1 /* 2 * internal execution defines for qemu 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #ifndef EXEC_ALL_H 21 #define EXEC_ALL_H 22 23 #include "qemu-common.h" 24 #include "exec/tb-context.h" 25 26 /* allow to see translation results - the slowdown should be negligible, so we leave it */ 27 #define DEBUG_DISAS 28 29 /* Page tracking code uses ram addresses in system mode, and virtual 30 addresses in userspace mode. Define tb_page_addr_t to be an appropriate 31 type. */ 32 #if defined(CONFIG_USER_ONLY) 33 typedef abi_ulong tb_page_addr_t; 34 #else 35 typedef ram_addr_t tb_page_addr_t; 36 #endif 37 38 #include "qemu/log.h" 39 40 void gen_intermediate_code(CPUState *cpu, struct TranslationBlock *tb); 41 void restore_state_to_opc(CPUArchState *env, struct TranslationBlock *tb, 42 target_ulong *data); 43 44 void cpu_gen_init(void); 45 bool cpu_restore_state(CPUState *cpu, uintptr_t searched_pc); 46 47 void QEMU_NORETURN cpu_loop_exit_noexc(CPUState *cpu); 48 void QEMU_NORETURN cpu_io_recompile(CPUState *cpu, uintptr_t retaddr); 49 TranslationBlock *tb_gen_code(CPUState *cpu, 50 target_ulong pc, target_ulong cs_base, 51 uint32_t flags, 52 int cflags); 53 54 void QEMU_NORETURN cpu_loop_exit(CPUState *cpu); 55 void QEMU_NORETURN cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc); 56 void QEMU_NORETURN cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc); 57 58 #if !defined(CONFIG_USER_ONLY) 59 void cpu_reloading_memory_map(void); 60 /** 61 * cpu_address_space_init: 62 * @cpu: CPU to add this address space to 63 * @as: address space to add 64 * @asidx: integer index of this address space 65 * 66 * Add the specified address space to the CPU's cpu_ases list. 67 * The address space added with @asidx 0 is the one used for the 68 * convenience pointer cpu->as. 69 * The target-specific code which registers ASes is responsible 70 * for defining what semantics address space 0, 1, 2, etc have. 71 * 72 * Before the first call to this function, the caller must set 73 * cpu->num_ases to the total number of address spaces it needs 74 * to support. 75 * 76 * Note that with KVM only one address space is supported. 77 */ 78 void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx); 79 #endif 80 81 #if !defined(CONFIG_USER_ONLY) && defined(CONFIG_TCG) 82 /* cputlb.c */ 83 /** 84 * tlb_flush_page: 85 * @cpu: CPU whose TLB should be flushed 86 * @addr: virtual address of page to be flushed 87 * 88 * Flush one page from the TLB of the specified CPU, for all 89 * MMU indexes. 90 */ 91 void tlb_flush_page(CPUState *cpu, target_ulong addr); 92 /** 93 * tlb_flush_page_all_cpus: 94 * @cpu: src CPU of the flush 95 * @addr: virtual address of page to be flushed 96 * 97 * Flush one page from the TLB of the specified CPU, for all 98 * MMU indexes. 99 */ 100 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr); 101 /** 102 * tlb_flush_page_all_cpus_synced: 103 * @cpu: src CPU of the flush 104 * @addr: virtual address of page to be flushed 105 * 106 * Flush one page from the TLB of the specified CPU, for all MMU 107 * indexes like tlb_flush_page_all_cpus except the source vCPUs work 108 * is scheduled as safe work meaning all flushes will be complete once 109 * the source vCPUs safe work is complete. This will depend on when 110 * the guests translation ends the TB. 111 */ 112 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr); 113 /** 114 * tlb_flush: 115 * @cpu: CPU whose TLB should be flushed 116 * 117 * Flush the entire TLB for the specified CPU. Most CPU architectures 118 * allow the implementation to drop entries from the TLB at any time 119 * so this is generally safe. If more selective flushing is required 120 * use one of the other functions for efficiency. 