1 /* 2 * internal execution defines for qemu 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #ifndef EXEC_ALL_H 21 #define EXEC_ALL_H 22 23 #include "cpu.h" 24 #include "exec/tb-context.h" 25 #include "sysemu/cpus.h" 26 27 /* allow to see translation results - the slowdown should be negligible, so we leave it */ 28 #define DEBUG_DISAS 29 30 /* Page tracking code uses ram addresses in system mode, and virtual 31 addresses in userspace mode. Define tb_page_addr_t to be an appropriate 32 type. */ 33 #if defined(CONFIG_USER_ONLY) 34 typedef abi_ulong tb_page_addr_t; 35 #define TB_PAGE_ADDR_FMT TARGET_ABI_FMT_lx 36 #else 37 typedef ram_addr_t tb_page_addr_t; 38 #define TB_PAGE_ADDR_FMT RAM_ADDR_FMT 39 #endif 40 41 #include "qemu/log.h" 42 43 void gen_intermediate_code(CPUState *cpu, TranslationBlock *tb, int max_insns); 44 void restore_state_to_opc(CPUArchState *env, TranslationBlock *tb, 45 target_ulong *data); 46 47 void cpu_gen_init(void); 48 49 /** 50 * cpu_restore_state: 51 * @cpu: the vCPU state is to be restore to 52 * @searched_pc: the host PC the fault occurred at 53 * @will_exit: true if the TB executed will be interrupted after some 54 cpu adjustments. Required for maintaining the correct 55 icount valus 56 * @return: true if state was restored, false otherwise 57 * 58 * Attempt to restore the state for a fault occurring in translated 59 * code. If the searched_pc is not in translated code no state is 60 * restored and the function returns false. 61 */ 62 bool cpu_restore_state(CPUState *cpu, uintptr_t searched_pc, bool will_exit); 63 64 void QEMU_NORETURN cpu_loop_exit_noexc(CPUState *cpu); 65 void QEMU_NORETURN cpu_io_recompile(CPUState *cpu, uintptr_t retaddr); 66 TranslationBlock *tb_gen_code(CPUState *cpu, 67 target_ulong pc, target_ulong cs_base, 68 uint32_t flags, 69 int cflags); 70 71 void QEMU_NORETURN cpu_loop_exit(CPUState *cpu); 72 void QEMU_NORETURN cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc); 73 void QEMU_NORETURN cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc); 74 75 #if !defined(CONFIG_USER_ONLY) 76 void cpu_reloading_memory_map(void); 77 /** 78 * cpu_address_space_init: 79 * @cpu: CPU to add this address space to 80 * @asidx: integer index of this address space 81 * @prefix: prefix to be used as name of address space 82 * @mr: the root memory region of address space 83 * 84 * Add the specified address space to the CPU's cpu_ases list. 85 * The address space added with @asidx 0 is the one used for the 86 * convenience pointer cpu->as. 87 * The target-specific code which registers ASes is responsible 88 * for defining what semantics address space 0, 1, 2, etc have. 89 * 90 * Before the first call to this function, the caller must set 91 * cpu->num_ases to the total number of address spaces it needs 92 * to support. 93 * 94 * Note that with KVM only one address space is supported. 95 */ 96 void cpu_address_space_init(CPUState *cpu, int asidx, 97 const char *prefix, MemoryRegion *mr); 98 #endif 99 100 #if !defined(CONFIG_USER_ONLY) && defined(CONFIG_TCG) 101 /* cputlb.c */ 102 /** 103 * tlb_init - initialize a CPU's TLB 104 * @cpu: CPU whose TLB should be initialized 105 */ 106 void tlb_init(CPUState *cpu); 107 /** 108 * tlb_flush_page: 109 * @cpu: CPU whose TLB should be flushed 110 * @addr: virtual address of page to be flushed 111 * 112 * Flush one page from the TLB of the specified CPU, for all 113 * MMU indexes. 114 */ 115 void tlb_flush_page(CPUState *cpu, target_ulong addr); 116 /** 117 * tlb_flush_page_all_cpus: 118 * @cpu: src CPU of the flush 119 * @addr: virtual address of page to be flushed 120 * 121 * Flush one page from the TLB of the specified CPU, for all 122 * MMU indexes. 