intermediate_code(CPUArchState *env, struct TranslationBlock *tb); 47 void restore_state_to_opc(CPUArchState *env, struct TranslationBlock *tb, 48 target_ulong *data); 49 50 void cpu_gen_init(void); 51 bool cpu_restore_state(CPUState *cpu, uintptr_t searched_pc); 52 53 void QEMU_NORETURN cpu_loop_exit_noexc(CPUState *cpu); 54 void QEMU_NORETURN cpu_io_recompile(CPUState *cpu, uintptr_t retaddr); 55 TranslationBlock *tb_gen_code(CPUState *cpu, 56 target_ulong pc, target_ulong cs_base, 57 uint32_t flags, 58 int cflags); 59 #if defined(CONFIG_USER_ONLY) 60 void cpu_list_lock(void); 61 void cpu_list_unlock(void); 62 #else 63 static inline void cpu_list_unlock(void) 64 { 65 } 66 static inline void cpu_list_lock(void) 67 { 68 } 69 #endif 70 71 void cpu_exec_init(CPUState *cpu, Error **errp); 72 void QEMU_NORETURN cpu_loop_exit(CPUState *cpu); 73 void QEMU_NORETURN cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc); 74 75 #if !defined(CONFIG_USER_ONLY) 76 void cpu_reloading_memory_map(void); 77 /** 78 * cpu_address_space_init: 79 * @cpu: CPU to add this address space to 80 * @as: address space to add 81 * @asidx: integer index of this address space 82 * 83 * Add the specified address space to the CPU's cpu_ases list. 84 * The address space added with @asidx 0 is the one used for the 85 * convenience pointer cpu->as. 86 * The target-specific code which registers ASes is responsible 87 * for defining what semantics address space 0, 1, 2, etc have. 88 * 89 * Before the first call to this function, the caller must set 90 * cpu->num_ases to the total number of address spaces it needs 91 * to support. 92 * 93 * Note that with KVM only one address space is supported. 94 */ 95 void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx); 96 /* cputlb.c */ 97 /** 98 * tlb_flush_page: 99 * @cpu: CPU whose TLB should be flushed 100 * @addr: virtual address of page to be flushed 101 * 102 * Flush one page from the TLB of the specified CPU, for all 103 * MMU indexes. 104 */ 105 void tlb_flush_page(CPUState *cpu, target_ulong addr); 106 /** 107 * tlb_flush: 108 * @cpu: CPU whose TLB should be flushed 109 * @flush_global: ignored 110 * 111 * Flush the entire TLB for the specified CPU. 112 * The flush_global flag is in theory an indicator of whether the whole 113 * TLB should be flushed, or only those entries not marked global. 114 * In practice QEMU does not implement any global/not global flag for 115 * TLB entries, and the argument is ignored. 116 */ 117 void tlb_flush(CPUState *cpu, int flush_global); 118 /** 119 * tlb_flush_page_by_mmuidx: 120 * @cpu: CPU whose TLB should be flushed 121 * @addr: virtual address of page to be flushed 122 * @...: list of MMU indexes to flush, terminated by a negative value 123 * 124 * Flush one page from the TLB of the specified CPU, for the specified 125 * MMU indexes. 126 */ 127 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, ...); 128 /** 129 * tlb_flush_by_mmuidx: 130 * @cpu: CPU whose TLB should be flushed 131 * @...: list of MMU indexes to flush, terminated by a negative value 132 * 133 * Flush all entries from the TLB of the specified CPU, for the specified 134 * MMU indexes. 135 */ 136 void tlb_flush_by_mmuidx(CPUState *cpu, ...); 137 /** 138 * tlb_set_page_with_attrs: 139 * @cpu: CPU to add this TLB entry for 140 * @vaddr: virtual address of page to add entry for 141 * @paddr: physical address of the page 142 * @attrs: memory transaction attributes 143 * @prot: access permissions (PAGE_READ/PAGE_WRITE/PAGE_EXEC bits) 144 * @mmu_idx: MMU index to insert TLB entry for 145 * @size: size of the page in bytes 146 * 147 * Add an entry to this CPU's TLB (a mapping from virtual address 148 * @vaddr to physical address @paddr) with the specified memory 149 * transaction attributes. This is generally called by the target CPU 150 * specific code after it has been called through the tlb_fill() 151 * entry point and performed a successful page table walk to find 152 * the physical address and attributes for the virtual address 153 * which provoked the TLB miss. 154 * 155 * At most one entry for a given virtual address is permitted. Only a 156 * single TARGET_PAGE_SIZE region is mapped; the supplied @size is only 157 * used by tlb_flush_page. 158 */ 159 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr, 160 hwaddr paddr, MemTxAttrs attrs, 161 int prot, int mmu_idx, target_ulong size); 162 /* tlb_set_page: 163 * 164 * This function is equivalent to calling tlb_set_page_with_attrs() 165 * with an @attrs argument of MEMTXATTRS_UNSPECIFIED. It's provided 166 * as a convenience for CPUs which don't use memory transaction attributes. 