xref: /openbmc/qemu/include/exec/exec-all.h (revision 9f2d175d)
1 /*
2  * internal execution defines for qemu
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef EXEC_ALL_H
21 #define EXEC_ALL_H
22 
23 #include "qemu-common.h"
24 #include "exec/tb-context.h"
25 #include "sysemu/cpus.h"
26 
27 /* allow to see translation results - the slowdown should be negligible, so we leave it */
28 #define DEBUG_DISAS
29 
30 /* Page tracking code uses ram addresses in system mode, and virtual
31    addresses in userspace mode.  Define tb_page_addr_t to be an appropriate
32    type.  */
33 #if defined(CONFIG_USER_ONLY)
34 typedef abi_ulong tb_page_addr_t;
35 #define TB_PAGE_ADDR_FMT TARGET_ABI_FMT_lx
36 #else
37 typedef ram_addr_t tb_page_addr_t;
38 #define TB_PAGE_ADDR_FMT RAM_ADDR_FMT
39 #endif
40 
41 #include "qemu/log.h"
42 
43 void gen_intermediate_code(CPUState *cpu, struct TranslationBlock *tb);
44 void restore_state_to_opc(CPUArchState *env, struct TranslationBlock *tb,
45                           target_ulong *data);
46 
47 void cpu_gen_init(void);
48 
49 /**
50  * cpu_restore_state:
51  * @cpu: the vCPU state is to be restore to
52  * @searched_pc: the host PC the fault occurred at
53  * @return: true if state was restored, false otherwise
54  *
55  * Attempt to restore the state for a fault occurring in translated
56  * code. If the searched_pc is not in translated code no state is
57  * restored and the function returns false.
58  */
59 bool cpu_restore_state(CPUState *cpu, uintptr_t searched_pc);
60 
61 void QEMU_NORETURN cpu_loop_exit_noexc(CPUState *cpu);
62 void QEMU_NORETURN cpu_io_recompile(CPUState *cpu, uintptr_t retaddr);
63 TranslationBlock *tb_gen_code(CPUState *cpu,
64                               target_ulong pc, target_ulong cs_base,
65                               uint32_t flags,
66                               int cflags);
67 
68 void QEMU_NORETURN cpu_loop_exit(CPUState *cpu);
69 void QEMU_NORETURN cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc);
70 void QEMU_NORETURN cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc);
71 
72 #if !defined(CONFIG_USER_ONLY)
73 void cpu_reloading_memory_map(void);
74 /**
75  * cpu_address_space_init:
76  * @cpu: CPU to add this address space to
77  * @asidx: integer index of this address space
78  * @prefix: prefix to be used as name of address space
79  * @mr: the root memory region of address space
80  *
81  * Add the specified address space to the CPU's cpu_ases list.
82  * The address space added with @asidx 0 is the one used for the
83  * convenience pointer cpu->as.
84  * The target-specific code which registers ASes is responsible
85  * for defining what semantics address space 0, 1, 2, etc have.
86  *
87  * Before the first call to this function, the caller must set
88  * cpu->num_ases to the total number of address spaces it needs
89  * to support.
90  *
91  * Note that with KVM only one address space is supported.
92  */
93 void cpu_address_space_init(CPUState *cpu, int asidx,
94                             const char *prefix, MemoryRegion *mr);
95 #endif
96 
97 #if !defined(CONFIG_USER_ONLY) && defined(CONFIG_TCG)
98 /* cputlb.c */
99 /**
100  * tlb_flush_page:
101  * @cpu: CPU whose TLB should be flushed
102  * @addr: virtual address of page to be flushed
103  *
104  * Flush one page from the TLB of the specified CPU, for all
105  * MMU indexes.
106  */
107 void tlb_flush_page(CPUState *cpu, target_ulong addr);
108 /**
109  * tlb_flush_page_all_cpus:
110  * @cpu: src CPU of the flush
111  * @addr: virtual address of page to be flushed
112  *
113  * Flush one page from the TLB of the specified CPU, for all
114  * MMU indexes.
115  */
116 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr);
117 /**
118  * tlb_flush_page_all_cpus_synced:
119  * @cpu: src CPU of the flush
120  * @addr: virtual address of page to be flushed
121  *
122  * Flush one page from the TLB of the specified CPU, for all MMU
123  * indexes like tlb_flush_page_all_cpus except the source vCPUs work
124  * is scheduled as safe work meaning all flushes will be complete once
125  * the source vCPUs safe work is complete. This will depend on when
126  * the guests translation ends the TB.
