xref: /openbmc/qemu/include/exec/exec-all.h (revision cea25275)
1 /*
2  * internal execution defines for qemu
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef EXEC_ALL_H
21 #define EXEC_ALL_H
22 
23 #include "qemu-common.h"
24 #include "exec/tb-context.h"
25 
26 /* allow to see translation results - the slowdown should be negligible, so we leave it */
27 #define DEBUG_DISAS
28 
29 /* Page tracking code uses ram addresses in system mode, and virtual
30    addresses in userspace mode.  Define tb_page_addr_t to be an appropriate
31    type.  */
32 #if defined(CONFIG_USER_ONLY)
33 typedef abi_ulong tb_page_addr_t;
34 #else
35 typedef ram_addr_t tb_page_addr_t;
36 #endif
37 
38 /* is_jmp field values */
39 #define DISAS_NEXT    0 /* next instruction can be analyzed */
40 #define DISAS_JUMP    1 /* only pc was modified dynamically */
41 #define DISAS_UPDATE  2 /* cpu state was modified dynamically */
42 #define DISAS_TB_JUMP 3 /* only pc was modified statically */
43 
44 #include "qemu/log.h"
45 
46 void gen_intermediate_code(CPUArchState *env, struct TranslationBlock *tb);
47 void restore_state_to_opc(CPUArchState *env, struct TranslationBlock *tb,
48                           target_ulong *data);
49 
50 void cpu_gen_init(void);
51 bool cpu_restore_state(CPUState *cpu, uintptr_t searched_pc);
52 
53 void QEMU_NORETURN cpu_loop_exit_noexc(CPUState *cpu);
54 void QEMU_NORETURN cpu_io_recompile(CPUState *cpu, uintptr_t retaddr);
55 TranslationBlock *tb_gen_code(CPUState *cpu,
56                               target_ulong pc, target_ulong cs_base,
57                               uint32_t flags,
58                               int cflags);
59 #if defined(CONFIG_USER_ONLY)
60 void cpu_list_lock(void);
61 void cpu_list_unlock(void);
62 #else
63 static inline void cpu_list_unlock(void)
64 {
65 }
66 static inline void cpu_list_lock(void)
67 {
68 }
69 #endif
70 
71 void cpu_exec_init(CPUState *cpu, Error **errp);
72 void QEMU_NORETURN cpu_loop_exit(CPUState *cpu);
73 void QEMU_NORETURN cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc);
74 
75 #if !defined(CONFIG_USER_ONLY)
76 void cpu_reloading_memory_map(void);
77 /**
78  * cpu_address_space_init:
79  * @cpu: CPU to add this address space to
80  * @as: address space to add
81  * @asidx: integer index of this address space
82  *
83  * Add the specified address space to the CPU's cpu_ases list.
84  * The address space added with @asidx 0 is the one used for the
85  * convenience pointer cpu->as.
86  * The target-specific code which registers ASes is responsible
87  * for defining what semantics address space 0, 1, 2, etc have.
88  *
89  * Before the first call to this function, the caller must set
90  * cpu->num_ases to the total number of address spaces it needs
91  * to support.
92  *
93  * Note that with KVM only one address space is supported.
94  */
95 void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx);
96 /* cputlb.c */
97 /**
98  * tlb_flush_page:
99  * @cpu: CPU whose TLB should be flushed
100  * @addr: virtual address of page to be flushed
101  *
102  * Flush one page from the TLB of the specified CPU, for all
103  * MMU indexes.
104  */
105 void tlb_flush_page(CPUState *cpu, target_ulong addr);
106 /**
107  * tlb_flush:
108  * @cpu: CPU whose TLB should be flushed
109  * @flush_global: ignored
110  *
111  * Flush the entire TLB for the specified CPU.
112  * The flush_global flag is in theory an indicator of whether the whole
113  * TLB should be flushed, or only those entries not marked global.
114  * In practice QEMU does not implement any global/not global flag for
115  * TLB entries, and the argument is ignored.
