1 /* 2 * internal execution defines for qemu 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #ifndef EXEC_ALL_H 21 #define EXEC_ALL_H 22 23 #include "cpu.h" 24 #ifdef CONFIG_TCG 25 #include "exec/cpu_ldst.h" 26 #endif 27 #include "qemu/interval-tree.h" 28 29 /* allow to see translation results - the slowdown should be negligible, so we leave it */ 30 #define DEBUG_DISAS 31 32 /* Page tracking code uses ram addresses in system mode, and virtual 33 addresses in userspace mode. Define tb_page_addr_t to be an appropriate 34 type. */ 35 #if defined(CONFIG_USER_ONLY) 36 typedef abi_ulong tb_page_addr_t; 37 #define TB_PAGE_ADDR_FMT TARGET_ABI_FMT_lx 38 #else 39 typedef ram_addr_t tb_page_addr_t; 40 #define TB_PAGE_ADDR_FMT RAM_ADDR_FMT 41 #endif 42 43 /** 44 * cpu_unwind_state_data: 45 * @cpu: the cpu context 46 * @host_pc: the host pc within the translation 47 * @data: output data 48 * 49 * Attempt to load the the unwind state for a host pc occurring in 50 * translated code. If @host_pc is not in translated code, the 51 * function returns false; otherwise @data is loaded. 52 * This is the same unwind info as given to restore_state_to_opc. 53 */ 54 bool cpu_unwind_state_data(CPUState *cpu, uintptr_t host_pc, uint64_t *data); 55 56 /** 57 * cpu_restore_state: 58 * @cpu: the cpu context 59 * @host_pc: the host pc within the translation 60 * @return: true if state was restored, false otherwise 61 * 62 * Attempt to restore the state for a fault occurring in translated 63 * code. If @host_pc is not in translated code no state is 64 * restored and the function returns false. 65 */ 66 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc); 67 68 G_NORETURN void cpu_loop_exit_noexc(CPUState *cpu); 69 G_NORETURN void cpu_loop_exit(CPUState *cpu); 70 G_NORETURN void cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc); 71 G_NORETURN void cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc); 72 73 /** 74 * cpu_loop_exit_requested: 75 * @cpu: The CPU state to be tested 76 * 77 * Indicate if somebody asked for a return of the CPU to the main loop 78 * (e.g., via cpu_exit() or cpu_interrupt()). 79 * 80 * This is helpful for architectures that support interruptible 81 * instructions. After writing back all state to registers/memory, this 82 * call can be used to check if it makes sense to return to the main loop 83 * or to continue executing the interruptible instruction. 84 */ 85 static inline bool cpu_loop_exit_requested(CPUState *cpu) 86 { 87 return (int32_t)qatomic_read(&cpu_neg(cpu)->icount_decr.u32) < 0; 88 } 89 90 #if !defined(CONFIG_USER_ONLY) && defined(CONFIG_TCG) 91 /* cputlb.c */ 92 /** 93 * tlb_init - initialize a CPU's TLB 94 * @cpu: CPU whose TLB should be initialized 95 */ 96 void tlb_init(CPUState *cpu); 97 /** 98 * tlb_destroy - destroy a CPU's TLB 99 * @cpu: CPU whose TLB should be destroyed 100 */ 101 void tlb_destroy(CPUState *cpu); 102 /** 103 * tlb_flush_page: 104 * @cpu: CPU whose TLB should be flushed 105 * @addr: virtual address of page to be flushed 106 * 107 * Flush one page from the TLB of the specified CPU, for all 108 * MMU indexes. 109 */ 110 void tlb_flush_page(CPUState *cpu, target_ulong addr); 111 /** 112 * tlb_flush_page_all_cpus: 113 * @cpu: src CPU of the flush 114 * @addr: virtual address of page to be flushed 115 * 116 * Flush one page from the TLB of the specified CPU, for all 117 * MMU indexes. 