xref: /openbmc/qemu/include/exec/exec-all.h (revision a8583393)
1 /*
2  * internal execution defines for qemu
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef EXEC_ALL_H
21 #define EXEC_ALL_H
22 
23 #include "qemu-common.h"
24 #include "exec/tb-context.h"
25 
26 /* allow to see translation results - the slowdown should be negligible, so we leave it */
27 #define DEBUG_DISAS
28 
29 /* Page tracking code uses ram addresses in system mode, and virtual
30    addresses in userspace mode.  Define tb_page_addr_t to be an appropriate
31    type.  */
32 #if defined(CONFIG_USER_ONLY)
33 typedef abi_ulong tb_page_addr_t;
34 #else
35 typedef ram_addr_t tb_page_addr_t;
36 #endif
37 
38 #include "qemu/log.h"
39 
40 void gen_intermediate_code(CPUState *cpu, struct TranslationBlock *tb);
41 void restore_state_to_opc(CPUArchState *env, struct TranslationBlock *tb,
42                           target_ulong *data);
43 
44 void cpu_gen_init(void);
45 bool cpu_restore_state(CPUState *cpu, uintptr_t searched_pc);
46 
47 void QEMU_NORETURN cpu_loop_exit_noexc(CPUState *cpu);
48 void QEMU_NORETURN cpu_io_recompile(CPUState *cpu, uintptr_t retaddr);
49 TranslationBlock *tb_gen_code(CPUState *cpu,
50                               target_ulong pc, target_ulong cs_base,
51                               uint32_t flags,
52                               int cflags);
53 
54 void QEMU_NORETURN cpu_loop_exit(CPUState *cpu);
55 void QEMU_NORETURN cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc);
56 void QEMU_NORETURN cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc);
57 
58 #if !defined(CONFIG_USER_ONLY)
59 void cpu_reloading_memory_map(void);
60 /**
61  * cpu_address_space_init:
62  * @cpu: CPU to add this address space to
63  * @as: address space to add
64  * @asidx: integer index of this address space
65  *
66  * Add the specified address space to the CPU's cpu_ases list.
67  * The address space added with @asidx 0 is the one used for the
68  * convenience pointer cpu->as.
69  * The target-specific code which registers ASes is responsible
70  * for defining what semantics address space 0, 1, 2, etc have.
71  *
72  * Before the first call to this function, the caller must set
73  * cpu->num_ases to the total number of address spaces it needs
74  * to support.
75  *
76  * Note that with KVM only one address space is supported.
77  */
78 void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx);
79 #endif
80 
81 #if !defined(CONFIG_USER_ONLY) && defined(CONFIG_TCG)
82 /* cputlb.c */
83 /**
84  * tlb_flush_page:
85  * @cpu: CPU whose TLB should be flushed
86  * @addr: virtual address of page to be flushed
87  *
88  * Flush one page from the TLB of the specified CPU, for all
89  * MMU indexes.
90  */
91 void tlb_flush_page(CPUState *cpu, target_ulong addr);
92 /**
93  * tlb_flush_page_all_cpus:
94  * @cpu: src CPU of the flush
95  * @addr: virtual address of page to be flushed
96  *
97  * Flush one page from the TLB of the specified CPU, for all
98  * MMU indexes.
99  */
100 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr);
101 /**
102  * tlb_flush_page_all_cpus_synced:
103  * @cpu: src CPU of the flush
104  * @addr: virtual address of page to be flushed
105  *
106  * Flush one page from the TLB of the specified CPU, for all MMU
107  * indexes like tlb_flush_page_all_cpus except the source vCPUs work
108  * is scheduled as safe work meaning all flushes will be complete once
109  * the source vCPUs safe work is complete. This will depend on when
110  * the guests translation ends the TB.
111  */
112 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr);
113 /**
114  * tlb_flush:
115  * @cpu: CPU whose TLB should be flushed
116  *
117  * Flush the entire TLB for the specified CPU. Most CPU architectures
118  * allow the implementation to drop entries from the TLB at any time
119  * so this is generally safe. If more selective flushing is required
120  * use one of the other functions for efficiency.
