1 /* 2 * internal execution defines for qemu 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #ifndef _EXEC_ALL_H_ 21 #define _EXEC_ALL_H_ 22 23 #include "qemu-common.h" 24 25 /* allow to see translation results - the slowdown should be negligible, so we leave it */ 26 #define DEBUG_DISAS 27 28 /* Page tracking code uses ram addresses in system mode, and virtual 29 addresses in userspace mode. Define tb_page_addr_t to be an appropriate 30 type. */ 31 #if defined(CONFIG_USER_ONLY) 32 typedef abi_ulong tb_page_addr_t; 33 #else 34 typedef ram_addr_t tb_page_addr_t; 35 #endif 36 37 /* is_jmp field values */ 38 #define DISAS_NEXT 0 /* next instruction can be analyzed */ 39 #define DISAS_JUMP 1 /* only pc was modified dynamically */ 40 #define DISAS_UPDATE 2 /* cpu state was modified dynamically */ 41 #define DISAS_TB_JUMP 3 /* only pc was modified statically */ 42 43 struct TranslationBlock; 44 typedef struct TranslationBlock TranslationBlock; 45 46 /* XXX: make safe guess about sizes */ 47 #define MAX_OP_PER_INSTR 266 48 49 #if HOST_LONG_BITS == 32 50 #define MAX_OPC_PARAM_PER_ARG 2 51 #else 52 #define MAX_OPC_PARAM_PER_ARG 1 53 #endif 54 #define MAX_OPC_PARAM_IARGS 5 55 #define MAX_OPC_PARAM_OARGS 1 56 #define MAX_OPC_PARAM_ARGS (MAX_OPC_PARAM_IARGS + MAX_OPC_PARAM_OARGS) 57 58 /* A Call op needs up to 4 + 2N parameters on 32-bit archs, 59 * and up to 4 + N parameters on 64-bit archs 60 * (N = number of input arguments + output arguments). */ 61 #define MAX_OPC_PARAM (4 + (MAX_OPC_PARAM_PER_ARG * MAX_OPC_PARAM_ARGS)) 62 #define OPC_BUF_SIZE 640 63 #define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR) 64 65 /* Maximum size a TCG op can expand to. This is complicated because a 66 single op may require several host instructions and register reloads. 67 For now take a wild guess at 192 bytes, which should allow at least 68 a couple of fixup instructions per argument. */ 69 #define TCG_MAX_OP_SIZE 192 70 71 #define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * MAX_OPC_PARAM) 72 73 #include "qemu/log.h" 74 75 void gen_intermediate_code(CPUArchState *env, struct TranslationBlock *tb); 76 void gen_intermediate_code_pc(CPUArchState *env, struct TranslationBlock *tb); 77 void restore_state_to_opc(CPUArchState *env, struct TranslationBlock *tb, 78 int pc_pos); 79 80 void cpu_gen_init(void); 81 int cpu_gen_code(CPUArchState *env, struct TranslationBlock *tb, 82 int *gen_code_size_ptr); 83 bool cpu_restore_state(CPUState *cpu, uintptr_t searched_pc); 84 void page_size_init(void); 85 86 void QEMU_NORETURN cpu_resume_from_signal(CPUState *cpu, void *puc); 87 void QEMU_NORETURN cpu_io_recompile(CPUState *cpu, uintptr_t retaddr); 88 TranslationBlock *tb_gen_code(CPUState *cpu, 89 target_ulong pc, target_ulong cs_base, int flags, 90 int cflags); 91 void cpu_exec_init(CPUArchState *env); 92 void QEMU_NORETURN cpu_loop_exit(CPUState *cpu); 93 int page_unprotect(target_ulong address, uintptr_t pc, void *puc); 94 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end, 95 int is_cpu_write_access); 96 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end, 97 int is_cpu_write_access); 98 #if !defined(CONFIG_USER_ONLY) 99 bool qemu_in_vcpu_thread(void); 100 void cpu_reload_memory_map(CPUState *cpu); 101 void tcg_cpu_address_space_init(CPUState *cpu, AddressSpace *as); 102 /* cputlb.c */ 103 void tlb_flush_page(CPUState *cpu, target_ulong addr); 104 void tlb_flush(CPUState *cpu, int flush_global); 105 void tlb_set_page(CPUState *cpu, target_ulong vaddr, 106 hwaddr paddr, int prot, 107 int mmu_idx, target_ulong size); 108 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr); 109 #else 110 static inline void tlb_flush_page(CPUState *cpu, target_ulong addr) 111 { 112 } 113 114 static inline void tlb_flush(CPUState *cpu, int flush_global) 115 { 116 } 117 #endif 118 119 #define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */ 120 121 #define CODE_GEN_PHYS_HASH_BITS 15 122 #define CODE_GEN_PHYS_HASH_SIZE (1 << CODE_GEN_PHYS_HASH_BITS) 123 124 /* estimated block size for TB allocation */ 125 /* XXX: use a per code average code fragment size and modulate it 126 according to the host CPU */ 127 #if defined(CONFIG_SOFTMMU) 128 #define CODE_GEN_AVG_BLOCK_SIZE 128 129 #else 130 #define CODE_GEN_AVG_BLOCK_SIZE 