xref: /openbmc/qemu/include/exec/exec-all.h (revision 8692aa29)
1 /*
2  * internal execution defines for qemu
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef _EXEC_ALL_H_
21 #define _EXEC_ALL_H_
22 
23 #include "qemu-common.h"
24 #include "exec/tb-context.h"
25 
26 /* allow to see translation results - the slowdown should be negligible, so we leave it */
27 #define DEBUG_DISAS
28 
29 /* Page tracking code uses ram addresses in system mode, and virtual
30    addresses in userspace mode.  Define tb_page_addr_t to be an appropriate
31    type.  */
32 #if defined(CONFIG_USER_ONLY)
33 typedef abi_ulong tb_page_addr_t;
34 #else
35 typedef ram_addr_t tb_page_addr_t;
36 #endif
37 
38 /* is_jmp field values */
39 #define DISAS_NEXT    0 /* next instruction can be analyzed */
40 #define DISAS_JUMP    1 /* only pc was modified dynamically */
41 #define DISAS_UPDATE  2 /* cpu state was modified dynamically */
42 #define DISAS_TB_JUMP 3 /* only pc was modified statically */
43 
44 #include "qemu/log.h"
45 
46 void gen_intermediate_code(CPUArchState *env, struct TranslationBlock *tb);
47 void restore_state_to_opc(CPUArchState *env, struct TranslationBlock *tb,
48                           target_ulong *data);
49 
50 void cpu_gen_init(void);
51 bool cpu_restore_state(CPUState *cpu, uintptr_t searched_pc);
52 
53 void QEMU_NORETURN cpu_loop_exit_noexc(CPUState *cpu);
54 void QEMU_NORETURN cpu_io_recompile(CPUState *cpu, uintptr_t retaddr);
55 TranslationBlock *tb_gen_code(CPUState *cpu,
56                               target_ulong pc, target_ulong cs_base,
57                               uint32_t flags,
58                               int cflags);
59 void cpu_exec_init(CPUState *cpu, Error **errp);
60 void QEMU_NORETURN cpu_loop_exit(CPUState *cpu);
61 void QEMU_NORETURN cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc);
62 
63 #if !defined(CONFIG_USER_ONLY)
64 void cpu_reloading_memory_map(void);
65 /**
66  * cpu_address_space_init:
67  * @cpu: CPU to add this address space to
68  * @as: address space to add
69  * @asidx: integer index of this address space
70  *
71  * Add the specified address space to the CPU's cpu_ases list.
72  * The address space added with @asidx 0 is the one used for the
73  * convenience pointer cpu->as.
74  * The target-specific code which registers ASes is responsible
75  * for defining what semantics address space 0, 1, 2, etc have.
76  *
77  * Before the first call to this function, the caller must set
78  * cpu->num_ases to the total number of address spaces it needs
79  * to support.
80  *
81  * Note that with KVM only one address space is supported.
82  */
83 void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx);
84 /* cputlb.c */
85 /**
86  * tlb_flush_page:
87  * @cpu: CPU whose TLB should be flushed
88  * @addr: virtual address of page to be flushed
89  *
90  * Flush one page from the TLB of the specified CPU, for all
91  * MMU indexes.
92  */
93 void tlb_flush_page(CPUState *cpu, target_ulong addr);
94 /**
95  * tlb_flush:
96  * @cpu: CPU whose TLB should be flushed
97  * @flush_global: ignored
98  *
99  * Flush the entire TLB for the specified CPU.
100  * The flush_global flag is in theory an indicator of whether the whole
101  * TLB should be flushed, or only those entries not marked global.
102  * In practice QEMU does not implement any global/not global flag for
103  * TLB entries, and the argument is ignored.
104  */
105 void tlb_flush(CPUState *cpu, int flush_global);
106 /**
107  * tlb_flush_page_by_mmuidx:
108  * @cpu: CPU whose TLB should be flushed
109  * @addr: virtual address of page to be flushed
110  * @...: list of MMU indexes to flush, terminated by a negative value
111  *
112  * Flush one page from the TLB of the specified CPU, for the specified
113  * MMU indexes.
