xref: /openbmc/qemu/include/exec/exec-all.h (revision bb2e0039)
1 /*
2  * internal execution defines for qemu
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef EXEC_ALL_H
21 #define EXEC_ALL_H
22 
23 #include "qemu-common.h"
24 #include "exec/tb-context.h"
25 
26 /* allow to see translation results - the slowdown should be negligible, so we leave it */
27 #define DEBUG_DISAS
28 
29 /* Page tracking code uses ram addresses in system mode, and virtual
30    addresses in userspace mode.  Define tb_page_addr_t to be an appropriate
31    type.  */
32 #if defined(CONFIG_USER_ONLY)
33 typedef abi_ulong tb_page_addr_t;
34 #else
35 typedef ram_addr_t tb_page_addr_t;
36 #endif
37 
38 #include "qemu/log.h"
39 
40 void gen_intermediate_code(CPUState *cpu, struct TranslationBlock *tb);
41 void restore_state_to_opc(CPUArchState *env, struct TranslationBlock *tb,
42                           target_ulong *data);
43 
44 void cpu_gen_init(void);
45 bool cpu_restore_state(CPUState *cpu, uintptr_t searched_pc);
46 
47 void QEMU_NORETURN cpu_loop_exit_noexc(CPUState *cpu);
48 void QEMU_NORETURN cpu_io_recompile(CPUState *cpu, uintptr_t retaddr);
49 TranslationBlock *tb_gen_code(CPUState *cpu,
50                               target_ulong pc, target_ulong cs_base,
51                               uint32_t flags,
52                               int cflags);
53 
54 void QEMU_NORETURN cpu_loop_exit(CPUState *cpu);
55 void QEMU_NORETURN cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc);
56 void QEMU_NORETURN cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc);
57 
58 #if !defined(CONFIG_USER_ONLY)
59 void cpu_reloading_memory_map(void);
60 /**
61  * cpu_address_space_init:
62  * @cpu: CPU to add this address space to
63  * @as: address space to add
64  * @asidx: integer index of this address space
65  *
66  * Add the specified address space to the CPU's cpu_ases list.
67  * The address space added with @asidx 0 is the one used for the
68  * convenience pointer cpu->as.
69  * The target-specific code which registers ASes is responsible
70  * for defining what semantics address space 0, 1, 2, etc have.
71  *
72  * Before the first call to this function, the caller must set
73  * cpu->num_ases to the total number of address spaces it needs
74  * to support.
75  *
76  * Note that with KVM only one address space is supported.
77  */
78 void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx);
79 #endif
80 
81 #if !defined(CONFIG_USER_ONLY) && defined(CONFIG_TCG)
82 /* cputlb.c */
83 /**
84  * tlb_flush_page:
85  * @cpu: CPU whose TLB should be flushed
86  * @addr: virtual address of page to be flushed
87  *
88  * Flush one page from the TLB of the specified CPU, for all
89  * MMU indexes.
90  */
91 void tlb_flush_page(CPUState *cpu, target_ulong addr);
92 /**
93  * tlb_flush_page_all_cpus:
94  * @cpu: src CPU of the flush
95  * @addr: virtual address of page to be flushed
96  *
97  * Flush one page from the TLB of the specified CPU, for all
98  * MMU indexes.
99  */
100 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr);
101 /**
102  * tlb_flush_page_all_cpus_synced:
103  * @cpu: src CPU of the flush
104  * @addr: virtual address of page to be flushed
105  *
106  * Flush one page from the TLB of the specified CPU, for all MMU
107  * indexes like tlb_flush_page_all_cpus except the source vCPUs work
108  * is scheduled as safe work meaning all flushes will be complete once
109  * the source vCPUs safe work is complete. This will depend on when
110  * the guests translation ends the TB.
111  */
112 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr);
113 /**
114  * tlb_flush:
115  * @cpu: CPU whose TLB should be flushed
116  *
117  * Flush the entire TLB for the specified CPU. Most CPU architectures
118  * allow the implementation to drop entries from the TLB at any time
119  * so this is generally safe. If more selective flushing is required
120  * use one of the other functions for efficiency.
