1 /* 2 * internal execution defines for qemu 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #ifndef _EXEC_ALL_H_ 21 #define _EXEC_ALL_H_ 22 23 #include "qemu-common.h" 24 #include "exec/tb-context.h" 25 26 /* allow to see translation results - the slowdown should be negligible, so we leave it */ 27 #define DEBUG_DISAS 28 29 /* Page tracking code uses ram addresses in system mode, and virtual 30 addresses in userspace mode. Define tb_page_addr_t to be an appropriate 31 type. */ 32 #if defined(CONFIG_USER_ONLY) 33 typedef abi_ulong tb_page_addr_t; 34 #else 35 typedef ram_addr_t tb_page_addr_t; 36 #endif 37 38 /* is_jmp field values */ 39 #define DISAS_NEXT 0 /* next instruction can be analyzed */ 40 #define DISAS_JUMP 1 /* only pc was modified dynamically */ 41 #define DISAS_UPDATE 2 /* cpu state was modified dynamically */ 42 #define DISAS_TB_JUMP 3 /* only pc was modified statically */ 43 44 #include "qemu/log.h" 45 46 void gen_intermediate_code(CPUArchState *env, struct TranslationBlock *tb); 47 void restore_state_to_opc(CPUArchState *env, struct TranslationBlock *tb, 48 target_ulong *data); 49 50 void cpu_gen_init(void); 51 bool cpu_restore_state(CPUState *cpu, uintptr_t searched_pc); 52 53 void QEMU_NORETURN cpu_loop_exit_noexc(CPUState *cpu); 54 void QEMU_NORETURN cpu_io_recompile(CPUState *cpu, uintptr_t retaddr); 55 TranslationBlock *tb_gen_code(CPUState *cpu, 56 target_ulong pc, target_ulong cs_base, 57 uint32_t flags, 58 int cflags); 59 void cpu_exec_init(CPUState *cpu, Error **errp); 60 void QEMU_NORETURN cpu_loop_exit(CPUState *cpu); 61 void QEMU_NORETURN cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc); 62 63 #if !defined(CONFIG_USER_ONLY) 64 void cpu_reloading_memory_map(void); 65 /** 66 * cpu_address_space_init: 67 * @cpu: CPU to add this address space to 68 * @as: address space to add 69 * @asidx: integer index of this address space 70 * 71 * Add the specified address space to the CPU's cpu_ases list. 72 * The address space added with @asidx 0 is the one used for the 73 * convenience pointer cpu->as. 74 * The target-specific code which registers ASes is responsible 75 * for defining what semantics address space 0, 1, 2, etc have. 76 * 77 * Before the first call to this function, the caller must set 78 * cpu->num_ases to the total number of address spaces it needs 79 * to support. 80 * 81 * Note that with KVM only one address space is supported. 82 */ 83 void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx); 84 /* cputlb.c */ 85 /** 86 * tlb_flush_page: 87 * @cpu: CPU whose TLB should be flushed 88 * @addr: virtual address of page to be flushed 89 * 90 * Flush one page from the TLB of the specified CPU, for all 91 * MMU indexes. 92 */ 93 void tlb_flush_page(CPUState *cpu, target_ulong addr); 94 /** 95 * tlb_flush: 96 * @cpu: CPU whose TLB should be flushed 97 * @flush_global: ignored 98 * 99 * Flush the entire TLB for the specified CPU. 100 * The flush_global flag is in theory an indicator of whether the whole 101 * TLB should be flushed, or only those entries not marked global. 102 * In practice QEMU does not implement any global/not global flag for 103 * TLB entries, and the argument is ignored. 104 */ 105 void tlb_flush(CPUState *cpu, int flush_global); 106 /** 107 * tlb_flush_page_by_mmuidx: 108 * @cpu: CPU whose TLB should be flushed 109 * @addr: virtual address of page to be flushed 110 * @...: list of MMU indexes to flush, terminated by a negative value 111 * 112 * Flush one page from the TLB of the specified CPU, for the specified 113 * MMU indexes. 