64 131 #endif 132 133 #if defined(__arm__) || defined(_ARCH_PPC) \ 134 || defined(__x86_64__) || defined(__i386__) \ 135 || defined(__sparc__) || defined(__aarch64__) \ 136 || defined(__s390x__) || defined(__mips__) \ 137 || defined(CONFIG_TCG_INTERPRETER) 138 #define USE_DIRECT_JUMP 139 #endif 140 141 struct TranslationBlock { 142 target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */ 143 target_ulong cs_base; /* CS base for this block */ 144 uint64_t flags; /* flags defining in which context the code was generated */ 145 uint16_t size; /* size of target code for this block (1 <= 146 size <= TARGET_PAGE_SIZE) */ 147 uint16_t icount; 148 uint32_t cflags; /* compile flags */ 149 #define CF_COUNT_MASK 0x7fff 150 #define CF_LAST_IO 0x8000 /* Last insn may be an IO access. */ 151 #define CF_NOCACHE 0x10000 /* To be freed after execution */ 152 #define CF_USE_ICOUNT 0x20000 153 154 void *tc_ptr; /* pointer to the translated code */ 155 /* next matching tb for physical address. */ 156 struct TranslationBlock *phys_hash_next; 157 /* first and second physical page containing code. The lower bit 158 of the pointer tells the index in page_next[] */ 159 struct TranslationBlock *page_next[2]; 160 tb_page_addr_t page_addr[2]; 161 162 /* the following data are used to directly call another TB from 163 the code of this one. */ 164 uint16_t tb_next_offset[2]; /* offset of original jump target */ 165 #ifdef USE_DIRECT_JUMP 166 uint16_t tb_jmp_offset[2]; /* offset of jump instruction */ 167 #else 168 uintptr_t tb_next[2]; /* address of jump generated code */ 169 #endif 170 /* list of TBs jumping to this one. This is a circular list using 171 the two least significant bits of the pointers to tell what is 172 the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 = 173 jmp_first */ 174 struct TranslationBlock *jmp_next[2]; 175 struct TranslationBlock *jmp_first; 176 }; 177 178 #include "exec/spinlock.h" 179 180 typedef struct TBContext TBContext; 181 182 struct TBContext { 183 184 TranslationBlock *tbs; 185 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE]; 186 int nb_tbs; 187 /* any access to the tbs or the page table must use this lock */ 188 spinlock_t tb_lock; 189 190 /* statistics */ 191 int tb_flush_count; 192 int tb_phys_invalidate_count; 193 194 int tb_invalidated_flag; 195 }; 196 197 static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc) 198 { 199 target_ulong tmp; 200 tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)); 201 return (tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK; 202 } 203 204 static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc) 205 { 206 target_ulong tmp; 207 tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)); 208 return (((tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK) 209 | (tmp & TB_JMP_ADDR_MASK)); 210 } 211 212 static inline unsigned int tb_phys_hash_func(tb_page_addr_t pc) 213 { 214 return (pc >> 2) & (CODE_GEN_PHYS_HASH_SIZE - 1); 215 } 216 217 void tb_free(TranslationBlock *tb); 218 void tb_flush(CPUArchState *env); 219 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr); 220 221 #if defined(USE_DIRECT_JUMP) 222 223 #if defined(CONFIG_TCG_INTERPRETER) 224 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr) 225 { 226 /* patch the branch destination */ 227 *(uint32_t *)jmp_addr = addr - (jmp_addr + 4); 228 /* no need to flush icache explicitly */ 229 } 230 #elif defined(_ARCH_PPC) 231 void ppc_tb_set_jmp_target(uintptr_t jmp_addr, uintptr_t addr); 232 #define tb_set_jmp_target1 ppc_tb_set_jmp_target 233 #elif defined(__i386__) || defined(__x86_64__) 234 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr) 235 { 236 /* patch the branch destination */ 237 stl_le_p((void*)jmp_addr, addr - (jmp_addr + 4)); 238 /* no need to flush icache explicitly */ 239 } 240 #elif defined(__s390x__) 241 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr) 242 { 243 /* patch the branch destination */ 244 intptr_t disp = addr - (jmp_addr - 2); 245 stl_be_p((void*)jmp_addr, disp / 2); 246 /* no need to flush icache explicitly */ 247 } 248 #elif defined(__aarch64__) 249 void aarch64_tb_set_jmp_target(uintptr_t jmp_addr, uintptr_t addr); 250 #define tb_set_jmp_target1 aarch64_tb_set_jmp_target 251 #elif defined(__arm__) 252 