121  */
122 void tlb_flush(CPUState *cpu);
123 /**
124  * tlb_flush_all_cpus:
125  * @cpu: src CPU of the flush
126  */
127 void tlb_flush_all_cpus(CPUState *src_cpu);
128 /**
129  * tlb_flush_all_cpus_synced:
130  * @cpu: src CPU of the flush
131  *
132  * Like tlb_flush_all_cpus except this except the source vCPUs work is
133  * scheduled as safe work meaning all flushes will be complete once
134  * the source vCPUs safe work is complete. This will depend on when
135  * the guests translation ends the TB.
136  */
137 void tlb_flush_all_cpus_synced(CPUState *src_cpu);
138 /**
139  * tlb_flush_page_by_mmuidx:
140  * @cpu: CPU whose TLB should be flushed
141  * @addr: virtual address of page to be flushed
142  * @idxmap: bitmap of MMU indexes to flush
143  *
144  * Flush one page from the TLB of the specified CPU, for the specified
145  * MMU indexes.
146  */
147 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr,
148                               uint16_t idxmap);
149 /**
150  * tlb_flush_page_by_mmuidx_all_cpus:
151  * @cpu: Originating CPU of the flush
152  * @addr: virtual address of page to be flushed
153  * @idxmap: bitmap of MMU indexes to flush
154  *
155  * Flush one page from the TLB of all CPUs, for the specified
156  * MMU indexes.
157  */
158 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr,
159                                        uint16_t idxmap);
160 /**
161  * tlb_flush_page_by_mmuidx_all_cpus_synced:
162  * @cpu: Originating CPU of the flush
163  * @addr: virtual address of page to be flushed
164  * @idxmap: bitmap of MMU indexes to flush
165  *
166  * Flush one page from the TLB of all CPUs, for the specified MMU
167  * indexes like tlb_flush_page_by_mmuidx_all_cpus except the source
168  * vCPUs work is scheduled as safe work meaning all flushes will be
169  * complete once  the source vCPUs safe work is complete. This will
170  * depend on when the guests translation ends the TB.
171  */
172 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu, target_ulong addr,
173                                               uint16_t idxmap);
174 /**
175  * tlb_flush_by_mmuidx:
176  * @cpu: CPU whose TLB should be flushed
177  * @wait: If true ensure synchronisation by exiting the cpu_loop
178  * @idxmap: bitmap of MMU indexes to flush
179  *
180  * Flush all entries from the TLB of the specified CPU, for the specified
181  * MMU indexes.
182  */
183 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap);
184 /**
185  * tlb_flush_by_mmuidx_all_cpus:
186  * @cpu: Originating CPU of the flush
187  * @idxmap: bitmap of MMU indexes to flush
188  *
189  * Flush all entries from all TLBs of all CPUs, for the specified
190  * MMU indexes.
191  */
192 void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap);
193 /**
194  * tlb_flush_by_mmuidx_all_cpus_synced:
195  * @cpu: Originating CPU of the flush
196  * @idxmap: bitmap of MMU indexes to flush
197  *
198  * Flush all entries from all TLBs of all CPUs, for the specified
199  * MMU indexes like tlb_flush_by_mmuidx_all_cpus except except the source
200  * vCPUs work is scheduled as safe work meaning all flushes will be
201  * complete once  the source vCPUs safe work is complete. This will
202  * depend on when the guests translation ends the TB.
203  */
204 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu, uint16_t idxmap);
205 /**
206  * tlb_set_page_with_attrs:
207  * @cpu: CPU to add this TLB entry for
208  * @vaddr: virtual address of page to add entry for
209  * @paddr: physical address of the page
210  * @attrs: memory transaction attributes
211  * @prot: access permissions (PAGE_READ/PAGE_WRITE/PAGE_EXEC bits)
212  * @mmu_idx: MMU index to insert TLB entry for
213  * @size: size of the page in bytes
214  *
215  * Add an entry to this CPU's TLB (a mapping from virtual address
216  * @vaddr to physical address @paddr) with the specified memory
217  * transaction attributes. This is generally called by the target CPU
218  * specific code after it has been called through the tlb_fill()
219  * entry point and performed a successful page table walk to find
220  * the physical address and attributes for the virtual address
221  * which provoked the TLB miss.