114 */ 115 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, ...); 116 /** 117 * tlb_flush_by_mmuidx: 118 * @cpu: CPU whose TLB should be flushed 119 * @...: list of MMU indexes to flush, terminated by a negative value 120 * 121 * Flush all entries from the TLB of the specified CPU, for the specified 122 * MMU indexes. 123 */ 124 void tlb_flush_by_mmuidx(CPUState *cpu, ...); 125 /** 126 * tlb_set_page_with_attrs: 127 * @cpu: CPU to add this TLB entry for 128 * @vaddr: virtual address of page to add entry for 129 * @paddr: physical address of the page 130 * @attrs: memory transaction attributes 131 * @prot: access permissions (PAGE_READ/PAGE_WRITE/PAGE_EXEC bits) 132 * @mmu_idx: MMU index to insert TLB entry for 133 * @size: size of the page in bytes 134 * 135 * Add an entry to this CPU's TLB (a mapping from virtual address 136 * @vaddr to physical address @paddr) with the specified memory 137 * transaction attributes. This is generally called by the target CPU 138 * specific code after it has been called through the tlb_fill() 139 * entry point and performed a successful page table walk to find 140 * the physical address and attributes for the virtual address 141 * which provoked the TLB miss. 142 * 143 * At most one entry for a given virtual address is permitted. Only a 144 * single TARGET_PAGE_SIZE region is mapped; the supplied @size is only 145 * used by tlb_flush_page. 146 */ 147 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr, 148 hwaddr paddr, MemTxAttrs attrs, 149 int prot, int mmu_idx, target_ulong size); 150 /* tlb_set_page: 151 * 152 * This function is equivalent to calling tlb_set_page_with_attrs() 153 * with an @attrs argument of MEMTXATTRS_UNSPECIFIED. It's provided 154 * as a convenience for CPUs which don't use memory transaction attributes. 155 */ 156 void tlb_set_page(CPUState *cpu, target_ulong vaddr, 157 hwaddr paddr, int prot, 158 int mmu_idx, target_ulong size); 159 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr); 160 void probe_write(CPUArchState *env, target_ulong addr, int mmu_idx, 161 uintptr_t retaddr); 162 #else 163 static inline void tlb_flush_page(CPUState *cpu, target_ulong addr) 164 { 165 } 166 167 static inline void tlb_flush(CPUState *cpu, int flush_global) 168 { 169 } 170 171 static inline void tlb_flush_page_by_mmuidx(CPUState *cpu, 172 target_ulong addr, ...) 173 { 174 } 175 176 static inline void tlb_flush_by_mmuidx(CPUState *cpu, ...) 177 { 178 } 179 #endif 180 181 #define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */ 182 183 /* Estimated block size for TB allocation. */ 184 /* ??? The following is based on a 2015 survey of x86_64 host output. 185 Better would seem to be some sort of dynamically sized TB array, 186 adapting to the block sizes actually being produced. */ 187 #if defined(CONFIG_SOFTMMU) 188 #define CODE_GEN_AVG_BLOCK_SIZE 400 189 #else 190 #define CODE_GEN_AVG_BLOCK_SIZE 150 191 #endif 192 193 #if defined(__arm__) || defined(_ARCH_PPC) \ 194 || defined(__x86_64__) || defined(__i386__) \ 195 || defined(__sparc__) || defined(__aarch64__) \ 196 || defined(__s390x__) || defined(__mips__) \ 197 || defined(CONFIG_TCG_INTERPRETER) 198 /* NOTE: Direct jump patching must be atomic to be thread-safe. */ 199 #define USE_DIRECT_JUMP 200 #endif 201 202 struct TranslationBlock { 203 target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */ 204 target_ulong cs_base; /* CS base for this block */ 205 uint32_t flags; /* flags defining in which context the code was generated */ 206 uint16_t size; /* size of target code for this block (1 <= 207 size <= TARGET_PAGE_SIZE) */ 208 uint16_t icount; 209 uint32_t cflags; /* compile flags */ 210 #define CF_COUNT_MASK 0x7fff 211 #define CF_LAST_IO 0x8000 /* Last insn may be an IO access. */ 212 #define CF_NOCACHE 