118 */ 119 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr); 120 /** 121 * tlb_flush_page_all_cpus_synced: 122 * @cpu: src CPU of the flush 123 * @addr: virtual address of page to be flushed 124 * 125 * Flush one page from the TLB of the specified CPU, for all MMU 126 * indexes like tlb_flush_page_all_cpus except the source vCPUs work 127 * is scheduled as safe work meaning all flushes will be complete once 128 * the source vCPUs safe work is complete. This will depend on when 129 * the guests translation ends the TB. 130 */ 131 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr); 132 /** 133 * tlb_flush: 134 * @cpu: CPU whose TLB should be flushed 135 * 136 * Flush the entire TLB for the specified CPU. Most CPU architectures 137 * allow the implementation to drop entries from the TLB at any time 138 * so this is generally safe. If more selective flushing is required 139 * use one of the other functions for efficiency. 140 */ 141 void tlb_flush(CPUState *cpu); 142 /** 143 * tlb_flush_all_cpus: 144 * @cpu: src CPU of the flush 145 */ 146 void tlb_flush_all_cpus(CPUState *src_cpu); 147 /** 148 * tlb_flush_all_cpus_synced: 149 * @cpu: src CPU of the flush 150 * 151 * Like tlb_flush_all_cpus except this except the source vCPUs work is 152 * scheduled as safe work meaning all flushes will be complete once 153 * the source vCPUs safe work is complete. This will depend on when 154 * the guests translation ends the TB. 155 */ 156 void tlb_flush_all_cpus_synced(CPUState *src_cpu); 157 /** 158 * tlb_flush_page_by_mmuidx: 159 * @cpu: CPU whose TLB should be flushed 160 * @addr: virtual address of page to be flushed 161 * @idxmap: bitmap of MMU indexes to flush 162 * 163 * Flush one page from the TLB of the specified CPU, for the specified 164 * MMU indexes. 165 */ 166 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, 167 uint16_t idxmap); 168 /** 169 * tlb_flush_page_by_mmuidx_all_cpus: 170 * @cpu: Originating CPU of the flush 171 * @addr: virtual address of page to be flushed 172 * @idxmap: bitmap of MMU indexes to flush 173 * 174 * Flush one page from the TLB of all CPUs, for the specified 175 * MMU indexes. 176 */ 177 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr, 178 uint16_t idxmap); 179 /** 180 * tlb_flush_page_by_mmuidx_all_cpus_synced: 181 * @cpu: Originating CPU of the flush 182 * @addr: virtual address of page to be flushed 183 * @idxmap: bitmap of MMU indexes to flush 184 * 185 * Flush one page from the TLB of all CPUs, for the specified MMU 186 * indexes like tlb_flush_page_by_mmuidx_all_cpus except the source 187 * vCPUs work is scheduled as safe work meaning all flushes will be 188 * complete once the source vCPUs safe work is complete. This will 189 * depend on when the guests translation ends the TB. 190 */ 191 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu, target_ulong addr, 192 uint16_t idxmap); 193 /** 194 * tlb_flush_by_mmuidx: 195 * @cpu: CPU whose TLB should be flushed 196 * @wait: If true ensure synchronisation by exiting the cpu_loop 197 * @idxmap: bitmap of MMU indexes to flush 198 * 199 * Flush all entries from the TLB of the specified CPU, for the specified 200 * MMU indexes. 201 */ 202 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap); 203 /** 204 * tlb_flush_by_mmuidx_all_cpus: 205 * @cpu: Originating CPU of the flush 206 * @idxmap: bitmap of MMU indexes to flush 207 * 208 * Flush all entries from all TLBs of all CPUs, for the specified 209 * MMU indexes. 