123 */ 124 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr); 125 /** 126 * tlb_flush_page_all_cpus_synced: 127 * @cpu: src CPU of the flush 128 * @addr: virtual address of page to be flushed 129 * 130 * Flush one page from the TLB of the specified CPU, for all MMU 131 * indexes like tlb_flush_page_all_cpus except the source vCPUs work 132 * is scheduled as safe work meaning all flushes will be complete once 133 * the source vCPUs safe work is complete. This will depend on when 134 * the guests translation ends the TB. 135 */ 136 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr); 137 /** 138 * tlb_flush: 139 * @cpu: CPU whose TLB should be flushed 140 * 141 * Flush the entire TLB for the specified CPU. Most CPU architectures 142 * allow the implementation to drop entries from the TLB at any time 143 * so this is generally safe. If more selective flushing is required 144 * use one of the other functions for efficiency. 145 */ 146 void tlb_flush(CPUState *cpu); 147 /** 148 * tlb_flush_all_cpus: 149 * @cpu: src CPU of the flush 150 */ 151 void tlb_flush_all_cpus(CPUState *src_cpu); 152 /** 153 * tlb_flush_all_cpus_synced: 154 * @cpu: src CPU of the flush 155 * 156 * Like tlb_flush_all_cpus except this except the source vCPUs work is 157 * scheduled as safe work meaning all flushes will be complete once 158 * the source vCPUs safe work is complete. This will depend on when 159 * the guests translation ends the TB. 160 */ 161 void tlb_flush_all_cpus_synced(CPUState *src_cpu); 162 /** 163 * tlb_flush_page_by_mmuidx: 164 * @cpu: CPU whose TLB should be flushed 165 * @addr: virtual address of page to be flushed 166 * @idxmap: bitmap of MMU indexes to flush 167 * 168 * Flush one page from the TLB of the specified CPU, for the specified 169 * MMU indexes. 170 */ 171 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, 172 uint16_t idxmap); 173 /** 174 * tlb_flush_page_by_mmuidx_all_cpus: 175 * @cpu: Originating CPU of the flush 176 * @addr: virtual address of page to be flushed 177 * @idxmap: bitmap of MMU indexes to flush 178 * 179 * Flush one page from the TLB of all CPUs, for the specified 180 * MMU indexes. 181 */ 182 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr, 183 uint16_t idxmap); 184 /** 185 * tlb_flush_page_by_mmuidx_all_cpus_synced: 186 * @cpu: Originating CPU of the flush 187 * @addr: virtual address of page to be flushed 188 * @idxmap: bitmap of MMU indexes to flush 189 * 190 * Flush one page from the TLB of all CPUs, for the specified MMU 191 * indexes like tlb_flush_page_by_mmuidx_all_cpus except the source 192 * vCPUs work is scheduled as safe work meaning all flushes will be 193 * complete once the source vCPUs safe work is complete. This will 194 * depend on when the guests translation ends the TB. 195 */ 196 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu, target_ulong addr, 197 uint16_t idxmap); 198 /** 199 * tlb_flush_by_mmuidx: 200 * @cpu: CPU whose TLB should be flushed 201 * @wait: If true ensure synchronisation by exiting the cpu_loop 202 * @idxmap: bitmap of MMU indexes to flush 203 * 204 * Flush all entries from the TLB of the specified CPU, for the specified 205 * MMU indexes. 206 */ 207 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap); 208 /** 209 * tlb_flush_by_mmuidx_all_cpus: 210 * @cpu: Originating CPU of the flush 211 * @idxmap: bitmap of MMU indexes to flush 212 * 213 * Flush all entries from all TLBs of all CPUs, for the specified 214 * MMU indexes. 