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr) 253 { 254 #if !QEMU_GNUC_PREREQ(4, 1) 255 register unsigned long _beg __asm ("a1"); 256 register unsigned long _end __asm ("a2"); 257 register unsigned long _flg __asm ("a3"); 258 #endif 259 260 /* we could use a ldr pc, [pc, #-4] kind of branch and avoid the flush */ 261 *(uint32_t *)jmp_addr = 262 (*(uint32_t *)jmp_addr & ~0xffffff) 263 | (((addr - (jmp_addr + 8)) >> 2) & 0xffffff); 264 265 #if QEMU_GNUC_PREREQ(4, 1) 266 __builtin___clear_cache((char *) jmp_addr, (char *) jmp_addr + 4); 267 #else 268 /* flush icache */ 269 _beg = jmp_addr; 270 _end = jmp_addr + 4; 271 _flg = 0; 272 __asm __volatile__ ("swi 0x9f0002" : : "r" (_beg), "r" (_end), "r" (_flg)); 273 #endif 274 } 275 #elif defined(__sparc__) || defined(__mips__) 276 void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr); 277 #else 278 #error tb_set_jmp_target1 is missing 279 #endif 280 281 static inline void tb_set_jmp_target(TranslationBlock *tb, 282 int n, uintptr_t addr) 283 { 284 uint16_t offset = tb->tb_jmp_offset[n]; 285 tb_set_jmp_target1((uintptr_t)(tb->tc_ptr + offset), addr); 286 } 287 288 #else 289 290 /* set the jump target */ 291 static inline void tb_set_jmp_target(TranslationBlock *tb, 292 int n, uintptr_t addr) 293 { 294 tb->tb_next[n] = addr; 295 } 296 297 #endif 298 299 static inline void tb_add_jump(TranslationBlock *tb, int n, 300 TranslationBlock *tb_next) 301 { 302 /* NOTE: this test is only needed for thread safety */ 303 if (!tb->jmp_next[n]) { 304 /* patch the native jump address */ 305 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc_ptr); 306 307 /* add in TB jmp circular list */ 308 tb->jmp_next[n] = tb_next->jmp_first; 309 tb_next->jmp_first = (TranslationBlock *)((uintptr_t)(tb) | (n)); 310 } 311 } 312 313 /* GETRA is the true target of the return instruction that we'll execute, 314 defined here for simplicity of defining the follow-up macros. */ 315 #if defined(CONFIG_TCG_INTERPRETER) 316 extern uintptr_t tci_tb_ptr; 317 # define GETRA() tci_tb_ptr 318 #else 319 # define GETRA() \ 320 ((uintptr_t)__builtin_extract_return_addr(__builtin_return_address(0))) 321 #endif 322 323 /* The true return address will often point to a host insn that is part of 324 the next translated guest insn. Adjust the address backward to point to 325 the middle of the call insn. Subtracting one would do the job except for 326 several compressed mode architectures (arm, mips) which set the low bit 327 to indicate the compressed mode; subtracting two works around that. It 328 is also the case that there are no host isas that contain a call insn 329 smaller than 4 bytes, so we don't worry about special-casing this. */ 330 #if defined(CONFIG_TCG_INTERPRETER) 331 # define GETPC_ADJ 0 332 #else 333 # define GETPC_ADJ 2 334 #endif 335 336 #define GETPC() (GETRA() - GETPC_ADJ) 337 338 #if !defined(CONFIG_USER_ONLY) 339 340 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align)); 341 342 struct MemoryRegion *iotlb_to_region(CPUState *cpu, 343 hwaddr index); 344 bool io_mem_read(struct MemoryRegion *mr, hwaddr addr, 345 uint64_t *pvalue, unsigned size); 346 bool io_mem_write(struct MemoryRegion *mr, hwaddr addr, 347 uint64_t value, unsigned size); 348 349 void tlb_fill(CPUState *cpu, target_ulong addr, int is_write, int mmu_idx, 350 uintptr_t retaddr); 351 352 #endif 353 354 #if defined(CONFIG_USER_ONLY) 355 static inline tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr) 356 { 357 return addr; 358 } 359 #else 360 /* cputlb.c */ 361 tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr); 362 #endif 363 364 /* vl.c */ 365 extern int singlestep; 366 367 /* cpu-exec.c */ 368 extern volatile sig_atomic_t exit_request; 369 370 /** 371 * cpu_can_do_io: 372 * @cpu: The CPU for which to check IO. 373 * 374 * Deterministic execution requires that IO only be performed on the last 375 * instruction of a TB so that interrupts take effect immediately. 376 * 377 * Returns: %true if memory-mapped IO is safe, %false otherwise. 378 */ 379 static inline bool cpu_can_do_io(CPUState *cpu) 380 { 381 if (!use_icount) { 382 return true; 383 } 384 /* If not executing code then assume we are ok. */ 385 if (cpu->current_tb == NULL) { 386 return true; 387 } 388 return cpu->can_do_io != 0; 389 } 390 391 #endif 392