114  */
115 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, ...);
116 /**
117  * tlb_flush_by_mmuidx:
118  * @cpu: CPU whose TLB should be flushed
119  * @...: list of MMU indexes to flush, terminated by a negative value
120  *
121  * Flush all entries from the TLB of the specified CPU, for the specified
122  * MMU indexes.
123  */
124 void tlb_flush_by_mmuidx(CPUState *cpu, ...);
125 /**
126  * tlb_set_page_with_attrs:
127  * @cpu: CPU to add this TLB entry for
128  * @vaddr: virtual address of page to add entry for
129  * @paddr: physical address of the page
130  * @attrs: memory transaction attributes
131  * @prot: access permissions (PAGE_READ/PAGE_WRITE/PAGE_EXEC bits)
132  * @mmu_idx: MMU index to insert TLB entry for
133  * @size: size of the page in bytes
134  *
135  * Add an entry to this CPU's TLB (a mapping from virtual address
136  * @vaddr to physical address @paddr) with the specified memory
137  * transaction attributes. This is generally called by the target CPU
138  * specific code after it has been called through the tlb_fill()
139  * entry point and performed a successful page table walk to find
140  * the physical address and attributes for the virtual address
141  * which provoked the TLB miss.
142  *
143  * At most one entry for a given virtual address is permitted. Only a
144  * single TARGET_PAGE_SIZE region is mapped; the supplied @size is only
145  * used by tlb_flush_page.
146  */
147 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
148                              hwaddr paddr, MemTxAttrs attrs,
149                              int prot, int mmu_idx, target_ulong size);
150 /* tlb_set_page:
151  *
152  * This function is equivalent to calling tlb_set_page_with_attrs()
153  * with an @attrs argument of MEMTXATTRS_UNSPECIFIED. It's provided
154  * as a convenience for CPUs which don't use memory transaction attributes.
155  */
156 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
157                   hwaddr paddr, int prot,
158                   int mmu_idx, target_ulong size);
159 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr);
160 void probe_write(CPUArchState *env, target_ulong addr, int mmu_idx,
161                  uintptr_t retaddr);
162 #else
163 static inline void tlb_flush_page(CPUState *cpu, target_ulong addr)
164 {
165 }
166 
167 static inline void tlb_flush(CPUState *cpu, int flush_global)
168 {
169 }
170 
171 static inline void tlb_flush_page_by_mmuidx(CPUState *cpu,
172                                             target_ulong addr, ...)
173 {
174 }
175 
176 static inline void tlb_flush_by_mmuidx(CPUState *cpu, ...)
177 {
178 }
179 #endif
180 
181 #define CODE_GEN_ALIGN           16 /* must be >= of the size of a icache line */
182 
183 /* Estimated block size for TB allocation.  */
184 /* ??? The following is based on a 2015 survey of x86_64 host output.
185    Better would seem to be some sort of dynamically sized TB array,
186    adapting to the block sizes actually being produced.  */
187 #if defined(CONFIG_SOFTMMU)
188 #define CODE_GEN_AVG_BLOCK_SIZE 400
189 #else
190 #define CODE_GEN_AVG_BLOCK_SIZE 150
191 #endif
192 
193 #if defined(__arm__) || defined(_ARCH_PPC) \
194     || defined(__x86_64__) || defined(__i386__) \
195     || defined(__sparc__) || defined(__aarch64__) \
196     || defined(__s390x__) || defined(__mips__) \
197     || defined(CONFIG_TCG_INTERPRETER)
198 /* NOTE: Direct jump patching must be atomic to be thread-safe. */
199 #define USE_DIRECT_JUMP
200 #endif
201 
202 struct TranslationBlock {
203     target_ulong pc;   /* simulated PC corresponding to this block (EIP + CS base) */
204     target_ulong cs_base; /* CS base for this block */
205     uint32_t flags; /* flags defining in which context the code was generated */
206     uint16_t size;      /* size of target code for this block (1 <=
207                            size <= TARGET_PAGE_SIZE) */
208     uint16_t icount;
209     uint32_t cflags;    /* compile flags */
210 #define CF_COUNT_MASK  0x7fff
211 #define CF_LAST_IO     0x8000 /* Last insn may be an IO access.  */
212 #define CF_NOCACHE     0x10000 /* To be freed after execution */
213 #define CF_USE_ICOUNT  0x20000
214 #define CF_IGNORE_ICOUNT 0x40000 /* Do not generate icount code */
215 
216     void *tc_ptr;    /* pointer to the translated code */
217     uint8_t *tc_search;  /* pointer to search data */
218     /* original tb when cflags has CF_NOCACHE */
219     struct TranslationBlock *orig_tb;
220     /* first and second physical page containing code. The lower bit
221        of the pointer tells the index in page_next[] */
222     struct TranslationBlock *page_next[2];
223     tb_page_addr_t page_addr[2];
224 
225     /* The following data are used to directly call another TB from
226      * the code of this one. This can be done either by emitting direct or
227      * indirect native jump instructions. These jumps are reset so that the TB
228      * just continue its execution. The TB can be linked to another one by
229      * setting one of the jump targets (or patching the jump instruction). Only
230      * two of such jumps are supported.