210 */ 211 void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap); 212 /** 213 * tlb_flush_by_mmuidx_all_cpus_synced: 214 * @cpu: Originating CPU of the flush 215 * @idxmap: bitmap of MMU indexes to flush 216 * 217 * Flush all entries from all TLBs of all CPUs, for the specified 218 * MMU indexes like tlb_flush_by_mmuidx_all_cpus except except the source 219 * vCPUs work is scheduled as safe work meaning all flushes will be 220 * complete once the source vCPUs safe work is complete. This will 221 * depend on when the guests translation ends the TB. 222 */ 223 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu, uint16_t idxmap); 224 225 /** 226 * tlb_flush_page_bits_by_mmuidx 227 * @cpu: CPU whose TLB should be flushed 228 * @addr: virtual address of page to be flushed 229 * @idxmap: bitmap of mmu indexes to flush 230 * @bits: number of significant bits in address 231 * 232 * Similar to tlb_flush_page_mask, but with a bitmap of indexes. 233 */ 234 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, target_ulong addr, 235 uint16_t idxmap, unsigned bits); 236 237 /* Similarly, with broadcast and syncing. */ 238 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr, 239 uint16_t idxmap, unsigned bits); 240 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced 241 (CPUState *cpu, target_ulong addr, uint16_t idxmap, unsigned bits); 242 243 /** 244 * tlb_flush_range_by_mmuidx 245 * @cpu: CPU whose TLB should be flushed 246 * @addr: virtual address of the start of the range to be flushed 247 * @len: length of range to be flushed 248 * @idxmap: bitmap of mmu indexes to flush 249 * @bits: number of significant bits in address 250 * 251 * For each mmuidx in @idxmap, flush all pages within [@addr,@addr+@len), 252 * comparing only the low @bits worth of each virtual page. 253 */ 254 void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr, 255 target_ulong len, uint16_t idxmap, 256 unsigned bits); 257 258 /* Similarly, with broadcast and syncing. */ 259 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr, 260 target_ulong len, uint16_t idxmap, 261 unsigned bits); 262 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *cpu, 263 target_ulong addr, 264 target_ulong len, 265 uint16_t idxmap, 266 unsigned bits); 267 268 /** 269 * tlb_set_page_full: 270 * @cpu: CPU context 271 * @mmu_idx: mmu index of the tlb to modify 272 * @vaddr: virtual address of the entry to add 273 * @full: the details of the tlb entry 274 * 275 * Add an entry to @cpu tlb index @mmu_idx. All of the fields of 276 * @full must be filled, except for xlat_section, and constitute 277 * the complete description of the translated page. 278 * 279 * This is generally called by the target tlb_fill function after 280 * having performed a successful page table walk to find the physical 281 * address and attributes for the translation. 282 * 283 * At most one entry for a given virtual address is permitted. Only a 284 * single TARGET_PAGE_SIZE region is mapped; @full->lg_page_size is only 285 * used by tlb_flush_page. 286 */ 287 void tlb_set_page_full(CPUState *cpu, int mmu_idx, target_ulong vaddr, 288 CPUTLBEntryFull *full); 289 290 /** 291 * tlb_set_page_with_attrs: 292 * @cpu: CPU to add this TLB entry for 293 * @vaddr: virtual address of page to add entry for 294 * @paddr: physical address of the page 295 * @attrs: memory transaction attributes 296 * @prot: access permissions (PAGE_READ/PAGE_WRITE/PAGE_EXEC bits) 297 * @mmu_idx: MMU index to insert TLB entry for 298 * @size: size of the page in bytes 299 * 300 * Add an entry to this CPU's TLB (a mapping from virtual address 301 * @vaddr to physical address @paddr) with the specified memory 302 * transaction attributes. This is generally called by the target CPU 303 * specific code after it has been called through the tlb_fill() 304 * entry point and performed a successful page table walk to find 305 * the physical address and attributes for the virtual address 306 * which provoked the TLB miss. 307 * 308 * At most one entry for a given virtual address is permitted. Only a 309 * single TARGET_PAGE_SIZE region is mapped; the supplied @size is only 310 * used by tlb_flush_page. 311 */ 312 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr, 313 hwaddr paddr, MemTxAttrs attrs, 314 int prot, int mmu_idx, target_ulong size); 315 /* tlb_set_page: 316 * 317 * This function is equivalent to calling tlb_set_page_with_attrs() 318 * with an @attrs argument of MEMTXATTRS_UNSPECIFIED. It's provided 319 * as a convenience for CPUs which don't use memory transaction attributes. 