222  *
223  * At most one entry for a given virtual address is permitted. Only a
224  * single TARGET_PAGE_SIZE region is mapped; the supplied @size is only
225  * used by tlb_flush_page.
226  */
227 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
228                              hwaddr paddr, MemTxAttrs attrs,
229                              int prot, int mmu_idx, target_ulong size);
230 /* tlb_set_page:
231  *
232  * This function is equivalent to calling tlb_set_page_with_attrs()
233  * with an @attrs argument of MEMTXATTRS_UNSPECIFIED. It's provided
234  * as a convenience for CPUs which don't use memory transaction attributes.
235  */
236 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
237                   hwaddr paddr, int prot,
238                   int mmu_idx, target_ulong size);
239 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr);
240 void probe_write(CPUArchState *env, target_ulong addr, int mmu_idx,
241                  uintptr_t retaddr);
242 #else
243 static inline void tlb_flush_page(CPUState *cpu, target_ulong addr)
244 {
245 }
246 static inline void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
247 {
248 }
249 static inline void tlb_flush_page_all_cpus_synced(CPUState *src,
250                                                   target_ulong addr)
251 {
252 }
253 static inline void tlb_flush(CPUState *cpu)
254 {
255 }
256 static inline void tlb_flush_all_cpus(CPUState *src_cpu)
257 {
258 }
259 static inline void tlb_flush_all_cpus_synced(CPUState *src_cpu)
260 {
261 }
262 static inline void tlb_flush_page_by_mmuidx(CPUState *cpu,
263                                             target_ulong addr, uint16_t idxmap)
264 {
265 }
266 
267 static inline void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
268 {
269 }
270 static inline void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu,
271                                                      target_ulong addr,
272                                                      uint16_t idxmap)
273 {
274 }
275 static inline void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu,
276                                                             target_ulong addr,
277                                                             uint16_t idxmap)
278 {
279 }
280 static inline void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap)
281 {
282 }
283 static inline void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu,
284                                                        uint16_t idxmap)
285 {
286 }
287 static inline void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
288 {
289 }
290 #endif
291 
292 #define CODE_GEN_ALIGN           16 /* must be >= of the size of a icache line */
293 
294 /* Estimated block size for TB allocation.  */
295 /* ??? The following is based on a 2015 survey of x86_64 host output.
296    Better would seem to be some sort of dynamically sized TB array,
297    adapting to the block sizes actually being produced.  */
298 #if defined(CONFIG_SOFTMMU)
299 #define CODE_GEN_AVG_BLOCK_SIZE 400
300 #else
301 #define CODE_GEN_AVG_BLOCK_SIZE 150
302 #endif
303 
304 #if defined(_ARCH_PPC) \
305     || defined(__x86_64__) || defined(__i386__) \
306     || defined(__sparc__) || defined(__aarch64__) \
307     || defined(__s390x__) || defined(__mips__) \
308     || defined(CONFIG_TCG_INTERPRETER)
309 /* NOTE: Direct jump patching must be atomic to be thread-safe. */
310 #define USE_DIRECT_JUMP
311 #endif
312 
313 struct TranslationBlock {
314     target_ulong pc;   /* simulated PC corresponding to this block (EIP + CS base) */
315     target_ulong cs_base; /* CS base for this block */
316     uint32_t flags; /* flags defining in which context the code was generated */
317     uint16_t size;      /* size of target code for this block (1 <=
318                            size <= TARGET_PAGE_SIZE) */
319     uint16_t icount;
320     uint32_t cflags;    /* compile flags */
321 #define CF_COUNT_MASK  0x7fff
322 #define CF_LAST_IO     0x8000 /* Last insn may be an IO access.  */
323 #define CF_NOCACHE     0x10000 /* To be freed after execution */
324 #define CF_USE_ICOUNT  0x20000
325 #define CF_IGNORE_ICOUNT 0x40000 /* Do not generate icount code */
326 
327     /* Per-vCPU dynamic tracing state used to generate this TB */
328     uint32_t trace_vcpu_dstate;
329 
330     uint16_t invalid;
331 
332     void *tc_ptr;    /* pointer to the translated code */
333     uint8_t *tc_search;  /* pointer to search data */
334     /* original tb when cflags has CF_NOCACHE */
335     struct TranslationBlock *orig_tb;
336     /* first and second physical page containing code. The lower bit
337        of the pointer tells the index in page_next[] */
338     struct TranslationBlock *page_next[2];
339     tb_page_addr_t page_addr[2];
340 
341     /* The following data are used to directly call another TB from
342      * the code of this one. This can be done either by emitting direct or
343      * indirect native jump instructions. These jumps are reset so that the TB
344      * just continue its execution. The TB can be linked to another one by
345      * setting one of the jump targets (or patching the jump instruction). Only
346      * two of such jumps are supported.