116  */
117 void tlb_flush(CPUState *cpu, int flush_global);
118 /**
119  * tlb_flush_page_by_mmuidx:
120  * @cpu: CPU whose TLB should be flushed
121  * @addr: virtual address of page to be flushed
122  * @...: list of MMU indexes to flush, terminated by a negative value
123  *
124  * Flush one page from the TLB of the specified CPU, for the specified
125  * MMU indexes.
126  */
127 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, ...);
128 /**
129  * tlb_flush_by_mmuidx:
130  * @cpu: CPU whose TLB should be flushed
131  * @...: list of MMU indexes to flush, terminated by a negative value
132  *
133  * Flush all entries from the TLB of the specified CPU, for the specified
134  * MMU indexes.
135  */
136 void tlb_flush_by_mmuidx(CPUState *cpu, ...);
137 /**
138  * tlb_set_page_with_attrs:
139  * @cpu: CPU to add this TLB entry for
140  * @vaddr: virtual address of page to add entry for
141  * @paddr: physical address of the page
142  * @attrs: memory transaction attributes
143  * @prot: access permissions (PAGE_READ/PAGE_WRITE/PAGE_EXEC bits)
144  * @mmu_idx: MMU index to insert TLB entry for
145  * @size: size of the page in bytes
146  *
147  * Add an entry to this CPU's TLB (a mapping from virtual address
148  * @vaddr to physical address @paddr) with the specified memory
149  * transaction attributes. This is generally called by the target CPU
150  * specific code after it has been called through the tlb_fill()
151  * entry point and performed a successful page table walk to find
152  * the physical address and attributes for the virtual address
153  * which provoked the TLB miss.
154  *
155  * At most one entry for a given virtual address is permitted. Only a
156  * single TARGET_PAGE_SIZE region is mapped; the supplied @size is only
157  * used by tlb_flush_page.
158  */
159 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
160                              hwaddr paddr, MemTxAttrs attrs,
161                              int prot, int mmu_idx, target_ulong size);
162 /* tlb_set_page:
163  *
164  * This function is equivalent to calling tlb_set_page_with_attrs()
165  * with an @attrs argument of MEMTXATTRS_UNSPECIFIED. It's provided
166  * as a convenience for CPUs which don't use memory transaction attributes.
167  */
168 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
169                   hwaddr paddr, int prot,
170                   int mmu_idx, target_ulong size);
171 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr);
172 void probe_write(CPUArchState *env, target_ulong addr, int mmu_idx,
173                  uintptr_t retaddr);
174 #else
175 static inline void tlb_flush_page(CPUState *cpu, target_ulong addr)
176 {
177 }
178 
179 static inline void tlb_flush(CPUState *cpu, int flush_global)
180 {
181 }
182 
183 static inline void tlb_flush_page_by_mmuidx(CPUState *cpu,
184                                             target_ulong addr, ...)
185 {
186 }
187 
188 static inline void tlb_flush_by_mmuidx(CPUState *cpu, ...)
189 {
190 }
191 #endif
192 
193 #define CODE_GEN_ALIGN           16 /* must be >= of the size of a icache line */
194 
195 /* Estimated block size for TB allocation.  */
196 /* ??? The following is based on a 2015 survey of x86_64 host output.