320 */ 321 void tlb_set_page(CPUState *cpu, target_ulong vaddr, 322 hwaddr paddr, int prot, 323 int mmu_idx, target_ulong size); 324 #else 325 static inline void tlb_init(CPUState *cpu) 326 { 327 } 328 static inline void tlb_destroy(CPUState *cpu) 329 { 330 } 331 static inline void tlb_flush_page(CPUState *cpu, target_ulong addr) 332 { 333 } 334 static inline void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr) 335 { 336 } 337 static inline void tlb_flush_page_all_cpus_synced(CPUState *src, 338 target_ulong addr) 339 { 340 } 341 static inline void tlb_flush(CPUState *cpu) 342 { 343 } 344 static inline void tlb_flush_all_cpus(CPUState *src_cpu) 345 { 346 } 347 static inline void tlb_flush_all_cpus_synced(CPUState *src_cpu) 348 { 349 } 350 static inline void tlb_flush_page_by_mmuidx(CPUState *cpu, 351 target_ulong addr, uint16_t idxmap) 352 { 353 } 354 355 static inline void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap) 356 { 357 } 358 static inline void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu, 359 target_ulong addr, 360 uint16_t idxmap) 361 { 362 } 363 static inline void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu, 364 target_ulong addr, 365 uint16_t idxmap) 366 { 367 } 368 static inline void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap) 369 { 370 } 371 372 static inline void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu, 373 uint16_t idxmap) 374 { 375 } 376 static inline void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, 377 target_ulong addr, 378 uint16_t idxmap, 379 unsigned bits) 380 { 381 } 382 static inline void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *cpu, 383 target_ulong addr, 384 uint16_t idxmap, 385 unsigned bits) 386 { 387 } 388 static inline void 389 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *cpu, target_ulong addr, 390 uint16_t idxmap, unsigned bits) 391 { 392 } 393 static inline void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr, 394 target_ulong len, uint16_t idxmap, 395 unsigned bits) 396 { 397 } 398 static inline void tlb_flush_range_by_mmuidx_all_cpus(CPUState *cpu, 399 target_ulong addr, 400 target_ulong len, 401 uint16_t idxmap, 402 unsigned bits) 403 { 404 } 405 static inline void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *cpu, 406 target_ulong addr, 407 target_long len, 408 uint16_t idxmap, 409 unsigned bits) 410 { 411 } 412 #endif 413 /** 414 * probe_access: 415 * @env: CPUArchState 416 * @addr: guest virtual address to look up 417 * @size: size of the access 418 * @access_type: read, write or execute permission 419 * @mmu_idx: MMU index to use for lookup 420 * @retaddr: return address for unwinding 421 * 422 * Look up the guest virtual address @addr. Raise an exception if the 423 * page does not satisfy @access_type. Raise an exception if the 424 * access (@addr, @size) hits a watchpoint. For writes, mark a clean 425 * page as dirty. 