215 */ 216 void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap); 217 /** 218 * tlb_flush_by_mmuidx_all_cpus_synced: 219 * @cpu: Originating CPU of the flush 220 * @idxmap: bitmap of MMU indexes to flush 221 * 222 * Flush all entries from all TLBs of all CPUs, for the specified 223 * MMU indexes like tlb_flush_by_mmuidx_all_cpus except except the source 224 * vCPUs work is scheduled as safe work meaning all flushes will be 225 * complete once the source vCPUs safe work is complete. This will 226 * depend on when the guests translation ends the TB. 227 */ 228 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu, uint16_t idxmap); 229 /** 230 * tlb_set_page_with_attrs: 231 * @cpu: CPU to add this TLB entry for 232 * @vaddr: virtual address of page to add entry for 233 * @paddr: physical address of the page 234 * @attrs: memory transaction attributes 235 * @prot: access permissions (PAGE_READ/PAGE_WRITE/PAGE_EXEC bits) 236 * @mmu_idx: MMU index to insert TLB entry for 237 * @size: size of the page in bytes 238 * 239 * Add an entry to this CPU's TLB (a mapping from virtual address 240 * @vaddr to physical address @paddr) with the specified memory 241 * transaction attributes. This is generally called by the target CPU 242 * specific code after it has been called through the tlb_fill() 243 * entry point and performed a successful page table walk to find 244 * the physical address and attributes for the virtual address 245 * which provoked the TLB miss. 246 * 247 * At most one entry for a given virtual address is permitted. Only a 248 * single TARGET_PAGE_SIZE region is mapped; the supplied @size is only 249 * used by tlb_flush_page. 250 */ 251 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr, 252 hwaddr paddr, MemTxAttrs attrs, 253 int prot, int mmu_idx, target_ulong size); 254 /* tlb_set_page: 255 * 256 * This function is equivalent to calling tlb_set_page_with_attrs() 257 * with an @attrs argument of MEMTXATTRS_UNSPECIFIED. It's provided 258 * as a convenience for CPUs which don't use memory transaction attributes. 259 */ 260 void tlb_set_page(CPUState *cpu, target_ulong vaddr, 261 hwaddr paddr, int prot, 262 int mmu_idx, target_ulong size); 263 #else 264 static inline void tlb_init(CPUState *cpu) 265 { 266 } 267 static inline void tlb_flush_page(CPUState *cpu, target_ulong addr) 268 { 269 } 270 static inline void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr) 271 { 272 } 273 static inline void tlb_flush_page_all_cpus_synced(CPUState *src, 274 target_ulong addr) 275 { 276 } 277 static inline void tlb_flush(CPUState *cpu) 278 { 279 } 280 static inline void tlb_flush_all_cpus(CPUState *src_cpu) 281 { 282 } 283 static inline void tlb_flush_all_cpus_synced(CPUState *src_cpu) 284 { 285 } 286 static inline void tlb_flush_page_by_mmuidx(CPUState *cpu, 287 target_ulong addr, uint16_t idxmap) 288 { 289 } 290 291 static inline void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap) 292 { 293 } 294 static inline void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu, 295 target_ulong addr, 296 uint16_t idxmap) 297 { 298 } 299 static inline void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu, 300 target_ulong addr, 301 uint16_t idxmap) 302 { 303 } 304 static inline void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap) 305 { 306 } 307 308 static inline void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu, 309 uint16_t idxmap) 310 { 311 } 312 #endif 313 void *probe_access(CPUArchState *env, target_ulong addr, int size, 314 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr); 315 316 static inline void *probe_write(CPUArchState *env, target_ulong addr, int size, 317 int mmu_idx, uintptr_t retaddr) 318 { 319 return probe_access(env, addr, size, MMU_DATA_STORE, mmu_idx, retaddr); 320 } 321 322 #define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */ 323 324 /* Estimated block size for TB allocation. */ 325 /* ??? The following is based on a 2015 survey of x86_64 host output. 