231      */
232     uint16_t jmp_reset_offset[2]; /* offset of original jump target */
233 #define TB_JMP_RESET_OFFSET_INVALID 0xffff /* indicates no jump generated */
234 #ifdef USE_DIRECT_JUMP
235     uint16_t jmp_insn_offset[2]; /* offset of native jump instruction */
236 #else
237     uintptr_t jmp_target_addr[2]; /* target address for indirect jump */
238 #endif
239     /* Each TB has an assosiated circular list of TBs jumping to this one.
240      * jmp_list_first points to the first TB jumping to this one.
241      * jmp_list_next is used to point to the next TB in a list.
242      * Since each TB can have two jumps, it can participate in two lists.
243      * jmp_list_first and jmp_list_next are 4-byte aligned pointers to a
244      * TranslationBlock structure, but the two least significant bits of
245      * them are used to encode which data field of the pointed TB should
246      * be used to traverse the list further from that TB:
247      * 0 => jmp_list_next[0], 1 => jmp_list_next[1], 2 => jmp_list_first.
248      * In other words, 0/1 tells which jump is used in the pointed TB,
249      * and 2 means that this is a pointer back to the target TB of this list.
250      */
251     uintptr_t jmp_list_next[2];
252     uintptr_t jmp_list_first;
253 };
254 
255 void tb_free(TranslationBlock *tb);
256 void tb_flush(CPUState *cpu);
257 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr);
258 
259 #if defined(USE_DIRECT_JUMP)
260 
261 #if defined(CONFIG_TCG_INTERPRETER)
262 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr)
263 {
264     /* patch the branch destination */
265     atomic_set((int32_t *)jmp_addr, addr - (jmp_addr + 4));
266     /* no need to flush icache explicitly */
267 }
268 #elif defined(_ARCH_PPC)
269 void ppc_tb_set_jmp_target(uintptr_t jmp_addr, uintptr_t addr);
270 #define tb_set_jmp_target1 ppc_tb_set_jmp_target
271 #elif defined(__i386__) || defined(__x86_64__)
272 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr)
273 {
274     /* patch the branch destination */
275     atomic_set((int32_t *)jmp_addr, addr - (jmp_addr + 4));
276     /* no need to flush icache explicitly */
277 }
278 #elif defined(__s390x__)
279 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr)
280 {
281     /* patch the branch destination */
282     intptr_t disp = addr - (jmp_addr - 2);
283     atomic_set((int32_t *)jmp_addr, disp / 2);
284     /* no need to flush icache explicitly */
285 }
286 #elif defined(__aarch64__)
287 void aarch64_tb_set_jmp_target(uintptr_t jmp_addr, uintptr_t addr);
288 #define tb_set_jmp_target1 aarch64_tb_set_jmp_target
289 #elif defined(__arm__)
290 void arm_tb_set_jmp_target(uintptr_t jmp_addr, uintptr_t addr);
291 #define tb_set_jmp_target1 arm_tb_set_jmp_target
292 #elif defined(__sparc__) || defined(__mips__)
293 void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr);
294 #else
295 #error tb_set_jmp_target1 is missing
296 #endif
297 
298 static inline void tb_set_jmp_target(TranslationBlock *tb,
299                                      int n, uintptr_t addr)
300 {
301     uint16_t offset = tb->jmp_insn_offset[n];
302     tb_set_jmp_target1((uintptr_t)(tb->tc_ptr + offset), addr);
303 }
304 
305 #else
306 
307 /* set the jump target */
308 static inline void tb_set_jmp_target(TranslationBlock *tb,
309                                      int n, uintptr_t addr)
310 {
311     tb->jmp_target_addr[n] = addr;
312 }
313 
314 #endif
315 
316 static inline void tb_add_jump(TranslationBlock *tb, int n,
317                                TranslationBlock *tb_next)
