xref: /openbmc/qemu/include/exec/exec-all.h (revision b1311c4a)
1 /*
2  * internal execution defines for qemu
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef EXEC_ALL_H
21 #define EXEC_ALL_H
22 
23 #include "qemu-common.h"
24 #include "exec/tb-context.h"
25 #include "sysemu/cpus.h"
26 
27 /* allow to see translation results - the slowdown should be negligible, so we leave it */
28 #define DEBUG_DISAS
29 
30 /* Page tracking code uses ram addresses in system mode, and virtual
31    addresses in userspace mode.  Define tb_page_addr_t to be an appropriate
32    type.  */
33 #if defined(CONFIG_USER_ONLY)
34 typedef abi_ulong tb_page_addr_t;
35 #define TB_PAGE_ADDR_FMT TARGET_ABI_FMT_lx
36 #else
37 typedef ram_addr_t tb_page_addr_t;
38 #define TB_PAGE_ADDR_FMT RAM_ADDR_FMT
39 #endif
40 
41 #include "qemu/log.h"
42 
43 void gen_intermediate_code(CPUState *cpu, struct TranslationBlock *tb);
44 void restore_state_to_opc(CPUArchState *env, struct TranslationBlock *tb,
45                           target_ulong *data);
46 
47 void cpu_gen_init(void);
48 bool cpu_restore_state(CPUState *cpu, uintptr_t searched_pc);
49 
50 void QEMU_NORETURN cpu_loop_exit_noexc(CPUState *cpu);
51 void QEMU_NORETURN cpu_io_recompile(CPUState *cpu, uintptr_t retaddr);
52 TranslationBlock *tb_gen_code(CPUState *cpu,
53                               target_ulong pc, target_ulong cs_base,
54                               uint32_t flags,
55                               int cflags);
56 
57 void QEMU_NORETURN cpu_loop_exit(CPUState *cpu);
58 void QEMU_NORETURN cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc);
59 void QEMU_NORETURN cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc);
60 
61 #if !defined(CONFIG_USER_ONLY)
62 void cpu_reloading_memory_map(void);
63 /**
64  * cpu_address_space_init:
65  * @cpu: CPU to add this address space to
66  * @as: address space to add
67  * @asidx: integer index of this address space
68  *
69  * Add the specified address space to the CPU's cpu_ases list.
70  * The address space added with @asidx 0 is the one used for the
71  * convenience pointer cpu->as.
72  * The target-specific code which registers ASes is responsible
73  * for defining what semantics address space 0, 1, 2, etc have.
74  *
75  * Before the first call to this function, the caller must set
76  * cpu->num_ases to the total number of address spaces it needs
77  * to support.
78  *
79  * Note that with KVM only one address space is supported.
80  */
81 void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx);
82 #endif
83 
84 #if !defined(CONFIG_USER_ONLY) && defined(CONFIG_TCG)
85 /* cputlb.c */
86 /**
87  * tlb_flush_page:
88  * @cpu: CPU whose TLB should be flushed
89  * @addr: virtual address of page to be flushed
90  *
91  * Flush one page from the TLB of the specified CPU, for all
92  * MMU indexes.
93  */
94 void tlb_flush_page(CPUState *cpu, target_ulong addr);
95 /**
96  * tlb_flush_page_all_cpus:
97  * @cpu: src CPU of the flush
98  * @addr: virtual address of page to be flushed
99  *
100  * Flush one page from the TLB of the specified CPU, for all
101  * MMU indexes.
102  */
103 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr);
104 /**
105  * tlb_flush_page_all_cpus_synced:
106  * @cpu: src CPU of the flush
107  * @addr: virtual address of page to be flushed
108  *
109  * Flush one page from the TLB of the specified CPU, for all MMU
110  * indexes like tlb_flush_page_all_cpus except the source vCPUs work
111  * is scheduled as safe work meaning all flushes will be complete once
112  * the source vCPUs safe work is complete. This will depend on when
113  * the guests translation ends the TB.
114  */
115 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr);
116 /**
117  * tlb_flush:
118  * @cpu: CPU whose TLB should be flushed
119  *
120  * Flush the entire TLB for the specified CPU. Most CPU architectures
121  * allow the implementation to drop entries from the TLB at any time
122  * so this is generally safe. If more selective flushing is required
123  * use one of the other functions for efficiency.