121  */
122 void tlb_flush(CPUState *cpu);
123 /**
124  * tlb_flush_all_cpus:
125  * @cpu: src CPU of the flush
126  */
127 void tlb_flush_all_cpus(CPUState *src_cpu);
128 /**
129  * tlb_flush_all_cpus_synced:
130  * @cpu: src CPU of the flush
131  *
132  * Like tlb_flush_all_cpus except this except the source vCPUs work is
133  * scheduled as safe work meaning all flushes will be complete once
134  * the source vCPUs safe work is complete. This will depend on when
135  * the guests translation ends the TB.
136  */
137 void tlb_flush_all_cpus_synced(CPUState *src_cpu);
138 /**
139  * tlb_flush_page_by_mmuidx:
140  * @cpu: CPU whose TLB should be flushed
141  * @addr: virtual address of page to be flushed
142  * @idxmap: bitmap of MMU indexes to flush
143  *
144  * Flush one page from the TLB of the specified CPU, for the specified
145  * MMU indexes.
146  */
147 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr,
148                               uint16_t idxmap);
149 /**
150  * tlb_flush_page_by_mmuidx_all_cpus:
151  * @cpu: Originating CPU of the flush
152  * @addr: virtual address of page to be flushed
153  * @idxmap: bitmap of MMU indexes to flush
154  *
155  * Flush one page from the TLB of all CPUs, for the specified
156  * MMU indexes.
157  */
158 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr,
159                                        uint16_t idxmap);
160 /**
161  * tlb_flush_page_by_mmuidx_all_cpus_synced:
162  * @cpu: Originating CPU of the flush
163  * @addr: virtual address of page to be flushed
164  * @idxmap: bitmap of MMU indexes to flush
165  *
166  * Flush one page from the TLB of all CPUs, for the specified MMU
167  * indexes like tlb_flush_page_by_mmuidx_all_cpus except the source
168  * vCPUs work is scheduled as safe work meaning all flushes will be
169  * complete once  the source vCPUs safe work is complete. This will
170  * depend on when the guests translation ends the TB.
171  */
172 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu, target_ulong addr,
173                                               uint16_t idxmap);
174 /**
175  * tlb_flush_by_mmuidx:
176  * @cpu: CPU whose TLB should be flushed
177  * @wait: If true ensure synchronisation by exiting the cpu_loop
178  * @idxmap: bitmap of MMU indexes to flush
179  *
180  * Flush all entries from the TLB of the specified CPU, for the specified
181  * MMU indexes.
182  */
183 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap);
184 /**
185  * tlb_flush_by_mmuidx_all_cpus:
186  * @cpu: Originating CPU of the flush
187  * @idxmap: bitmap of MMU indexes to flush
188  *
189  * Flush all entries from all TLBs of all CPUs, for the specified
190  * MMU indexes.
191  */
192 void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap);
193 /**
194  * tlb_flush_by_mmuidx_all_cpus_synced:
195  * @cpu: Originating CPU of the flush
196  * @idxmap: bitmap of MMU indexes to flush
197  *
198  * Flush all entries from all TLBs of all CPUs, for the specified
199  * MMU indexes like tlb_flush_by_mmuidx_all_cpus except except the source
200  * vCPUs work is scheduled as safe work meaning all flushes will be
201  * complete once  the source vCPUs safe work is complete. This will
202  * depend on when the guests translation ends the TB.
203  */
204 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu, uint16_t idxmap);
205 /**
206  * tlb_set_page_with_attrs:
207  * @cpu: CPU to add this TLB entry for
208  * @vaddr: virtual address of page to add entry for
209  * @paddr: physical address of the page
210  * @attrs: memory transaction attributes
211  * @prot: access permissions (PAGE_READ/PAGE_WRITE/PAGE_EXEC bits)
212  * @mmu_idx: MMU index to insert TLB entry for
213  * @size: size of the page in bytes
214  *
215  * Add an entry to this CPU's TLB (a mapping from virtual address
216  * @vaddr to physical address @paddr) with the specified memory
217  * transaction attributes. This is generally called by the target CPU
218  * specific code after it has been called through the tlb_fill()
219  * entry point and performed a successful page table walk to find
220  * the physical address and attributes for the virtual address
221  * which provoked the TLB miss.