318 {
319     if (tb->jmp_list_next[n]) {
320         /* Another thread has already done this while we were
321          * outside of the lock; nothing to do in this case */
322         return;
323     }
324     qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc,
325                            "Linking TBs %p [" TARGET_FMT_lx
326                            "] index %d -> %p [" TARGET_FMT_lx "]\n",
327                            tb->tc_ptr, tb->pc, n,
328                            tb_next->tc_ptr, tb_next->pc);
329 
330     /* patch the native jump address */
331     tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc_ptr);
332 
333     /* add in TB jmp circular list */
334     tb->jmp_list_next[n] = tb_next->jmp_list_first;
335     tb_next->jmp_list_first = (uintptr_t)tb | n;
336 }
337 
338 /* GETRA is the true target of the return instruction that we'll execute,
339    defined here for simplicity of defining the follow-up macros.  */
340 #if defined(CONFIG_TCG_INTERPRETER)
341 extern uintptr_t tci_tb_ptr;
342 # define GETRA() tci_tb_ptr
343 #else
344 # define GETRA() \
345     ((uintptr_t)__builtin_extract_return_addr(__builtin_return_address(0)))
346 #endif
347 
348 /* The true return address will often point to a host insn that is part of
349    the next translated guest insn.  Adjust the address backward to point to
350    the middle of the call insn.  Subtracting one would do the job except for
351    several compressed mode architectures (arm, mips) which set the low bit
352    to indicate the compressed mode; subtracting two works around that.  It
353    is also the case that there are no host isas that contain a call insn
354    smaller than 4 bytes, so we don't worry about special-casing this.  */
355 #define GETPC_ADJ   2
356 
357 #define GETPC()  (GETRA() - GETPC_ADJ)
358 
359 #if !defined(CONFIG_USER_ONLY)
360 
361 struct MemoryRegion *iotlb_to_region(CPUState *cpu,
362                                      hwaddr index, MemTxAttrs attrs);
363 
364 void tlb_fill(CPUState *cpu, target_ulong addr, int is_write, int mmu_idx,
365               uintptr_t retaddr);
366 
367 #endif
368 
369 #if defined(CONFIG_USER_ONLY)
370 void mmap_lock(void);
371 void mmap_unlock(void);
372 
373 static inline tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
374 {
375     return addr;
376 }
377 #else
378 static inline void mmap_lock(void) {}
379 static inline void mmap_unlock(void) {}
380 
381 /* cputlb.c */
382 tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr);
383 
384 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length);
385 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr);
386 
387 /* exec.c */
388 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr);
389 
390 MemoryRegionSection *
391 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
392                                   hwaddr *xlat, hwaddr *plen);
393 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
394                                        MemoryRegionSection *section,
395                                        target_ulong vaddr,
396                                        hwaddr paddr, hwaddr xlat,
397                                        int prot,
398                                        target_ulong *address);
399 bool memory_region_is_unassigned(MemoryRegion *mr);
400 
401 #endif
402 
403 /* vl.c */
404 extern int singlestep;
405 
406 /* cpu-exec.c, accessed with atomic_mb_read/atomic_mb_set */
407 extern CPUState *tcg_current_cpu;
408 extern bool exit_request;
409 
410 #endif
411