124  */
125 void tlb_flush(CPUState *cpu);
126 /**
127  * tlb_flush_all_cpus:
128  * @cpu: src CPU of the flush
129  */
130 void tlb_flush_all_cpus(CPUState *src_cpu);
131 /**
132  * tlb_flush_all_cpus_synced:
133  * @cpu: src CPU of the flush
134  *
135  * Like tlb_flush_all_cpus except this except the source vCPUs work is
136  * scheduled as safe work meaning all flushes will be complete once
137  * the source vCPUs safe work is complete. This will depend on when
138  * the guests translation ends the TB.
139  */
140 void tlb_flush_all_cpus_synced(CPUState *src_cpu);
141 /**
142  * tlb_flush_page_by_mmuidx:
143  * @cpu: CPU whose TLB should be flushed
144  * @addr: virtual address of page to be flushed
145  * @idxmap: bitmap of MMU indexes to flush
146  *
147  * Flush one page from the TLB of the specified CPU, for the specified
148  * MMU indexes.
149  */
150 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr,
151                               uint16_t idxmap);
152 /**
153  * tlb_flush_page_by_mmuidx_all_cpus:
154  * @cpu: Originating CPU of the flush
155  * @addr: virtual address of page to be flushed
156  * @idxmap: bitmap of MMU indexes to flush
157  *
158  * Flush one page from the TLB of all CPUs, for the specified
159  * MMU indexes.
160  */
161 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr,
162                                        uint16_t idxmap);
163 /**
164  * tlb_flush_page_by_mmuidx_all_cpus_synced:
165  * @cpu: Originating CPU of the flush
166  * @addr: virtual address of page to be flushed
167  * @idxmap: bitmap of MMU indexes to flush
168  *
169  * Flush one page from the TLB of all CPUs, for the specified MMU
170  * indexes like tlb_flush_page_by_mmuidx_all_cpus except the source
171  * vCPUs work is scheduled as safe work meaning all flushes will be
172  * complete once  the source vCPUs safe work is complete. This will
173  * depend on when the guests translation ends the TB.
174  */
175 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu, target_ulong addr,
176                                               uint16_t idxmap);
177 /**
178  * tlb_flush_by_mmuidx:
179  * @cpu: CPU whose TLB should be flushed
180  * @wait: If true ensure synchronisation by exiting the cpu_loop
181  * @idxmap: bitmap of MMU indexes to flush
182  *
183  * Flush all entries from the TLB of the specified CPU, for the specified
184  * MMU indexes.
185  */
186 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap);
187 /**
188  * tlb_flush_by_mmuidx_all_cpus:
189  * @cpu: Originating CPU of the flush
190  * @idxmap: bitmap of MMU indexes to flush
191  *
192  * Flush all entries from all TLBs of all CPUs, for the specified
193  * MMU indexes.
194  */
195 void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap);
196 /**
197  * tlb_flush_by_mmuidx_all_cpus_synced:
198  * @cpu: Originating CPU of the flush
199  * @idxmap: bitmap of MMU indexes to flush
200  *
201  * Flush all entries from all TLBs of all CPUs, for the specified
202  * MMU indexes like tlb_flush_by_mmuidx_all_cpus except except the source
203  * vCPUs work is scheduled as safe work meaning all flushes will be
204  * complete once  the source vCPUs safe work is complete. This will
205  * depend on when the guests translation ends the TB.
206  */
207 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu, uint16_t idxmap);
208 /**
209  * tlb_set_page_with_attrs:
210  * @cpu: CPU to add this TLB entry for
211  * @vaddr: virtual address of page to add entry for
212  * @paddr: physical address of the page
213  * @attrs: memory transaction attributes
214  * @prot: access permissions (PAGE_READ/PAGE_WRITE/PAGE_EXEC bits)
215  * @mmu_idx: MMU index to insert TLB entry for
216  * @size: size of the page in bytes
217  *
218  * Add an entry to this CPU's TLB (a mapping from virtual address
219  * @vaddr to physical address @paddr) with the specified memory
220  * transaction attributes. This is generally called by the target CPU
221  * specific code after it has been called through the tlb_fill()
222  * entry point and performed a successful page table walk to find
223  * the physical address and attributes for the virtual address
224  * which provoked the TLB miss.
225  *
226  * At most one entry for a given virtual address is permitted. Only a
227  * single TARGET_PAGE_SIZE region is mapped; the supplied @size is only
228  * used by tlb_flush_page.