167 */ 168 void tlb_set_page(CPUState *cpu, target_ulong vaddr, 169 hwaddr paddr, int prot, 170 int mmu_idx, target_ulong size); 171 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr); 172 void probe_write(CPUArchState *env, target_ulong addr, int mmu_idx, 173 uintptr_t retaddr); 174 #else 175 static inline void tlb_flush_page(CPUState *cpu, target_ulong addr) 176 { 177 } 178 179 static inline void tlb_flush(CPUState *cpu, int flush_global) 180 { 181 } 182 183 static inline void tlb_flush_page_by_mmuidx(CPUState *cpu, 184 target_ulong addr, ...) 185 { 186 } 187 188 static inline void tlb_flush_by_mmuidx(CPUState *cpu, ...) 189 { 190 } 191 #endif 192 193 #define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */ 194 195 /* Estimated block size for TB allocation. */ 196 /* ??? The following is based on a 2015 survey of x86_64 host output. 197 Better would seem to be some sort of dynamically sized TB array, 198 adapting to the block sizes actually being produced. */ 199 #if defined(CONFIG_SOFTMMU) 200 #define CODE_GEN_AVG_BLOCK_SIZE 400 201 #else 202 #define CODE_GEN_AVG_BLOCK_SIZE 150 203 #endif 204 205 #if defined(__arm__) || defined(_ARCH_PPC) \ 206 || defined(__x86_64__) || defined(__i386__) \ 207 || defined(__sparc__) || defined(__aarch64__) \ 208 || defined(__s390x__) || defined(__mips__) \ 209 || defined(CONFIG_TCG_INTERPRETER) 210 /* NOTE: Direct jump patching must be atomic to be thread-safe. */ 211 #define USE_DIRECT_JUMP 212 #endif 213 214 struct TranslationBlock { 215 target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */ 216 target_ulong cs_base; /* CS base for this block */ 217 uint32_t flags; /* flags defining in which context the code was generated */ 218 uint16_t size; /* size of target code for this block (1 <= 219 size <= TARGET_PAGE_SIZE) */ 220 uint16_t icount; 221 uint32_t cflags; /* compile flags */ 222 #define CF_COUNT_MASK 0x7fff 223 #define CF_LAST_IO 0x8000 /* Last insn may be an IO access. */ 224 #define CF_NOCACHE 0x10000 /* To be freed after execution */ 225 #define CF_USE_ICOUNT 0x20000 226 #define CF_IGNORE_ICOUNT 0x40000 /* Do not generate icount code */ 227 228 uint16_t invalid; 229 230 void *tc_ptr; /* pointer to the translated code */ 231 uint8_t *tc_search; /* pointer to search data */ 232 /* original tb when cflags has CF_NOCACHE */ 233 struct TranslationBlock *orig_tb; 234 /* first and second physical page containing code. The lower bit 235 of the pointer tells the index in page_next[] */ 236 struct TranslationBlock *page_next[2]; 237 tb_page_addr_t page_addr[2]; 238 239 /* The following data are used to directly call another TB from 240 * the code of this one. This can be done either by emitting direct or 241 * indirect native jump instructions. These jumps are reset so that the TB 242 * just continue its execution. The TB can be linked to another one by 243 * setting one of the jump targets (or patching the jump instruction). Only 244 * two of such jumps are supported. 245 */ 246 uint16_t jmp_reset_offset[2]; /* offset of original jump target */ 247 #define TB_JMP_RESET_OFFSET_INVALID 0xffff /* indicates no jump generated */ 248 #ifdef USE_DIRECT_JUMP 249 uint16_t jmp_insn_offset[2]; /* offset of native jump instruction */ 250 #else 251 uintptr_t jmp_target_addr[2]; /* target address for indirect jump */ 252 #endif 253 /* Each TB has an assosiated circular list of TBs jumping to this one. 254 * jmp_list_first points to the first TB jumping to this one. 255 * jmp_list_next is used to point to the next TB in a list. 256 * Since each TB can have two jumps, it can participate in two lists. 257 * jmp_list_first and jmp_list_next are 4-byte aligned pointers to a 258 * TranslationBlock structure, but the two least significant bits of 259 * them are used to encode which data field of the pointed TB should 260 * be used to traverse the list further from that TB: 261 * 0 => jmp_list_next[0], 1 => jmp_list_next[1], 2 => jmp_list_first. 