127  */
128 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr);
129 /**
130  * tlb_flush:
131  * @cpu: CPU whose TLB should be flushed
132  *
133  * Flush the entire TLB for the specified CPU. Most CPU architectures
134  * allow the implementation to drop entries from the TLB at any time
135  * so this is generally safe. If more selective flushing is required
136  * use one of the other functions for efficiency.
137  */
138 void tlb_flush(CPUState *cpu);
139 /**
140  * tlb_flush_all_cpus:
141  * @cpu: src CPU of the flush
142  */
143 void tlb_flush_all_cpus(CPUState *src_cpu);
144 /**
145  * tlb_flush_all_cpus_synced:
146  * @cpu: src CPU of the flush
147  *
148  * Like tlb_flush_all_cpus except this except the source vCPUs work is
149  * scheduled as safe work meaning all flushes will be complete once
150  * the source vCPUs safe work is complete. This will depend on when
151  * the guests translation ends the TB.
152  */
153 void tlb_flush_all_cpus_synced(CPUState *src_cpu);
154 /**
155  * tlb_flush_page_by_mmuidx:
156  * @cpu: CPU whose TLB should be flushed
157  * @addr: virtual address of page to be flushed
158  * @idxmap: bitmap of MMU indexes to flush
159  *
160  * Flush one page from the TLB of the specified CPU, for the specified
161  * MMU indexes.
162  */
163 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr,
164                               uint16_t idxmap);
165 /**
166  * tlb_flush_page_by_mmuidx_all_cpus:
167  * @cpu: Originating CPU of the flush
168  * @addr: virtual address of page to be flushed
169  * @idxmap: bitmap of MMU indexes to flush
170  *
171  * Flush one page from the TLB of all CPUs, for the specified
172  * MMU indexes.
173  */
174 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr,
175                                        uint16_t idxmap);
176 /**
177  * tlb_flush_page_by_mmuidx_all_cpus_synced:
178  * @cpu: Originating CPU of the flush
179  * @addr: virtual address of page to be flushed
180  * @idxmap: bitmap of MMU indexes to flush
181  *
182  * Flush one page from the TLB of all CPUs, for the specified MMU
183  * indexes like tlb_flush_page_by_mmuidx_all_cpus except the source
184  * vCPUs work is scheduled as safe work meaning all flushes will be
185  * complete once  the source vCPUs safe work is complete. This will
186  * depend on when the guests translation ends the TB.
187  */
188 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu, target_ulong addr,
189                                               uint16_t idxmap);
190 /**
191  * tlb_flush_by_mmuidx:
192  * @cpu: CPU whose TLB should be flushed
193  * @wait: If true ensure synchronisation by exiting the cpu_loop
194  * @idxmap: bitmap of MMU indexes to flush
195  *
196  * Flush all entries from the TLB of the specified CPU, for the specified
197  * MMU indexes.
198  */
199 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap);
200 /**
201  * tlb_flush_by_mmuidx_all_cpus:
202  * @cpu: Originating CPU of the flush
203  * @idxmap: bitmap of MMU indexes to flush
204  *
205  * Flush all entries from all TLBs of all CPUs, for the specified
206  * MMU indexes.
207  */
208 void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap);
209 /**
210  * tlb_flush_by_mmuidx_all_cpus_synced:
211  * @cpu: Originating CPU of the flush
212  * @idxmap: bitmap of MMU indexes to flush
213  *
214  * Flush all entries from all TLBs of all CPUs, for the specified
215  * MMU indexes like tlb_flush_by_mmuidx_all_cpus except except the source
216  * vCPUs work is scheduled as safe work meaning all flushes will be
217  * complete once  the source vCPUs safe work is complete. This will
218  * depend on when the guests translation ends the TB.
219  */
220 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu, uint16_t idxmap);
221 /**
222  * tlb_set_page_with_attrs:
223  * @cpu: CPU to add this TLB entry for
224  * @vaddr: virtual address of page to add entry for
225  * @paddr: physical address of the page
226  * @attrs: memory transaction attributes
227  * @prot: access permissions (PAGE_READ/PAGE_WRITE/PAGE_EXEC bits)
228  * @mmu_idx: MMU index to insert TLB entry for
229  * @size: size of the page in bytes
230  *
231  * Add an entry to this CPU's TLB (a mapping from virtual address
232  * @vaddr to physical address @paddr) with the specified memory
233  * transaction attributes. This is generally called by the target CPU
234  * specific code after it has been called through the tlb_fill()
235  * entry point and performed a successful page table walk to find
236  * the physical address and attributes for the virtual address
237  * which provoked the TLB miss.