121 */ 122 void tlb_flush(CPUState *cpu); 123 /** 124 * tlb_flush_all_cpus: 125 * @cpu: src CPU of the flush 126 */ 127 void tlb_flush_all_cpus(CPUState *src_cpu); 128 /** 129 * tlb_flush_all_cpus_synced: 130 * @cpu: src CPU of the flush 131 * 132 * Like tlb_flush_all_cpus except this except the source vCPUs work is 133 * scheduled as safe work meaning all flushes will be complete once 134 * the source vCPUs safe work is complete. This will depend on when 135 * the guests translation ends the TB. 136 */ 137 void tlb_flush_all_cpus_synced(CPUState *src_cpu); 138 /** 139 * tlb_flush_page_by_mmuidx: 140 * @cpu: CPU whose TLB should be flushed 141 * @addr: virtual address of page to be flushed 142 * @idxmap: bitmap of MMU indexes to flush 143 * 144 * Flush one page from the TLB of the specified CPU, for the specified 145 * MMU indexes. 146 */ 147 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, 148 uint16_t idxmap); 149 /** 150 * tlb_flush_page_by_mmuidx_all_cpus: 151 * @cpu: Originating CPU of the flush 152 * @addr: virtual address of page to be flushed 153 * @idxmap: bitmap of MMU indexes to flush 154 * 155 * Flush one page from the TLB of all CPUs, for the specified 156 * MMU indexes. 157 */ 158 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr, 159 uint16_t idxmap); 160 /** 161 * tlb_flush_page_by_mmuidx_all_cpus_synced: 162 * @cpu: Originating CPU of the flush 163 * @addr: virtual address of page to be flushed 164 * @idxmap: bitmap of MMU indexes to flush 165 * 166 * Flush one page from the TLB of all CPUs, for the specified MMU 167 * indexes like tlb_flush_page_by_mmuidx_all_cpus except the source 168 * vCPUs work is scheduled as safe work meaning all flushes will be 169 * complete once the source vCPUs safe work is complete. This will 170 * depend on when the guests translation ends the TB. 171 */ 172 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu, target_ulong addr, 173 uint16_t idxmap); 174 /** 175 * tlb_flush_by_mmuidx: 176 * @cpu: CPU whose TLB should be flushed 177 * @wait: If true ensure synchronisation by exiting the cpu_loop 178 * @idxmap: bitmap of MMU indexes to flush 179 * 180 * Flush all entries from the TLB of the specified CPU, for the specified 181 * MMU indexes. 182 */ 183 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap); 184 /** 185 * tlb_flush_by_mmuidx_all_cpus: 186 * @cpu: Originating CPU of the flush 187 * @idxmap: bitmap of MMU indexes to flush 188 * 189 * Flush all entries from all TLBs of all CPUs, for the specified 190 * MMU indexes. 191 */ 192 void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap); 193 /** 194 * tlb_flush_by_mmuidx_all_cpus_synced: 195 * @cpu: Originating CPU of the flush 196 * @idxmap: bitmap of MMU indexes to flush 197 * 198 * Flush all entries from all TLBs of all CPUs, for the specified 199 * MMU indexes like tlb_flush_by_mmuidx_all_cpus except except the source 200 * vCPUs work is scheduled as safe work meaning all flushes will be 201 * complete once the source vCPUs safe work is complete. This will 202 * depend on when the guests translation ends the TB. 203 */ 204 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu, uint16_t idxmap); 205 /** 206 * tlb_set_page_with_attrs: 207 * @cpu: CPU to add this TLB entry for 208 * @vaddr: virtual address of page to add entry for 209 * @paddr: physical address of the page 210 * @attrs: memory transaction attributes 211 * @prot: access permissions (PAGE_READ/PAGE_WRITE/PAGE_EXEC bits) 212 * @mmu_idx: MMU index to insert TLB entry for 213 * @size: size of the page in bytes 214 * 215 * Add an entry to this CPU's TLB (a mapping from virtual address 216 * @vaddr to physical address @paddr) with the specified memory 217 * transaction attributes. This is generally called by the target CPU 218 * specific code after it has been called through the tlb_fill() 219 * entry point and performed a successful page table walk to find 220 * the physical address and attributes for the virtual address 221 * which provoked the TLB miss. 222 * 223 * At most one entry for a given virtual address is permitted. Only a 224 * single TARGET_PAGE_SIZE region is mapped; the supplied @size is only 225 * used by tlb_flush_page. 226 */ 227 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr, 228 hwaddr paddr, MemTxAttrs attrs, 229 int prot, int mmu_idx, target_ulong size); 230 /* tlb_set_page: 231 * 232 * This function is equivalent to calling tlb_set_page_with_attrs() 233 * with an @attrs argument of MEMTXATTRS_UNSPECIFIED. It's provided 234 * as a convenience for CPUs which don't use memory transaction attributes. 235 */ 236 void tlb_set_page(CPUState *cpu, target_ulong vaddr, 237 hwaddr paddr, int prot, 238 int mmu_idx, target_ulong size); 239 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr); 240 void probe_write(CPUArchState *env, target_ulong addr, int mmu_idx, 241 uintptr_t retaddr); 242 #else 243 static inline void tlb_flush_page(CPUState *cpu, target_ulong addr) 244 { 245 } 246 static inline void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr) 247 { 248 } 249 static inline void tlb_flush_page_all_cpus_synced(CPUState *src, 250 target_ulong addr) 251 { 252 } 253 static inline void tlb_flush(CPUState *cpu) 254 { 255 } 256 static inline void tlb_flush_all_cpus(CPUState *src_cpu) 257 { 258 } 259 static inline void tlb_flush_all_cpus_synced(CPUState *src_cpu) 260 { 261 } 262 static inline void tlb_flush_page_by_mmuidx(CPUState *cpu, 263 target_ulong addr, uint16_t idxmap) 264 { 265 } 266 267 static inline void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap) 268 { 269 } 270 static inline void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu, 271 target_ulong addr, 272 uint16_t idxmap) 273 { 274 } 275 static inline void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu, 276 target_ulong addr, 277 uint16_t idxmap) 278 { 279 } 280 static inline void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap) 281 { 282 } 283 static inline void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu, 284 uint16_t idxmap) 285 { 286 } 287 static inline void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr) 288 { 289 } 290 #endif 291 292 #define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */ 293 294 /* Estimated block size for TB allocation. */ 295 /* ??? The following is based on a 2015 survey of x86_64 host output. 296 Better would seem to be some sort of dynamically sized TB array, 297 adapting to the block sizes actually being produced. */ 298 #if defined(CONFIG_SOFTMMU) 299 #define CODE_GEN_AVG_BLOCK_SIZE 400 300 #else 301 #define CODE_GEN_AVG_BLOCK_SIZE 150 302 #endif 303 304 #if defined(_ARCH_PPC) \ 305 || defined(__x86_64__) || defined(__i386__) \ 306 || defined(__sparc__) || defined(__aarch64__) \ 307 || defined(__s390x__) || defined(__mips__) \ 308 || defined(CONFIG_TCG_INTERPRETER) 309 /* NOTE: Direct jump patching must be atomic to be thread-safe. */ 310 #define USE_DIRECT_JUMP 311 #endif 312 313 struct TranslationBlock { 314 target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */ 315 target_ulong cs_base; /* CS base for this block */ 316 uint32_t flags; /* flags defining in which context the code was generated */ 317 uint16_t size; /* size of target code for this block (1 <= 318 size <= TARGET_PAGE_SIZE) */ 319 uint16_t icount; 320 uint32_t cflags; /* compile flags */ 321 #define CF_COUNT_MASK 0x7fff 322 #define CF_LAST_IO 0x8000 /* Last