197    Better would seem to be some sort of dynamically sized TB array,
198    adapting to the block sizes actually being produced.  */
199 #if defined(CONFIG_SOFTMMU)
200 #define CODE_GEN_AVG_BLOCK_SIZE 400
201 #else
202 #define CODE_GEN_AVG_BLOCK_SIZE 150
203 #endif
204 
205 #if defined(__arm__) || defined(_ARCH_PPC) \
206     || defined(__x86_64__) || defined(__i386__) \
207     || defined(__sparc__) || defined(__aarch64__) \
208     || defined(__s390x__) || defined(__mips__) \
209     || defined(CONFIG_TCG_INTERPRETER)
210 /* NOTE: Direct jump patching must be atomic to be thread-safe. */
211 #define USE_DIRECT_JUMP
212 #endif
213 
214 struct TranslationBlock {
215     target_ulong pc;   /* simulated PC corresponding to this block (EIP + CS base) */
216     target_ulong cs_base; /* CS base for this block */
217     uint32_t flags; /* flags defining in which context the code was generated */
218     uint16_t size;      /* size of target code for this block (1 <=
219                            size <= TARGET_PAGE_SIZE) */
220     uint16_t icount;
221     uint32_t cflags;    /* compile flags */
222 #define CF_COUNT_MASK  0x7fff
223 #define CF_LAST_IO     0x8000 /* Last insn may be an IO access.  */
224 #define CF_NOCACHE     0x10000 /* To be freed after execution */
225 #define CF_USE_ICOUNT  0x20000
226 #define CF_IGNORE_ICOUNT 0x40000 /* Do not generate icount code */
227 
228     uint16_t invalid;
229 
230     void *tc_ptr;    /* pointer to the translated code */
231     uint8_t *tc_search;  /* pointer to search data */
232     /* original tb when cflags has CF_NOCACHE */
233     struct TranslationBlock *orig_tb;
234     /* first and second physical page containing code. The lower bit
235        of the pointer tells the index in page_next[] */
236     struct TranslationBlock *page_next[2];
237     tb_page_addr_t page_addr[2];
238 
239     /* The following data are used to directly call another TB from
240      * the code of this one. This can be done either by emitting direct or
241      * indirect native jump instructions. These jumps are reset so that the TB
242      * just continue its execution. The TB can be linked to another one by
243      * setting one of the jump targets (or patching the jump instruction). Only
244      * two of such jumps are supported.
245      */
246     uint16_t jmp_reset_offset[2]; /* offset of original jump target */
247 #define TB_JMP_RESET_OFFSET_INVALID 0xffff /* indicates no jump generated */
248 #ifdef USE_DIRECT_JUMP
249     uint16_t jmp_insn_offset[2]; /* offset of native jump instruction */
250 #else
251     uintptr_t jmp_target_addr[2]; /* target address for indirect jump */
252 #endif
253     /* Each TB has an assosiated circular list of TBs jumping to this one.
254      * jmp_list_first points to the first TB jumping to this one.
255      * jmp_list_next is used to point to the next TB in a list.
256      * Since each TB can have two jumps, it can participate in two lists.
257      * jmp_list_first and jmp_list_next are 4-byte aligned pointers to a
258      * TranslationBlock structure, but the two least significant bits of
259      * them are used to encode which data field of the pointed TB should
260      * be used to traverse the list further from that TB:
261      * 0 => jmp_list_next[0], 1 => jmp_list_next[1], 2 => jmp_list_first.
262      * In other words, 0/1 tells which jump is used in the pointed TB,
263      * and 2 means that this is a pointer back to the target TB of this list.
264      */
265     uintptr_t jmp_list_next[2];
266     uintptr_t jmp_list_first;
267 };
268 
269 void tb_free(TranslationBlock *tb);
270 void tb_flush(CPUState *cpu);
271 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr);
272 
273 #if defined(USE_DIRECT_JUMP)
274 
275 #if defined(CONFIG_TCG_INTERPRETER)
276 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr)
277 {
278     /* patch the branch destination */
279     atomic_set((int32_t *)jmp_addr, addr - (jmp_addr + 4));
280     /* no need to flush icache explicitly */
281 }
282 #elif defined(_ARCH_PPC)
283 void ppc_tb_set_jmp_target(uintptr_t jmp_addr, uintptr_t addr);
284 #define tb_set_jmp_target1 ppc_tb_set_jmp_target
285 #elif defined(__i386__) || defined(__x86_64__)
286 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr)
287 {
288     /* patch the branch destination */
289     atomic_set((int32_t *)jmp_addr, addr - (jmp_addr + 4));
290     /* no need to flush icache explicitly */
291 }
292 #elif defined(__s390x__)
293 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr)
294 {
295     /* patch the branch destination */
296     intptr_t disp = addr - (jmp_addr - 2);