0x10000 /* To be freed after execution */ 213 #define CF_USE_ICOUNT 0x20000 214 #define CF_IGNORE_ICOUNT 0x40000 /* Do not generate icount code */ 215 216 void *tc_ptr; /* pointer to the translated code */ 217 uint8_t *tc_search; /* pointer to search data */ 218 /* original tb when cflags has CF_NOCACHE */ 219 struct TranslationBlock *orig_tb; 220 /* first and second physical page containing code. The lower bit 221 of the pointer tells the index in page_next[] */ 222 struct TranslationBlock *page_next[2]; 223 tb_page_addr_t page_addr[2]; 224 225 /* The following data are used to directly call another TB from 226 * the code of this one. This can be done either by emitting direct or 227 * indirect native jump instructions. These jumps are reset so that the TB 228 * just continue its execution. The TB can be linked to another one by 229 * setting one of the jump targets (or patching the jump instruction). Only 230 * two of such jumps are supported. 231 */ 232 uint16_t jmp_reset_offset[2]; /* offset of original jump target */ 233 #define TB_JMP_RESET_OFFSET_INVALID 0xffff /* indicates no jump generated */ 234 #ifdef USE_DIRECT_JUMP 235 uint16_t jmp_insn_offset[2]; /* offset of native jump instruction */ 236 #else 237 uintptr_t jmp_target_addr[2]; /* target address for indirect jump */ 238 #endif 239 /* Each TB has an assosiated circular list of TBs jumping to this one. 240 * jmp_list_first points to the first TB jumping to this one. 241 * jmp_list_next is used to point to the next TB in a list. 242 * Since each TB can have two jumps, it can participate in two lists. 243 * jmp_list_first and jmp_list_next are 4-byte aligned pointers to a 244 * TranslationBlock structure, but the two least significant bits of 245 * them are used to encode which data field of the pointed TB should 246 * be used to traverse the list further from that TB: 247 * 0 => jmp_list_next[0], 1 => jmp_list_next[1], 2 => jmp_list_first. 248 * In other words, 0/1 tells which jump is used in the pointed TB, 249 * and 2 means that this is a pointer back to the target TB of this list. 250 */ 251 uintptr_t jmp_list_next[2]; 252 uintptr_t jmp_list_first; 253 }; 254 255 void tb_free(TranslationBlock *tb); 256 void tb_flush(CPUState *cpu); 257 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr); 258 259 #if defined(USE_DIRECT_JUMP) 260 261 #if defined(CONFIG_TCG_INTERPRETER) 262 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr) 263 { 264 /* patch the branch destination */ 265 atomic_set((int32_t *)jmp_addr, addr - (jmp_addr + 4)); 266 /* no need to flush icache explicitly */ 267 } 268 #elif defined(_ARCH_PPC) 269 void ppc_tb_set_jmp_target(uintptr_t jmp_addr, uintptr_t addr); 270 #define tb_set_jmp_target1 ppc_tb_set_jmp_target 271 #elif defined(__i386__) || defined(__x86_64__) 272 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr) 273 { 274 /* patch the branch destination */ 275 atomic_set((int32_t *)jmp_addr, addr - (jmp_addr + 4)); 276 /* no need to flush icache explicitly */ 277 } 278 #elif defined(__s390x__) 279 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr) 280 { 281 /* patch the branch destination */ 282 intptr_t disp = addr - (jmp_addr - 2); 283 atomic_set((int32_t *)jmp_addr, disp / 2); 284 /* no need to flush icache explicitly */ 285 } 286 #elif defined(__aarch64__) 287 void aarch64_tb_set_jmp_target(uintptr_t jmp_addr, uintptr_t addr); 288 #define tb_set_jmp_target1 aarch64_tb_set_jmp_target 289 #elif defined(__arm__) 290 void arm_tb_set_jmp_target(uintptr_t jmp_addr, uintptr_t addr); 291 #define tb_set_jmp_target1 arm_tb_set_jmp_target 292 #elif defined(__sparc__) || defined(__mips__) 293 