insn may be an IO access. */ 323 #define CF_NOCACHE 0x10000 /* To be freed after execution */ 324 #define CF_USE_ICOUNT 0x20000 325 #define CF_IGNORE_ICOUNT 0x40000 /* Do not generate icount code */ 326 327 /* Per-vCPU dynamic tracing state used to generate this TB */ 328 uint32_t trace_vcpu_dstate; 329 330 uint16_t invalid; 331 332 void *tc_ptr; /* pointer to the translated code */ 333 uint8_t *tc_search; /* pointer to search data */ 334 /* original tb when cflags has CF_NOCACHE */ 335 struct TranslationBlock *orig_tb; 336 /* first and second physical page containing code. The lower bit 337 of the pointer tells the index in page_next[] */ 338 struct TranslationBlock *page_next[2]; 339 tb_page_addr_t page_addr[2]; 340 341 /* The following data are used to directly call another TB from 342 * the code of this one. This can be done either by emitting direct or 343 * indirect native jump instructions. These jumps are reset so that the TB 344 * just continue its execution. The TB can be linked to another one by 345 * setting one of the jump targets (or patching the jump instruction). Only 346 * two of such jumps are supported. 347 */ 348 uint16_t jmp_reset_offset[2]; /* offset of original jump target */ 349 #define TB_JMP_RESET_OFFSET_INVALID 0xffff /* indicates no jump generated */ 350 #ifdef USE_DIRECT_JUMP 351 uint16_t jmp_insn_offset[2]; /* offset of native jump instruction */ 352 #else 353 uintptr_t jmp_target_addr[2]; /* target address for indirect jump */ 354 #endif 355 /* Each TB has an assosiated circular list of TBs jumping to this one. 356 * jmp_list_first points to the first TB jumping to this one. 357 * jmp_list_next is used to point to the next TB in a list. 358 * Since each TB can have two jumps, it can participate in two lists. 359 * jmp_list_first and jmp_list_next are 4-byte aligned pointers to a 360 * TranslationBlock structure, but the two least significant bits of 361 * them are used to encode which data field of the pointed TB should 362 * be used to traverse the list further from that TB: 363 * 0 => jmp_list_next[0], 1 => jmp_list_next[1], 2 => jmp_list_first. 364 * In other words, 0/1 tells which jump is used in the pointed TB, 365 * and 2 means that this is a pointer back to the target TB of this list. 366 */ 367 uintptr_t jmp_list_next[2]; 368 uintptr_t jmp_list_first; 369 }; 370 371 void tb_free(TranslationBlock *tb); 372 void tb_flush(CPUState *cpu); 373 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr); 374 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc, 375 target_ulong cs_base, uint32_t flags); 376 377 #if defined(USE_DIRECT_JUMP) 378 379 #if defined(CONFIG_TCG_INTERPRETER) 380 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr) 381 { 382 /* patch the branch destination */ 383 atomic_set((int32_t *)jmp_addr, addr - (jmp_addr + 4)); 384 /* no need to flush icache explicitly */ 385 } 386 #elif defined(_ARCH_PPC) 387 void ppc_tb_set_jmp_target(uintptr_t jmp_addr, uintptr_t addr); 388 #define tb_set_jmp_target1 ppc_tb_set_jmp_target 389 #elif defined(__i386__) || defined(__x86_64__) 390 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr) 391 { 392 /* patch the branch destination */ 393 atomic_set((int32_t *)jmp_addr, addr - (jmp_addr + 4)); 394 /* no need to flush icache explicitly */ 395 } 396 #elif defined(__s390x__) 397 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr) 398 { 399 /* patch the branch destination */ 400 intptr_t disp = addr - (jmp_addr - 2); 401 atomic_set((int32_t *)jmp_addr, disp / 2); 402 /* no need to flush icache explicitly */ 403 } 404 #elif defined(__aarch64__) 405 void aarch64_tb_set_jmp_target(uintptr_t jmp_addr, uintptr_t addr); 406 #define tb_set_jmp_target1 aarch64_tb_set_jmp_target 