426 * 427 * Finally, return the host address for a page that is backed by RAM, 428 * or NULL if the page requires I/O. 429 */ 430 void *probe_access(CPUArchState *env, target_ulong addr, int size, 431 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr); 432 433 static inline void *probe_write(CPUArchState *env, target_ulong addr, int size, 434 int mmu_idx, uintptr_t retaddr) 435 { 436 return probe_access(env, addr, size, MMU_DATA_STORE, mmu_idx, retaddr); 437 } 438 439 static inline void *probe_read(CPUArchState *env, target_ulong addr, int size, 440 int mmu_idx, uintptr_t retaddr) 441 { 442 return probe_access(env, addr, size, MMU_DATA_LOAD, mmu_idx, retaddr); 443 } 444 445 /** 446 * probe_access_flags: 447 * @env: CPUArchState 448 * @addr: guest virtual address to look up 449 * @access_type: read, write or execute permission 450 * @mmu_idx: MMU index to use for lookup 451 * @nonfault: suppress the fault 452 * @phost: return value for host address 453 * @retaddr: return address for unwinding 454 * 455 * Similar to probe_access, loosely returning the TLB_FLAGS_MASK for 456 * the page, and storing the host address for RAM in @phost. 457 * 458 * If @nonfault is set, do not raise an exception but return TLB_INVALID_MASK. 459 * Do not handle watchpoints, but include TLB_WATCHPOINT in the returned flags. 460 * Do handle clean pages, so exclude TLB_NOTDIRY from the returned flags. 461 * For simplicity, all "mmio-like" flags are folded to TLB_MMIO. 462 */ 463 int probe_access_flags(CPUArchState *env, target_ulong addr, 464 MMUAccessType access_type, int mmu_idx, 465 bool nonfault, void **phost, uintptr_t retaddr); 466 467 #ifndef CONFIG_USER_ONLY 468 /** 469 * probe_access_full: 470 * Like probe_access_flags, except also return into @pfull. 471 * 472 * The CPUTLBEntryFull structure returned via @pfull is transient 473 * and must be consumed or copied immediately, before any further 474 * access or changes to TLB @mmu_idx. 475 */ 476 int probe_access_full(CPUArchState *env, target_ulong addr, 477 MMUAccessType access_type, int mmu_idx, 478 bool nonfault, void **phost, 479 CPUTLBEntryFull **pfull, uintptr_t retaddr); 480 #endif 481 482 #define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */ 483 484 /* Estimated block size for TB allocation. */ 485 /* ??? The following is based on a 2015 survey of x86_64 host output. 486 Better would seem to be some sort of dynamically sized TB array, 487 adapting to the block sizes actually being produced. */ 488 #if defined(CONFIG_SOFTMMU) 489 #define CODE_GEN_AVG_BLOCK_SIZE 400 490 #else 491 #define CODE_GEN_AVG_BLOCK_SIZE 150 492 #endif 493 494 /* 495 * Translation Cache-related fields of a TB. 496 * This struct exists just for convenience; we keep track of TB's in a binary 497 * search tree, and the only fields needed to compare TB's in the tree are 498 * @ptr and @size. 499 * Note: the address of search data can be obtained by adding @size to @ptr. 500 */ 501 struct tb_tc { 502 const void *ptr; /* pointer to the translated code */ 503 size_t size; 504 }; 505 506 struct TranslationBlock { 507 #if !TARGET_TB_PCREL 508 /* 509 * Guest PC corresponding to this block. This must be the true 510 * virtual address. Therefore e.g. x86 stores EIP + CS_BASE, and 511 * targets like Arm, MIPS, HP-PA, which reuse low bits for ISA or 512 * privilege, must store those bits elsewhere. 513 * 514 * If TARGET_TB_PCREL, the opcodes for the TranslationBlock are 515 * written such that the TB is associated only with the physical 516 * page and may be run in any virtual address context. In this case, 517 * PC must always be taken from ENV in a target-specific manner. 518 * Unwind information is taken as offsets from the page, to be 519 * deposited into the "current" PC. 520 */ 521 target_ulong pc; 522 #endif 523 524 /* 525 * Target-specific data associated with the TranslationBlock, e.g.: 526 * x86: the original user, the Code Segment virtual base, 527 * arm: an extension of tb->flags, 528 * s390x: instruction data for EXECUTE, 529 * sparc: the next pc of the instruction queue (for delay slots). 