297     atomic_set((int32_t *)jmp_addr, disp / 2);
298     /* no need to flush icache explicitly */
299 }
300 #elif defined(__aarch64__)
301 void aarch64_tb_set_jmp_target(uintptr_t jmp_addr, uintptr_t addr);
302 #define tb_set_jmp_target1 aarch64_tb_set_jmp_target
303 #elif defined(__arm__)
304 void arm_tb_set_jmp_target(uintptr_t jmp_addr, uintptr_t addr);
305 #define tb_set_jmp_target1 arm_tb_set_jmp_target
306 #elif defined(__sparc__) || defined(__mips__)
307 void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr);
308 #else
309 #error tb_set_jmp_target1 is missing
310 #endif
311 
312 static inline void tb_set_jmp_target(TranslationBlock *tb,
313                                      int n, uintptr_t addr)
314 {
315     uint16_t offset = tb->jmp_insn_offset[n];
316     tb_set_jmp_target1((uintptr_t)(tb->tc_ptr + offset), addr);
317 }
318 
319 #else
320 
321 /* set the jump target */
322 static inline void tb_set_jmp_target(TranslationBlock *tb,
323                                      int n, uintptr_t addr)
324 {
325     tb->jmp_target_addr[n] = addr;
326 }
327 
328 #endif
329 
330 static inline void tb_add_jump(TranslationBlock *tb, int n,
331                                TranslationBlock *tb_next)
332 {
333     if (tb->jmp_list_next[n]) {
334         /* Another thread has already done this while we were
335          * outside of the lock; nothing to do in this case */
336         return;
337     }
338     qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc,
339                            "Linking TBs %p [" TARGET_FMT_lx
340                            "] index %d -> %p [" TARGET_FMT_lx "]\n",
341                            tb->tc_ptr, tb->pc, n,
342                            tb_next->tc_ptr, tb_next->pc);
343 
344     /* patch the native jump address */
345     tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc_ptr);
346 
347     /* add in TB jmp circular list */
348     tb->jmp_list_next[n] = tb_next->jmp_list_first;
349     tb_next->jmp_list_first = (uintptr_t)tb | n;
350 }
351 
352 /* GETPC is the true target of the return instruction that we'll execute.  */
353 #if defined(CONFIG_TCG_INTERPRETER)
354 extern uintptr_t tci_tb_ptr;
355 # define GETPC() tci_tb_ptr
356 #else
357 # define GETPC() \
358     ((uintptr_t)__builtin_extract_return_addr(__builtin_return_address(0)))
359 #endif
360 
361 /* The true return address will often point to a host insn that is part of
362    the next translated guest insn.  Adjust the address backward to point to
363    the middle of the call insn.  Subtracting one would do the job except for
364    several compressed mode architectures (arm, mips) which set the low bit
365    to indicate the compressed mode; subtracting two works around that.  It
366    is also the case that there are no host isas that contain a call insn
367    smaller than 4 bytes, so we don't worry about special-casing this.  */
368 #define GETPC_ADJ   2
369 
370 #if !defined(CONFIG_USER_ONLY)
371 
372 struct MemoryRegion *iotlb_to_region(CPUState *cpu,
373                                      hwaddr index, MemTxAttrs attrs);
374 
375 void tlb_fill(CPUState *cpu, target_ulong addr, MMUAccessType access_type,
376               int mmu_idx, uintptr_t retaddr);
377 
378 #endif
379 
380 #if defined(CONFIG_USER_ONLY)
381 void mmap_lock(void);
382 void mmap_unlock(void);
383 
384 static inline tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
385 {
386     return addr;
387 }
388 #else
389 static inline void mmap_lock(void) {}
390 static inline void mmap_unlock(void) {}
391 
392 /* cputlb.c */
393 tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr);
394 
395 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length);
396 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr);
397 
398 /* exec.c */
399 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr);
400 
401 MemoryRegionSection *
402 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
403                                   hwaddr *xlat, hwaddr *plen);
404 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
405                                        MemoryRegionSection *section,
406                                        target_ulong vaddr,
407                                        hwaddr paddr, hwaddr xlat,
408                                        int prot,
409                                        target_ulong *address);
410 bool memory_region_is_unassigned(MemoryRegion *mr);
411 
412 #endif
413 
414 /* vl.c */
415 extern int singlestep;
416 
417 /* cpu-exec.c, accessed with atomic_mb_read/atomic_mb_set */
418 extern CPUState *tcg_current_cpu;
419 extern bool exit_request;
420 
421 #endif
422