222  *
223  * At most one entry for a given virtual address is permitted. Only a
224  * single TARGET_PAGE_SIZE region is mapped; the supplied @size is only
225  * used by tlb_flush_page.
226  */
227 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
228                              hwaddr paddr, MemTxAttrs attrs,
229                              int prot, int mmu_idx, target_ulong size);
230 /* tlb_set_page:
231  *
232  * This function is equivalent to calling tlb_set_page_with_attrs()
233  * with an @attrs argument of MEMTXATTRS_UNSPECIFIED. It's provided
234  * as a convenience for CPUs which don't use memory transaction attributes.
235  */
236 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
237                   hwaddr paddr, int prot,
238                   int mmu_idx, target_ulong size);
239 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr);
240 void probe_write(CPUArchState *env, target_ulong addr, int mmu_idx,
241                  uintptr_t retaddr);
242 #else
243 static inline void tlb_flush_page(CPUState *cpu, target_ulong addr)
244 {
245 }
246 static inline void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
247 {
248 }
249 static inline void tlb_flush_page_all_cpus_synced(CPUState *src,
250                                                   target_ulong addr)
251 {
252 }
253 static inline void tlb_flush(CPUState *cpu)
254 {
255 }
256 static inline void tlb_flush_all_cpus(CPUState *src_cpu)
257 {
258 }
259 static inline void tlb_flush_all_cpus_synced(CPUState *src_cpu)
260 {
261 }
262 static inline void tlb_flush_page_by_mmuidx(CPUState *cpu,
263                                             target_ulong addr, uint16_t idxmap)
264 {
265 }
266 
267 static inline void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
268 {
269 }
270 static inline void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu,
271                                                      target_ulong addr,
272                                                      uint16_t idxmap)
273 {
274 }
275 static inline void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu,
276                                                             target_ulong addr,
277                                                             uint16_t idxmap)
278 {
279 }
280 static inline void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap)
281 {
282 }
283 static inline void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu,
284                                                        uint16_t idxmap)
285 {
286 }
287 static inline void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
288 {
289 }
290 #endif
291 
292 #define CODE_GEN_ALIGN           16 /* must be >= of the size of a icache line */
293 
294 /* Estimated block size for TB allocation.  */
295 /* ??? The following is based on a 2015 survey of x86_64 host output.
296    Better would seem to be some sort of dynamically sized TB array,
297    adapting to the block sizes actually being produced.  */
298 #if defined(CONFIG_SOFTMMU)
299 #define CODE_GEN_AVG_BLOCK_SIZE 400
300 #else
301 #define CODE_GEN_AVG_BLOCK_SIZE 150
302 #endif
303 
304 struct TranslationBlock {
305     target_ulong pc;   /* simulated PC corresponding to this block (EIP + CS base) */
306     target_ulong cs_base; /* CS base for this block */
307     uint32_t flags; /* flags defining in which context the code was generated */
308     uint16_t size;      /* size of target code for this block (1 <=
309                            size <= TARGET_PAGE_SIZE) */
310     uint16_t icount;
311     uint32_t cflags;    /* compile flags */
312 #define CF_COUNT_MASK  0x7fff
313 #define CF_LAST_IO     0x8000 /* Last insn may be an IO access.  */
314 #define CF_NOCACHE     0x10000 /* To be freed after execution */
315 #define CF_USE_ICOUNT  0x20000
316 #define CF_IGNORE_ICOUNT 0x40000 /* Do not generate icount code */
317 
318     /* Per-vCPU dynamic tracing state used to generate this TB */
319     uint32_t trace_vcpu_dstate;
320 
321     uint16_t invalid;
322 
323     void *tc_ptr;    /* pointer to the translated code */
324     uint8_t *tc_search;  /* pointer to search data */
325     /* original tb when cflags has CF_NOCACHE */
326     struct TranslationBlock *orig_tb;
327     /* first and second physical page containing code. The lower bit
328        of the pointer tells the index in page_next[] */
329     struct TranslationBlock *page_next[2];
330     tb_page_addr_t page_addr[2];
331 
332     /* The following data are used to directly call another TB from
333      * the code of this one. This can be done either by emitting direct or
334      * indirect native jump instructions. These jumps are reset so that the TB
335      * just continue its execution. The TB can be linked to another one by
336      * setting one of the jump targets (or patching the jump instruction). Only
337      * two of such jumps are supported.