238  *
239  * At most one entry for a given virtual address is permitted. Only a
240  * single TARGET_PAGE_SIZE region is mapped; the supplied @size is only
241  * used by tlb_flush_page.
242  */
243 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
244                              hwaddr paddr, MemTxAttrs attrs,
245                              int prot, int mmu_idx, target_ulong size);
246 /* tlb_set_page:
247  *
248  * This function is equivalent to calling tlb_set_page_with_attrs()
249  * with an @attrs argument of MEMTXATTRS_UNSPECIFIED. It's provided
250  * as a convenience for CPUs which don't use memory transaction attributes.
251  */
252 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
253                   hwaddr paddr, int prot,
254                   int mmu_idx, target_ulong size);
255 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr);
256 void probe_write(CPUArchState *env, target_ulong addr, int size, int mmu_idx,
257                  uintptr_t retaddr);
258 #else
259 static inline void tlb_flush_page(CPUState *cpu, target_ulong addr)
260 {
261 }
262 static inline void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
263 {
264 }
265 static inline void tlb_flush_page_all_cpus_synced(CPUState *src,
266                                                   target_ulong addr)
267 {
268 }
269 static inline void tlb_flush(CPUState *cpu)
270 {
271 }
272 static inline void tlb_flush_all_cpus(CPUState *src_cpu)
273 {
274 }
275 static inline void tlb_flush_all_cpus_synced(CPUState *src_cpu)
276 {
277 }
278 static inline void tlb_flush_page_by_mmuidx(CPUState *cpu,
279                                             target_ulong addr, uint16_t idxmap)
280 {
281 }
282 
283 static inline void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
284 {
285 }
286 static inline void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu,
287                                                      target_ulong addr,
288                                                      uint16_t idxmap)
289 {
290 }
291 static inline void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu,
292                                                             target_ulong addr,
293                                                             uint16_t idxmap)
294 {
295 }
296 static inline void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap)
297 {
298 }
299 static inline void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu,
300                                                        uint16_t idxmap)
301 {
302 }
303 static inline void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
304 {
305 }
306 #endif
307 
308 #define CODE_GEN_ALIGN           16 /* must be >= of the size of a icache line */
309 
310 /* Estimated block size for TB allocation.  */
311 /* ??? The following is based on a 2015 survey of x86_64 host output.
312    Better would seem to be some sort of dynamically sized TB array,
313    adapting to the block sizes actually being produced.  */
314 #if defined(CONFIG_SOFTMMU)
315 #define CODE_GEN_AVG_BLOCK_SIZE 400
316 #else
317 #define CODE_GEN_AVG_BLOCK_SIZE 150
318 #endif
319 
320 /*
321  * Translation Cache-related fields of a TB.
322  * This struct exists just for convenience; we keep track of TB's in a binary
323  * search tree, and the only fields needed to compare TB's in the tree are
324  * @ptr and @size.
325  * Note: the address of search data can be obtained by adding @size to @ptr.
326  */
327 struct tb_tc {
328     void *ptr;    /* pointer to the translated code */
329     size_t size;
330 };
331 
332 struct TranslationBlock {
333     target_ulong pc;   /* simulated PC corresponding to this block (EIP + CS base) */
334     target_ulong cs_base; /* CS base for this block */
335     uint32_t flags; /* flags defining in which context the code was generated */
336     uint16_t size;      /* size of target code for this block (1 <=
337                            size <= TARGET_PAGE_SIZE) */
338     uint16_t icount;
339     uint32_t cflags;    /* compile flags */
340 #define CF_COUNT_MASK  0x00007fff
341 #define CF_LAST_IO     0x00008000 /* Last insn may be an IO access.  */
342 #define CF_NOCACHE     0x00010000 /* To be freed after execution */
343 #define CF_USE_ICOUNT  0x00020000
344 #define CF_INVALID     0x00040000 /* TB is stale. Setters need tb_lock */
345 #define CF_PARALLEL    0x00080000 /* Generate code for a parallel context */
346 /* cflags' mask for hashing/comparison */
347 #define CF_HASH_MASK   \
348     (CF_COUNT_MASK | CF_LAST_IO | CF_USE_ICOUNT | CF_PARALLEL)
349 
350     /* Per-vCPU dynamic tracing state used to generate this TB */
351     uint32_t trace_vcpu_dstate;
352 
353     struct tb_tc tc;
354 
355     /* original tb when cflags has CF_NOCACHE */
356     struct TranslationBlock *orig_tb;
357     /* first and second physical page containing code. The lower bit
358        of the pointer tells the index in page_next[] */
359     struct TranslationBlock *page_next[2];
360     tb_page_addr_t page_addr[2];
361 
362     /* The following data are used to directly call another TB from
363      * the code of this one. This can be done either by emitting direct or
364      * indirect native jump instructions. These jumps are reset so that the TB
365      * just continues its execution. The TB can be linked to another one by
366      * setting one of the jump targets (or patching the jump instruction). Only
367      * two of such jumps are supported.