530 */ 531 target_ulong cs_base; 532 533 uint32_t flags; /* flags defining in which context the code was generated */ 534 uint32_t cflags; /* compile flags */ 535 536 /* Note that TCG_MAX_INSNS is 512; we validate this match elsewhere. */ 537 #define CF_COUNT_MASK 0x000001ff 538 #define CF_NO_GOTO_TB 0x00000200 /* Do not chain with goto_tb */ 539 #define CF_NO_GOTO_PTR 0x00000400 /* Do not chain with goto_ptr */ 540 #define CF_SINGLE_STEP 0x00000800 /* gdbstub single-step in effect */ 541 #define CF_LAST_IO 0x00008000 /* Last insn may be an IO access. */ 542 #define CF_MEMI_ONLY 0x00010000 /* Only instrument memory ops */ 543 #define CF_USE_ICOUNT 0x00020000 544 #define CF_INVALID 0x00040000 /* TB is stale. Set with @jmp_lock held */ 545 #define CF_PARALLEL 0x00080000 /* Generate code for a parallel context */ 546 #define CF_NOIRQ 0x00100000 /* Generate an uninterruptible TB */ 547 #define CF_CLUSTER_MASK 0xff000000 /* Top 8 bits are cluster ID */ 548 #define CF_CLUSTER_SHIFT 24 549 550 /* Per-vCPU dynamic tracing state used to generate this TB */ 551 uint32_t trace_vcpu_dstate; 552 553 /* 554 * Above fields used for comparing 555 */ 556 557 /* size of target code for this block (1 <= size <= TARGET_PAGE_SIZE) */ 558 uint16_t size; 559 uint16_t icount; 560 561 struct tb_tc tc; 562 563 /* 564 * Track tb_page_addr_t intervals that intersect this TB. 565 * For user-only, the virtual addresses are always contiguous, 566 * and we use a unified interval tree. For system, we use a 567 * linked list headed in each PageDesc. Within the list, the lsb 568 * of the previous pointer tells the index of page_next[], and the 569 * list is protected by the PageDesc lock(s). 570 */ 571 #ifdef CONFIG_USER_ONLY 572 IntervalTreeNode itree; 573 #else 574 uintptr_t page_next[2]; 575 tb_page_addr_t page_addr[2]; 576 #endif 577 578 /* jmp_lock placed here to fill a 4-byte hole. Its documentation is below */ 579 QemuSpin jmp_lock; 580 581 /* The following data are used to directly call another TB from 582 * the code of this one. This can be done either by emitting direct or 583 * indirect native jump instructions. These jumps are reset so that the TB 584 * just continues its execution. The TB can be linked to another one by 585 * setting one of the jump targets (or patching the jump instruction). Only 586 * two of such jumps are supported. 587 */ 588 uint16_t jmp_reset_offset[2]; /* offset of original jump target */ 589 #define TB_JMP_RESET_OFFSET_INVALID 0xffff /* indicates no jump generated */ 590 uintptr_t jmp_target_arg[2]; /* target address or offset */ 591 592 /* 593 * Each TB has a NULL-terminated list (jmp_list_head) of incoming jumps. 594 * Each TB can have two outgoing jumps, and therefore can participate 595 * in two lists. The list entries are kept in jmp_list_next[2]. The least 596 * significant bit (LSB) of the pointers in these lists is used to encode 597 * which of the two list entries is to be used in the pointed TB. 598 * 599 * List traversals are protected by jmp_lock. The destination TB of each 600 * outgoing jump is kept in jmp_dest[] so that the appropriate jmp_lock 601 * can be acquired from any origin TB. 602 * 603 * jmp_dest[] are tagged pointers as well. The LSB is set when the TB is 604 * being invalidated, so that no further outgoing jumps from it can be set. 605 * 606 * jmp_lock also protects the CF_INVALID cflag; a jump must not be chained 607 * to a destination TB that has CF_INVALID set. 608 */ 609 uintptr_t jmp_list_head; 610 uintptr_t jmp_list_next[2]; 611 uintptr_t jmp_dest[2]; 612 }; 