347      */
348     uint16_t jmp_reset_offset[2]; /* offset of original jump target */
349 #define TB_JMP_RESET_OFFSET_INVALID 0xffff /* indicates no jump generated */
350 #ifdef USE_DIRECT_JUMP
351     uint16_t jmp_insn_offset[2]; /* offset of native jump instruction */
352 #else
353     uintptr_t jmp_target_addr[2]; /* target address for indirect jump */
354 #endif
355     /* Each TB has an assosiated circular list of TBs jumping to this one.
356      * jmp_list_first points to the first TB jumping to this one.
357      * jmp_list_next is used to point to the next TB in a list.
358      * Since each TB can have two jumps, it can participate in two lists.
359      * jmp_list_first and jmp_list_next are 4-byte aligned pointers to a
360      * TranslationBlock structure, but the two least significant bits of
361      * them are used to encode which data field of the pointed TB should
362      * be used to traverse the list further from that TB:
363      * 0 => jmp_list_next[0], 1 => jmp_list_next[1], 2 => jmp_list_first.
364      * In other words, 0/1 tells which jump is used in the pointed TB,
365      * and 2 means that this is a pointer back to the target TB of this list.
366      */
367     uintptr_t jmp_list_next[2];
368     uintptr_t jmp_list_first;
369 };
370 
371 void tb_free(TranslationBlock *tb);
372 void tb_flush(CPUState *cpu);
373 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr);
374 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
375                                    target_ulong cs_base, uint32_t flags);
376 
377 #if defined(USE_DIRECT_JUMP)
378 
379 #if defined(CONFIG_TCG_INTERPRETER)
380 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr)
381 {
382     /* patch the branch destination */
383     atomic_set((int32_t *)jmp_addr, addr - (jmp_addr + 4));
384     /* no need to flush icache explicitly */
385 }
386 #elif defined(_ARCH_PPC)
387 void ppc_tb_set_jmp_target(uintptr_t jmp_addr, uintptr_t addr);
388 #define tb_set_jmp_target1 ppc_tb_set_jmp_target
389 #elif defined(__i386__) || defined(__x86_64__)
390 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr)
391 {
392     /* patch the branch destination */
393     atomic_set((int32_t *)jmp_addr, addr - (jmp_addr + 4));
394     /* no need to flush icache explicitly */
395 }
396 #elif defined(__s390x__)
397 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr)
398 {
399     /* patch the branch destination */
400     intptr_t disp = addr - (jmp_addr - 2);
401     atomic_set((int32_t *)jmp_addr, disp / 2);
402     /* no need to flush icache explicitly */
403 }
404 #elif defined(__aarch64__)
405 void aarch64_tb_set_jmp_target(uintptr_t jmp_addr, uintptr_t addr);
406 #define tb_set_jmp_target1 aarch64_tb_set_jmp_target
407 #elif defined(__sparc__) || defined(__mips__)
408 void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr);
409 #else
410 #error tb_set_jmp_target1 is missing
411 #endif
412 
413 static inline void tb_set_jmp_target(TranslationBlock *tb,
414                                      int n, uintptr_t addr)
415 {
416     uint16_t offset = tb->jmp_insn_offset[n];
417     tb_set_jmp_target1((uintptr_t)(tb->tc_ptr + offset), addr);
418 }
419 
420 #else
421 
422 /* set the jump target */
423 static inline void tb_set_jmp_target(TranslationBlock *tb,
424                                      int n, uintptr_t addr)
425 {
426     tb->jmp_target_addr[n] = addr;
427 }
428 
429 #endif
430 
431 /* Called with tb_lock held.  */
432 static inline void tb_add_jump(TranslationBlock *tb, int n,