368      */
369     uint16_t jmp_reset_offset[2]; /* offset of original jump target */
370 #define TB_JMP_RESET_OFFSET_INVALID 0xffff /* indicates no jump generated */
371     uintptr_t jmp_target_arg[2];  /* target address or offset */
372 
373     /* Each TB has an associated circular list of TBs jumping to this one.
374      * jmp_list_first points to the first TB jumping to this one.
375      * jmp_list_next is used to point to the next TB in a list.
376      * Since each TB can have two jumps, it can participate in two lists.
377      * jmp_list_first and jmp_list_next are 4-byte aligned pointers to a
378      * TranslationBlock structure, but the two least significant bits of
379      * them are used to encode which data field of the pointed TB should
380      * be used to traverse the list further from that TB:
381      * 0 => jmp_list_next[0], 1 => jmp_list_next[1], 2 => jmp_list_first.
382      * In other words, 0/1 tells which jump is used in the pointed TB,
383      * and 2 means that this is a pointer back to the target TB of this list.
384      */
385     uintptr_t jmp_list_next[2];
386     uintptr_t jmp_list_first;
387 };
388 
389 extern bool parallel_cpus;
390 
391 /* Hide the atomic_read to make code a little easier on the eyes */
392 static inline uint32_t tb_cflags(const TranslationBlock *tb)
393 {
394     return atomic_read(&tb->cflags);
395 }
396 
397 /* current cflags for hashing/comparison */
398 static inline uint32_t curr_cflags(void)
399 {
400     return (parallel_cpus ? CF_PARALLEL : 0)
401          | (use_icount ? CF_USE_ICOUNT : 0);
402 }
403 
404 void tb_remove(TranslationBlock *tb);
405 void tb_flush(CPUState *cpu);
406 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr);
407 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
408                                    target_ulong cs_base, uint32_t flags,
409                                    uint32_t cf_mask);
410 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr);
411 
412 /* GETPC is the true target of the return instruction that we'll execute.  */
413 #if defined(CONFIG_TCG_INTERPRETER)
414 extern uintptr_t tci_tb_ptr;
415 # define GETPC() tci_tb_ptr
416 #else
417 # define GETPC() \
418     ((uintptr_t)__builtin_extract_return_addr(__builtin_return_address(0)))
419 #endif
420 
421 /* The true return address will often point to a host insn that is part of
422    the next translated guest insn.  Adjust the address backward to point to
423    the middle of the call insn.  Subtracting one would do the job except for
424    several compressed mode architectures (arm, mips) which set the low bit
425    to indicate the compressed mode; subtracting two works around that.  It
426    is also the case that there are no host isas that contain a call insn
427    smaller than 4 bytes, so we don't worry about special-casing this.  */
428 #define GETPC_ADJ   2
429 
430 void tb_lock(void);
431 void tb_unlock(void);
432 void tb_lock_reset(void);
433 
434 #if !defined(CONFIG_USER_ONLY)
435 
436 struct MemoryRegion *iotlb_to_region(CPUState *cpu,
437                                      hwaddr index, MemTxAttrs attrs);
438 
439 void tlb_fill(CPUState *cpu, target_ulong addr, int size,
440               MMUAccessType access_type, int mmu_idx, uintptr_t retaddr);
441 
442 #endif
443 
444 #if defined(CONFIG_USER_ONLY)
445 void mmap_lock(void);
446 void mmap_unlock(void);
447 bool have_mmap_lock(void);
448 
449 static inline tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
450 {
451     return addr;
452 }
453 #else
454 static inline void mmap_lock(void) {}
455 static inline void mmap_unlock(void) {}
456 
457 /* cputlb.c */
458 tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr);
459 
460 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length);
461 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr);
462 
463 /* exec.c */
464 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr);
465 
466 MemoryRegionSection *
467 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
468                                   hwaddr *xlat, hwaddr *plen);
469 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
470                                        MemoryRegionSection *section,
471                                        target_ulong vaddr,
472                                        hwaddr paddr, hwaddr xlat,
473                                        int prot,
474                                        target_ulong *address);
475 bool memory_region_is_unassigned(MemoryRegion *mr);
476 
477 #endif
478 
479 /* vl.c */
480 extern int singlestep;
481 
482 #endif
483