613 614 /* Hide the read to avoid ifdefs for TARGET_TB_PCREL. */ 615 static inline target_ulong tb_pc(const TranslationBlock *tb) 616 { 617 #if TARGET_TB_PCREL 618 qemu_build_not_reached(); 619 #else 620 return tb->pc; 621 #endif 622 } 623 624 /* Hide the qatomic_read to make code a little easier on the eyes */ 625 static inline uint32_t tb_cflags(const TranslationBlock *tb) 626 { 627 return qatomic_read(&tb->cflags); 628 } 629 630 static inline tb_page_addr_t tb_page_addr0(const TranslationBlock *tb) 631 { 632 #ifdef CONFIG_USER_ONLY 633 return tb->itree.start; 634 #else 635 return tb->page_addr[0]; 636 #endif 637 } 638 639 static inline tb_page_addr_t tb_page_addr1(const TranslationBlock *tb) 640 { 641 #ifdef CONFIG_USER_ONLY 642 tb_page_addr_t next = tb->itree.last & TARGET_PAGE_MASK; 643 return next == (tb->itree.start & TARGET_PAGE_MASK) ? -1 : next; 644 #else 645 return tb->page_addr[1]; 646 #endif 647 } 648 649 static inline void tb_set_page_addr0(TranslationBlock *tb, 650 tb_page_addr_t addr) 651 { 652 #ifdef CONFIG_USER_ONLY 653 tb->itree.start = addr; 654 /* 655 * To begin, we record an interval of one byte. When the translation 656 * loop encounters a second page, the interval will be extended to 657 * include the first byte of the second page, which is sufficient to 658 * allow tb_page_addr1() above to work properly. The final corrected 659 * interval will be set by tb_page_add() from tb->size before the 660 * node is added to the interval tree. 661 */ 662 tb->itree.last = addr; 663 #else 664 tb->page_addr[0] = addr; 665 #endif 666 } 667 668 static inline void tb_set_page_addr1(TranslationBlock *tb, 669 tb_page_addr_t addr) 670 { 671 #ifdef CONFIG_USER_ONLY 672 /* Extend the interval to the first byte of the second page. See above. */ 673 tb->itree.last = addr; 674 #else 675 tb->page_addr[1] = addr; 676 #endif 677 } 678 679 /* current cflags for hashing/comparison */ 680 uint32_t curr_cflags(CPUState *cpu); 681 682 /* TranslationBlock invalidate API */ 683 #if defined(CONFIG_USER_ONLY) 684 void tb_invalidate_phys_addr(target_ulong addr); 685 #else 686 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs); 687 #endif 688 void tb_flush(CPUState *cpu); 689 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr); 690 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end); 691 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr); 692 693 /* GETPC is the true target of the return instruction that we'll execute. */ 694 #if defined(CONFIG_TCG_INTERPRETER) 695 extern __thread uintptr_t tci_tb_ptr; 696 # define GETPC() tci_tb_ptr 697 #else 698 # define GETPC() \ 699 ((uintptr_t)__builtin_extract_return_addr(__builtin_return_address(0))) 700 #endif 701 702 /* The true return address will often point to a host insn that is part of 703 the next translated guest insn. Adjust the address backward to point to 704 the middle of the call insn. Subtracting one would do the job except for 705 several compressed mode architectures (arm, mips) which set the low bit 706 to indicate the compressed mode; subtracting two works around that. It 707 is also the case that there are no host isas that contain a call insn 708 smaller than 4 bytes, so we don't worry about special-casing this. */ 709 #define GETPC_ADJ 2 710 711 #if !defined(CONFIG_USER_ONLY) 712 713 /** 714 * iotlb_to_section: 715 * @cpu: CPU performing the access 716 * @index: TCG CPU IOTLB entry 717 * 718 * Given a TCG CPU IOTLB entry, return the MemoryRegionSection that 719 * it refers to. @index will have been initially created and returned 720 * by memory_region_section_get_iotlb(). 