229  */
230 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
231                              hwaddr paddr, MemTxAttrs attrs,
232                              int prot, int mmu_idx, target_ulong size);
233 /* tlb_set_page:
234  *
235  * This function is equivalent to calling tlb_set_page_with_attrs()
236  * with an @attrs argument of MEMTXATTRS_UNSPECIFIED. It's provided
237  * as a convenience for CPUs which don't use memory transaction attributes.
238  */
239 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
240                   hwaddr paddr, int prot,
241                   int mmu_idx, target_ulong size);
242 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr);
243 void probe_write(CPUArchState *env, target_ulong addr, int mmu_idx,
244                  uintptr_t retaddr);
245 #else
246 static inline void tlb_flush_page(CPUState *cpu, target_ulong addr)
247 {
248 }
249 static inline void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
250 {
251 }
252 static inline void tlb_flush_page_all_cpus_synced(CPUState *src,
253                                                   target_ulong addr)
254 {
255 }
256 static inline void tlb_flush(CPUState *cpu)
257 {
258 }
259 static inline void tlb_flush_all_cpus(CPUState *src_cpu)
260 {
261 }
262 static inline void tlb_flush_all_cpus_synced(CPUState *src_cpu)
263 {
264 }
265 static inline void tlb_flush_page_by_mmuidx(CPUState *cpu,
266                                             target_ulong addr, uint16_t idxmap)
267 {
268 }
269 
270 static inline void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
271 {
272 }
273 static inline void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu,
274                                                      target_ulong addr,
275                                                      uint16_t idxmap)
276 {
277 }
278 static inline void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu,
279                                                             target_ulong addr,
280                                                             uint16_t idxmap)
281 {
282 }
283 static inline void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap)
284 {
285 }
286 static inline void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu,
287                                                        uint16_t idxmap)
288 {
289 }
290 static inline void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
291 {
292 }
293 #endif
294 
295 #define CODE_GEN_ALIGN           16 /* must be >= of the size of a icache line */
296 
297 /* Estimated block size for TB allocation.  */
298 /* ??? The following is based on a 2015 survey of x86_64 host output.
299    Better would seem to be some sort of dynamically sized TB array,
300    adapting to the block sizes actually being produced.  */
301 #if defined(CONFIG_SOFTMMU)
302 #define CODE_GEN_AVG_BLOCK_SIZE 400
303 #else
304 #define CODE_GEN_AVG_BLOCK_SIZE 150
305 #endif
306 
307 /*
308  * Translation Cache-related fields of a TB.
309  * This struct exists just for convenience; we keep track of TB's in a binary
310  * search tree, and the only fields needed to compare TB's in the tree are
311  * @ptr and @size.
312  * Note: the address of search data can be obtained by adding @size to @ptr.
313  */
314 struct tb_tc {
315     void *ptr;    /* pointer to the translated code */
316     size_t size;
317 };
318 
319 struct TranslationBlock {
320     target_ulong pc;   /* simulated PC corresponding to this block (EIP + CS base) */
321     target_ulong cs_base; /* CS base for this block */
322     uint32_t flags; /* flags defining in which context the code was generated */
323     uint16_t size;      /* size of target code for this block (1 <=
324                            size <= TARGET_PAGE_SIZE) */
325     uint16_t icount;
326     uint32_t cflags;    /* compile flags */
327 #define CF_COUNT_MASK  0x00007fff
328 #define CF_LAST_IO     0x00008000 /* Last insn may be an IO access.  */
329 #define CF_NOCACHE     0x00010000 /* To be freed after execution */
330 #define CF_USE_ICOUNT  0x00020000
331 #define CF_INVALID     0x00040000 /* TB is stale. Setters need tb_lock */
332 #define CF_PARALLEL    0x00080000 /* Generate code for a parallel context */
333 /* cflags' mask for hashing/comparison */
334 #define CF_HASH_MASK   \
335     (CF_COUNT_MASK | CF_LAST_IO | CF_USE_ICOUNT | CF_PARALLEL)
336 
337     /* Per-vCPU dynamic tracing state used to generate this TB */
338     uint32_t trace_vcpu_dstate;
339 
340     struct tb_tc tc;
341 
342     /* original tb when cflags has CF_NOCACHE */
343     struct TranslationBlock *orig_tb;
344     /* first and second physical page containing code. The lower bit
345        of the pointer tells the index in page_next[] */
346     struct TranslationBlock *page_next[2];
347     tb_page_addr_t page_addr[2];
348 
349     /* The following data are used to directly call another TB from
350      * the code of this one. This can be done either by emitting direct or
351      * indirect native jump instructions. These jumps are reset so that the TB
352      * just continues its execution. The TB can be linked to another one by
353      * setting one of the jump targets (or patching the jump instruction). Only
354      * two of such jumps are supported.