433                                TranslationBlock *tb_next)
434 {
435     assert(n < ARRAY_SIZE(tb->jmp_list_next));
436     if (tb->jmp_list_next[n]) {
437         /* Another thread has already done this while we were
438          * outside of the lock; nothing to do in this case */
439         return;
440     }
441     qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc,
442                            "Linking TBs %p [" TARGET_FMT_lx
443                            "] index %d -> %p [" TARGET_FMT_lx "]\n",
444                            tb->tc_ptr, tb->pc, n,
445                            tb_next->tc_ptr, tb_next->pc);
446 
447     /* patch the native jump address */
448     tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc_ptr);
449 
450     /* add in TB jmp circular list */
451     tb->jmp_list_next[n] = tb_next->jmp_list_first;
452     tb_next->jmp_list_first = (uintptr_t)tb | n;
453 }
454 
455 /* GETPC is the true target of the return instruction that we'll execute.  */
456 #if defined(CONFIG_TCG_INTERPRETER)
457 extern uintptr_t tci_tb_ptr;
458 # define GETPC() tci_tb_ptr
459 #else
460 # define GETPC() \
461     ((uintptr_t)__builtin_extract_return_addr(__builtin_return_address(0)))
462 #endif
463 
464 /* The true return address will often point to a host insn that is part of
465    the next translated guest insn.  Adjust the address backward to point to
466    the middle of the call insn.  Subtracting one would do the job except for
467    several compressed mode architectures (arm, mips) which set the low bit
468    to indicate the compressed mode; subtracting two works around that.  It
469    is also the case that there are no host isas that contain a call insn
470    smaller than 4 bytes, so we don't worry about special-casing this.  */
471 #define GETPC_ADJ   2
472 
473 void tb_lock(void);
474 void tb_unlock(void);
475 void tb_lock_reset(void);
476 
477 #if !defined(CONFIG_USER_ONLY)
478 
479 struct MemoryRegion *iotlb_to_region(CPUState *cpu,
480                                      hwaddr index, MemTxAttrs attrs);
481 
482 void tlb_fill(CPUState *cpu, target_ulong addr, MMUAccessType access_type,
483               int mmu_idx, uintptr_t retaddr);
484 
485 #endif
486 
487 #if defined(CONFIG_USER_ONLY)
488 void mmap_lock(void);
489 void mmap_unlock(void);
490 bool have_mmap_lock(void);
491 
492 static inline tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
493 {
494     return addr;
495 }
496 #else
497 static inline void mmap_lock(void) {}
498 static inline void mmap_unlock(void) {}
499 
500 /* cputlb.c */
501 tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr);
502 
503 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length);
504 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr);
505 
506 /* exec.c */
507 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr);
508 
509 MemoryRegionSection *
510 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
511                                   hwaddr *xlat, hwaddr *plen);
512 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
513                                        MemoryRegionSection *section,
514                                        target_ulong vaddr,
515                                        hwaddr paddr, hwaddr xlat,
516                                        int prot,
517                                        target_ulong *address);
518 bool memory_region_is_unassigned(MemoryRegion *mr);
519 
520 #endif
521 
522 /* vl.c */
523 extern int singlestep;
524 
525 #endif
526