721 */ 722 struct MemoryRegionSection *iotlb_to_section(CPUState *cpu, 723 hwaddr index, MemTxAttrs attrs); 724 #endif 725 726 /** 727 * get_page_addr_code_hostp() 728 * @env: CPUArchState 729 * @addr: guest virtual address of guest code 730 * 731 * See get_page_addr_code() (full-system version) for documentation on the 732 * return value. 733 * 734 * Sets *@hostp (when @hostp is non-NULL) as follows. 735 * If the return value is -1, sets *@hostp to NULL. Otherwise, sets *@hostp 736 * to the host address where @addr's content is kept. 737 * 738 * Note: this function can trigger an exception. 739 */ 740 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr, 741 void **hostp); 742 743 /** 744 * get_page_addr_code() 745 * @env: CPUArchState 746 * @addr: guest virtual address of guest code 747 * 748 * If we cannot translate and execute from the entire RAM page, or if 749 * the region is not backed by RAM, returns -1. Otherwise, returns the 750 * ram_addr_t corresponding to the guest code at @addr. 751 * 752 * Note: this function can trigger an exception. 753 */ 754 static inline tb_page_addr_t get_page_addr_code(CPUArchState *env, 755 target_ulong addr) 756 { 757 return get_page_addr_code_hostp(env, addr, NULL); 758 } 759 760 #if defined(CONFIG_USER_ONLY) 761 void mmap_lock(void); 762 void mmap_unlock(void); 763 bool have_mmap_lock(void); 764 765 /** 766 * adjust_signal_pc: 767 * @pc: raw pc from the host signal ucontext_t. 768 * @is_write: host memory operation was write, or read-modify-write. 769 * 770 * Alter @pc as required for unwinding. Return the type of the 771 * guest memory access -- host reads may be for guest execution. 772 */ 773 MMUAccessType adjust_signal_pc(uintptr_t *pc, bool is_write); 774 775 /** 776 * handle_sigsegv_accerr_write: 777 * @cpu: the cpu context 778 * @old_set: the sigset_t from the signal ucontext_t 779 * @host_pc: the host pc, adjusted for the signal 780 * @host_addr: the host address of the fault 781 * 782 * Return true if the write fault has been handled, and should be re-tried. 783 */ 784 bool handle_sigsegv_accerr_write(CPUState *cpu, sigset_t *old_set, 785 uintptr_t host_pc, abi_ptr guest_addr); 786 787 /** 788 * cpu_loop_exit_sigsegv: 789 * @cpu: the cpu context 790 * @addr: the guest address of the fault 791 * @access_type: access was read/write/execute 792 * @maperr: true for invalid page, false for permission fault 793 * @ra: host pc for unwinding 794 * 795 * Use the TCGCPUOps hook to record cpu state, do guest operating system 796 * specific things to raise SIGSEGV, and jump to the main cpu loop. 797 */ 798 G_NORETURN void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr, 799 MMUAccessType access_type, 800 bool maperr, uintptr_t ra); 801 802 /** 803 * cpu_loop_exit_sigbus: 804 * @cpu: the cpu context 805 * @addr: the guest address of the alignment fault 806 * @access_type: access was read/write/execute 807 * @ra: host pc for unwinding 808 * 809 * Use the TCGCPUOps hook to record cpu state, do guest operating system 810 * specific things to raise SIGBUS, and jump to the main cpu loop. 811 */ 812 G_NORETURN void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr, 813 MMUAccessType access_type, 814 uintptr_t ra); 815 816 #else 817 static inline void mmap_lock(void) {} 818 static inline void mmap_unlock(void) {} 819 820 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length); 821 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr); 822 823 MemoryRegionSection * 824 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr, 825 hwaddr *xlat, hwaddr *plen, 826 MemTxAttrs attrs, int *prot); 827 hwaddr memory_region_section_get_iotlb(CPUState *cpu, 828 MemoryRegionSection *section); 829 #endif 830 831 #endif 832