355      */
356     uint16_t jmp_reset_offset[2]; /* offset of original jump target */
357 #define TB_JMP_RESET_OFFSET_INVALID 0xffff /* indicates no jump generated */
358     uintptr_t jmp_target_arg[2];  /* target address or offset */
359 
360     /* Each TB has an associated circular list of TBs jumping to this one.
361      * jmp_list_first points to the first TB jumping to this one.
362      * jmp_list_next is used to point to the next TB in a list.
363      * Since each TB can have two jumps, it can participate in two lists.
364      * jmp_list_first and jmp_list_next are 4-byte aligned pointers to a
365      * TranslationBlock structure, but the two least significant bits of
366      * them are used to encode which data field of the pointed TB should
367      * be used to traverse the list further from that TB:
368      * 0 => jmp_list_next[0], 1 => jmp_list_next[1], 2 => jmp_list_first.
369      * In other words, 0/1 tells which jump is used in the pointed TB,
370      * and 2 means that this is a pointer back to the target TB of this list.
371      */
372     uintptr_t jmp_list_next[2];
373     uintptr_t jmp_list_first;
374 };
375 
376 extern bool parallel_cpus;
377 
378 /* Hide the atomic_read to make code a little easier on the eyes */
379 static inline uint32_t tb_cflags(const TranslationBlock *tb)
380 {
381     return atomic_read(&tb->cflags);
382 }
383 
384 /* current cflags for hashing/comparison */
385 static inline uint32_t curr_cflags(void)
386 {
387     return (parallel_cpus ? CF_PARALLEL : 0)
388          | (use_icount ? CF_USE_ICOUNT : 0);
389 }
390 
391 void tb_remove(TranslationBlock *tb);
392 void tb_flush(CPUState *cpu);
393 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr);
394 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
395                                    target_ulong cs_base, uint32_t flags,
396                                    uint32_t cf_mask);
397 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr);
398 
399 /* GETPC is the true target of the return instruction that we'll execute.  */
400 #if defined(CONFIG_TCG_INTERPRETER)
401 extern uintptr_t tci_tb_ptr;
402 # define GETPC() tci_tb_ptr
403 #else
404 # define GETPC() \
405     ((uintptr_t)__builtin_extract_return_addr(__builtin_return_address(0)))
406 #endif
407 
408 /* The true return address will often point to a host insn that is part of
409    the next translated guest insn.  Adjust the address backward to point to
410    the middle of the call insn.  Subtracting one would do the job except for
411    several compressed mode architectures (arm, mips) which set the low bit
412    to indicate the compressed mode; subtracting two works around that.  It
413    is also the case that there are no host isas that contain a call insn
414    smaller than 4 bytes, so we don't worry about special-casing this.  */
415 #define GETPC_ADJ   2
416 
417 void tb_lock(void);
418 void tb_unlock(void);
419 void tb_lock_reset(void);
420 
421 #if !defined(CONFIG_USER_ONLY)
422 
423 struct MemoryRegion *iotlb_to_region(CPUState *cpu,
424                                      hwaddr index, MemTxAttrs attrs);
425 
426 void tlb_fill(CPUState *cpu, target_ulong addr, MMUAccessType access_type,
427               int mmu_idx, uintptr_t retaddr);
428 
429 #endif
430 
431 #if defined(CONFIG_USER_ONLY)
432 void mmap_lock(void);
433 void mmap_unlock(void);
434 bool have_mmap_lock(void);
435 
436 static inline tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
437 {
438     return addr;
439 }
440 #else
441 static inline void mmap_lock(void) {}
442 static inline void mmap_unlock(void) {}
443 
444 /* cputlb.c */
445 tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr);
446 
447 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length);
448 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr);
449 
450 /* exec.c */
451 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr);
452 
453 MemoryRegionSection *
454 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
455                                   hwaddr *xlat, hwaddr *plen);
456 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
457                                        MemoryRegionSection *section,
458                                        target_ulong vaddr,
459                                        hwaddr paddr, hwaddr xlat,
460                                        int prot,
461                                        target_ulong *address);
462 bool memory_region_is_unassigned(MemoryRegion *mr);
463 
464 #endif
465 
466 /* vl.c */
467 extern int singlestep;
468 
469 #endif
470