338      */
339     uint16_t jmp_reset_offset[2]; /* offset of original jump target */
340 #define TB_JMP_RESET_OFFSET_INVALID 0xffff /* indicates no jump generated */
341     uintptr_t jmp_target_arg[2];  /* target address or offset */
342 
343     /* Each TB has an assosiated circular list of TBs jumping to this one.
344      * jmp_list_first points to the first TB jumping to this one.
345      * jmp_list_next is used to point to the next TB in a list.
346      * Since each TB can have two jumps, it can participate in two lists.
347      * jmp_list_first and jmp_list_next are 4-byte aligned pointers to a
348      * TranslationBlock structure, but the two least significant bits of
349      * them are used to encode which data field of the pointed TB should
350      * be used to traverse the list further from that TB:
351      * 0 => jmp_list_next[0], 1 => jmp_list_next[1], 2 => jmp_list_first.
352      * In other words, 0/1 tells which jump is used in the pointed TB,
353      * and 2 means that this is a pointer back to the target TB of this list.
354      */
355     uintptr_t jmp_list_next[2];
356     uintptr_t jmp_list_first;
357 };
358 
359 void tb_free(TranslationBlock *tb);
360 void tb_flush(CPUState *cpu);
361 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr);
362 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
363                                    target_ulong cs_base, uint32_t flags);
364 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr);
365 
366 /* GETPC is the true target of the return instruction that we'll execute.  */
367 #if defined(CONFIG_TCG_INTERPRETER)
368 extern uintptr_t tci_tb_ptr;
369 # define GETPC() tci_tb_ptr
370 #else
371 # define GETPC() \
372     ((uintptr_t)__builtin_extract_return_addr(__builtin_return_address(0)))
373 #endif
374 
375 /* The true return address will often point to a host insn that is part of
376    the next translated guest insn.  Adjust the address backward to point to
377    the middle of the call insn.  Subtracting one would do the job except for
378    several compressed mode architectures (arm, mips) which set the low bit
379    to indicate the compressed mode; subtracting two works around that.  It
380    is also the case that there are no host isas that contain a call insn
381    smaller than 4 bytes, so we don't worry about special-casing this.  */
382 #define GETPC_ADJ   2
383 
384 void tb_lock(void);
385 void tb_unlock(void);
386 void tb_lock_reset(void);
387 
388 #if !defined(CONFIG_USER_ONLY)
389 
390 struct MemoryRegion *iotlb_to_region(CPUState *cpu,
391                                      hwaddr index, MemTxAttrs attrs);
392 
393 void tlb_fill(CPUState *cpu, target_ulong addr, MMUAccessType access_type,
394               int mmu_idx, uintptr_t retaddr);
395 
396 #endif
397 
398 #if defined(CONFIG_USER_ONLY)
399 void mmap_lock(void);
400 void mmap_unlock(void);
401 bool have_mmap_lock(void);
402 
403 static inline tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
404 {
405     return addr;
406 }
407 #else
408 static inline void mmap_lock(void) {}
409 static inline void mmap_unlock(void) {}
410 
411 /* cputlb.c */
412 tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr);
413 
414 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length);
415 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr);
416 
417 /* exec.c */
418 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr);
419 
420 MemoryRegionSection *
421 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
422                                   hwaddr *xlat, hwaddr *plen);
423 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
424                                        MemoryRegionSection *section,
425                                        target_ulong vaddr,
426                                        hwaddr paddr, hwaddr xlat,
427                                        int prot,
428                                        target_ulong *address);
429 bool memory_region_is_unassigned(MemoryRegion *mr);
430 
431 #endif
432 
433 /* vl.c */
434 extern int singlestep;
435 
436 #endif
437