262 * In other words, 0/1 tells which jump is used in the pointed TB, 263 * and 2 means that this is a pointer back to the target TB of this list. 264 */ 265 uintptr_t jmp_list_next[2]; 266 uintptr_t jmp_list_first; 267 }; 268 269 void tb_free(TranslationBlock *tb); 270 void tb_flush(CPUState *cpu); 271 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr); 272 273 #if defined(USE_DIRECT_JUMP) 274 275 #if defined(CONFIG_TCG_INTERPRETER) 276 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr) 277 { 278 /* patch the branch destination */ 279 atomic_set((int32_t *)jmp_addr, addr - (jmp_addr + 4)); 280 /* no need to flush icache explicitly */ 281 } 282 #elif defined(_ARCH_PPC) 283 void ppc_tb_set_jmp_target(uintptr_t jmp_addr, uintptr_t addr); 284 #define tb_set_jmp_target1 ppc_tb_set_jmp_target 285 #elif defined(__i386__) || defined(__x86_64__) 286 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr) 287 { 288 /* patch the branch destination */ 289 atomic_set((int32_t *)jmp_addr, addr - (jmp_addr + 4)); 290 /* no need to flush icache explicitly */ 291 } 292 #elif defined(__s390x__) 293 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr) 294 { 295 /* patch the branch destination */ 296 intptr_t disp = addr - (jmp_addr - 2); 297 atomic_set((int32_t *)jmp_addr, disp / 2); 298 /* no need to flush icache explicitly */ 299 } 300 #elif defined(__aarch64__) 301 void aarch64_tb_set_jmp_target(uintptr_t jmp_addr, uintptr_t addr); 302 #define tb_set_jmp_target1 aarch64_tb_set_jmp_target 303 #elif defined(__arm__) 304 void arm_tb_set_jmp_target(uintptr_t jmp_addr, uintptr_t addr); 305 #define tb_set_jmp_target1 arm_tb_set_jmp_target 306 #elif defined(__sparc__) || defined(__mips__) 307 void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr); 308 #else 309 #error tb_set_jmp_target1 is missing 310 #endif 311 312 static inline void tb_set_jmp_target(TranslationBlock *tb, 313 int n, uintptr_t addr) 314 { 315 uint16_t offset = tb->jmp_insn_offset[n]; 316 tb_set_jmp_target1((uintptr_t)(tb->tc_ptr + offset), addr); 317 } 318 319 #else 320 321 /* set the jump target */ 322 static inline void tb_set_jmp_target(TranslationBlock *tb, 323 int n, uintptr_t addr) 324 { 325 tb->jmp_target_addr[n] = addr; 326 } 327 328 #endif 329 330 static inline void tb_add_jump(TranslationBlock *tb, int n, 331 TranslationBlock *tb_next) 332 { 333 if (tb->jmp_list_next[n]) { 334 /* Another thread has already done this while we were 335 * outside of the lock; nothing to do in this case */ 336 return; 337 } 338 qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc, 339 "Linking TBs %p [" TARGET_FMT_lx 340 "] index %d -> %p [" TARGET_FMT_lx "]\n", 341 tb->tc_ptr, tb->pc, n, 342 tb_next->tc_ptr, tb_next->pc); 343 344 /* patch the native jump address */ 345 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc_ptr); 346 347 /* add in TB jmp circular list */ 348 tb->jmp_list_next[n] = tb_next->jmp_list_first; 349 tb_next->jmp_list_first = (uintptr_t)tb | n; 350 } 351 352 /* GETPC is the true target of the return instruction that we'll execute. */ 353 #if defined(CONFIG_TCG_INTERPRETER) 354 extern uintptr_t tci_tb_ptr; 355 # define GETPC() tci_tb_ptr 356 #else 357 # define GETPC() \ 358 ((uintptr_t)__builtin_extract_return_addr(__builtin_return_address(0))) 359 #endif 360 361 /* The true return address will often point to a host insn that is part of 362 the next translated guest insn. Adjust the address backward to point to 363 the middle of the call insn. Subtracting one would do the job except for 364 several compressed mode architectures (arm, mips) which set the low bit 365 to indicate the compressed mode; subtracting two works around that. It 366 is also the case that there are no host isas that contain a call insn 367 smaller than 4 bytes, so we don't worry about special-casing this. */ 368 #define GETPC_ADJ 2 369 370 #if !defined(CONFIG_USER_ONLY) 371 372 struct MemoryRegion *iotlb_to_region(CPUState *cpu, 373 hwaddr index, MemTxAttrs attrs); 374 375 void tlb_fill(CPUState *cpu, target_ulong addr, MMUAccessType access_type, 376 int mmu_idx, uintptr_t retaddr); 377 378 #endif 379 380 #if defined(CONFIG_USER_ONLY) 381 void mmap_lock(void); 382 void mmap_unlock(void); 383 384 static inline tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr) 385 { 386 return addr; 387 } 388 #else 389 static inline void mmap_lock(void) {} 390 static inline void mmap_unlock(void) {} 391 392 /* cputlb.c */ 393 tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr); 394 395 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length); 396 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr); 397 398 /* exec.c */ 399 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr); 400 401 MemoryRegionSection * 402 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr, 403 hwaddr *xlat, hwaddr *plen); 404 hwaddr memory_region_section_get_iotlb(CPUState *cpu, 405 MemoryRegionSection *section, 406 target_ulong vaddr, 407 hwaddr paddr, hwaddr xlat, 408 int prot, 409 target_ulong *address); 410 bool memory_region_is_unassigned(MemoryRegion *mr); 411 412 #endif 413 414 /* vl.c */ 415 extern int singlestep; 416 417 /* cpu-exec.c, accessed with atomic_mb_read/atomic_mb_set */ 418 extern CPUState *tcg_current_cpu; 419 extern bool exit_request; 420 421 #endif 422