void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr); 294 #else 295 #error tb_set_jmp_target1 is missing 296 #endif 297 298 static inline void tb_set_jmp_target(TranslationBlock *tb, 299 int n, uintptr_t addr) 300 { 301 uint16_t offset = tb->jmp_insn_offset[n]; 302 tb_set_jmp_target1((uintptr_t)(tb->tc_ptr + offset), addr); 303 } 304 305 #else 306 307 /* set the jump target */ 308 static inline void tb_set_jmp_target(TranslationBlock *tb, 309 int n, uintptr_t addr) 310 { 311 tb->jmp_target_addr[n] = addr; 312 } 313 314 #endif 315 316 static inline void tb_add_jump(TranslationBlock *tb, int n, 317 TranslationBlock *tb_next) 318 { 319 if (tb->jmp_list_next[n]) { 320 /* Another thread has already done this while we were 321 * outside of the lock; nothing to do in this case */ 322 return; 323 } 324 qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc, 325 "Linking TBs %p [" TARGET_FMT_lx 326 "] index %d -> %p [" TARGET_FMT_lx "]\n", 327 tb->tc_ptr, tb->pc, n, 328 tb_next->tc_ptr, tb_next->pc); 329 330 /* patch the native jump address */ 331 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc_ptr); 332 333 /* add in TB jmp circular list */ 334 tb->jmp_list_next[n] = tb_next->jmp_list_first; 335 tb_next->jmp_list_first = (uintptr_t)tb | n; 336 } 337 338 /* GETRA is the true target of the return instruction that we'll execute, 339 defined here for simplicity of defining the follow-up macros. */ 340 #if defined(CONFIG_TCG_INTERPRETER) 341 extern uintptr_t tci_tb_ptr; 342 # define GETRA() tci_tb_ptr 343 #else 344 # define GETRA() \ 345 ((uintptr_t)__builtin_extract_return_addr(__builtin_return_address(0))) 346 #endif 347 348 /* The true return address will often point to a host insn that is part of 349 the next translated guest insn. Adjust the address backward to point to 350 the middle of the call insn. Subtracting one would do the job except for 351 several compressed mode architectures (arm, mips) which set the low bit 352 to indicate the compressed mode; subtracting two works around that. It 353 is also the case that there are no host isas that contain a call insn 354 smaller than 4 bytes, so we don't worry about special-casing this. */ 355 #define GETPC_ADJ 2 356 357 #define GETPC() (GETRA() - GETPC_ADJ) 358 359 #if !defined(CONFIG_USER_ONLY) 360 361 struct MemoryRegion *iotlb_to_region(CPUState *cpu, 362 hwaddr index, MemTxAttrs attrs); 363 364 void tlb_fill(CPUState *cpu, target_ulong addr, int is_write, int mmu_idx, 365 uintptr_t retaddr); 366 367 #endif 368 369 #if defined(CONFIG_USER_ONLY) 370 void mmap_lock(void); 371 void mmap_unlock(void); 372 373 static inline tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr) 374 { 375 return addr; 376 } 377 #else 378 static inline void mmap_lock(void) {} 379 static inline void mmap_unlock(void) {} 380 381 /* cputlb.c */ 382 tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr); 383 384 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length); 385 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr); 386 387 /* exec.c */ 388 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr); 389 390 MemoryRegionSection * 391 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr, 392 hwaddr *xlat, hwaddr *plen); 393 hwaddr memory_region_section_get_iotlb(CPUState *cpu, 394 MemoryRegionSection *section, 395 target_ulong vaddr, 396 hwaddr paddr, hwaddr xlat, 397 int prot, 398 target_ulong *address); 399 bool memory_region_is_unassigned(MemoryRegion *mr); 400 401 #endif 402 403 /* vl.c */ 404 extern int singlestep; 405 406 /* cpu-exec.c, accessed with atomic_mb_read/atomic_mb_set */ 407 extern CPUState *tcg_current_cpu; 408 extern bool exit_request; 409 410 #endif 411