407 #elif defined(__sparc__) || defined(__mips__) 408 void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr); 409 #else 410 #error tb_set_jmp_target1 is missing 411 #endif 412 413 static inline void tb_set_jmp_target(TranslationBlock *tb, 414 int n, uintptr_t addr) 415 { 416 uint16_t offset = tb->jmp_insn_offset[n]; 417 tb_set_jmp_target1((uintptr_t)(tb->tc_ptr + offset), addr); 418 } 419 420 #else 421 422 /* set the jump target */ 423 static inline void tb_set_jmp_target(TranslationBlock *tb, 424 int n, uintptr_t addr) 425 { 426 tb->jmp_target_addr[n] = addr; 427 } 428 429 #endif 430 431 /* Called with tb_lock held. */ 432 static inline void tb_add_jump(TranslationBlock *tb, int n, 433 TranslationBlock *tb_next) 434 { 435 assert(n < ARRAY_SIZE(tb->jmp_list_next)); 436 if (tb->jmp_list_next[n]) { 437 /* Another thread has already done this while we were 438 * outside of the lock; nothing to do in this case */ 439 return; 440 } 441 qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc, 442 "Linking TBs %p [" TARGET_FMT_lx 443 "] index %d -> %p [" TARGET_FMT_lx "]\n", 444 tb->tc_ptr, tb->pc, n, 445 tb_next->tc_ptr, tb_next->pc); 446 447 /* patch the native jump address */ 448 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc_ptr); 449 450 /* add in TB jmp circular list */ 451 tb->jmp_list_next[n] = tb_next->jmp_list_first; 452 tb_next->jmp_list_first = (uintptr_t)tb | n; 453 } 454 455 /* GETPC is the true target of the return instruction that we'll execute. */ 456 #if defined(CONFIG_TCG_INTERPRETER) 457 extern uintptr_t tci_tb_ptr; 458 # define GETPC() tci_tb_ptr 459 #else 460 # define GETPC() \ 461 ((uintptr_t)__builtin_extract_return_addr(__builtin_return_address(0))) 462 #endif 463 464 /* The true return address will often point to a host insn that is part of 465 the next translated guest insn. Adjust the address backward to point to 466 the middle of the call insn. Subtracting one would do the job except for 467 several compressed mode architectures (arm, mips) which set the low bit 468 to indicate the compressed mode; subtracting two works around that. It 469 is also the case that there are no host isas that contain a call insn 470 smaller than 4 bytes, so we don't worry about special-casing this. */ 471 #define GETPC_ADJ 2 472 473 void tb_lock(void); 474 void tb_unlock(void); 475 void tb_lock_reset(void); 476 477 #if !defined(CONFIG_USER_ONLY) 478 479 struct MemoryRegion *iotlb_to_region(CPUState *cpu, 480 hwaddr index, MemTxAttrs attrs); 481 482 void tlb_fill(CPUState *cpu, target_ulong addr, MMUAccessType access_type, 483 int mmu_idx, uintptr_t retaddr); 484 485 #endif 486 487 #if defined(CONFIG_USER_ONLY) 488 void mmap_lock(void); 489 void mmap_unlock(void); 490 bool have_mmap_lock(void); 491 492 static inline tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr) 493 { 494 return addr; 495 } 496 #else 497 static inline void mmap_lock(void) {} 498 static inline void mmap_unlock(void) {} 499 500 /* cputlb.c */ 501 tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr); 502 503 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length); 504 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr); 505 506 /* exec.c */ 507 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr); 508 509 MemoryRegionSection * 510 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr, 511 hwaddr *xlat, hwaddr *plen); 512 hwaddr memory_region_section_get_iotlb(CPUState *cpu, 513 MemoryRegionSection *section, 514 target_ulong vaddr, 515 hwaddr paddr, hwaddr xlat, 516 int prot, 517 target_ulong *address); 518 bool memory_region_is_unassigned(MemoryRegion *mr); 519 520 #endif 521 522 /* vl.c */ 523 extern int singlestep; 524 525 #endif 526