326 Better would seem to be some sort of dynamically sized TB array, 327 adapting to the block sizes actually being produced. */ 328 #if defined(CONFIG_SOFTMMU) 329 #define CODE_GEN_AVG_BLOCK_SIZE 400 330 #else 331 #define CODE_GEN_AVG_BLOCK_SIZE 150 332 #endif 333 334 /* 335 * Translation Cache-related fields of a TB. 336 * This struct exists just for convenience; we keep track of TB's in a binary 337 * search tree, and the only fields needed to compare TB's in the tree are 338 * @ptr and @size. 339 * Note: the address of search data can be obtained by adding @size to @ptr. 340 */ 341 struct tb_tc { 342 void *ptr; /* pointer to the translated code */ 343 size_t size; 344 }; 345 346 struct TranslationBlock { 347 target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */ 348 target_ulong cs_base; /* CS base for this block */ 349 uint32_t flags; /* flags defining in which context the code was generated */ 350 uint16_t size; /* size of target code for this block (1 <= 351 size <= TARGET_PAGE_SIZE) */ 352 uint16_t icount; 353 uint32_t cflags; /* compile flags */ 354 #define CF_COUNT_MASK 0x00007fff 355 #define CF_LAST_IO 0x00008000 /* Last insn may be an IO access. */ 356 #define CF_NOCACHE 0x00010000 /* To be freed after execution */ 357 #define CF_USE_ICOUNT 0x00020000 358 #define CF_INVALID 0x00040000 /* TB is stale. Set with @jmp_lock held */ 359 #define CF_PARALLEL 0x00080000 /* Generate code for a parallel context */ 360 #define CF_CLUSTER_MASK 0xff000000 /* Top 8 bits are cluster ID */ 361 #define CF_CLUSTER_SHIFT 24 362 /* cflags' mask for hashing/comparison */ 363 #define CF_HASH_MASK \ 364 (CF_COUNT_MASK | CF_LAST_IO | CF_USE_ICOUNT | CF_PARALLEL | CF_CLUSTER_MASK) 365 366 /* Per-vCPU dynamic tracing state used to generate this TB */ 367 uint32_t trace_vcpu_dstate; 368 369 struct tb_tc tc; 370 371 /* original tb when cflags has CF_NOCACHE */ 372 struct TranslationBlock *orig_tb; 373 /* first and second physical page containing code. The lower bit 374 of the pointer tells the index in page_next[]. 375 The list is protected by the TB's page('s) lock(s) */ 376 uintptr_t page_next[2]; 377 tb_page_addr_t page_addr[2]; 378 379 /* jmp_lock placed here to fill a 4-byte hole. Its documentation is below */ 380 QemuSpin jmp_lock; 381 382 /* The following data are used to directly call another TB from 383 * the code of this one. This can be done either by emitting direct or 384 * indirect native jump instructions. These jumps are reset so that the TB 385 * just continues its execution. The TB can be linked to another one by 386 * setting one of the jump targets (or patching the jump instruction). Only 387 * two of such jumps are supported. 388 */ 389 uint16_t jmp_reset_offset[2]; /* offset of original jump target */ 390 #define TB_JMP_RESET_OFFSET_INVALID 0xffff /* indicates no jump generated */ 391 uintptr_t jmp_target_arg[2]; /* target address or offset */ 392 393 /* 394 * Each TB has a NULL-terminated list (jmp_list_head) of incoming jumps. 395 * Each TB can have two outgoing jumps, and therefore can participate 396 * in two lists. The list entries are kept in jmp_list_next[2]. The least 397 * significant bit (LSB) of the pointers in these lists is used to encode 398 * which of the two list entries is to be used in the pointed TB. 399 * 400 * List traversals are protected by jmp_lock. The destination TB of each 401 * outgoing jump is kept in jmp_dest[] so that the appropriate jmp_lock 402 * can be acquired from any origin TB. 403 * 404 * jmp_dest[] are tagged pointers as well. The LSB is set when the TB is 405 * being invalidated, so that no further outgoing jumps from it can be set. 406 * 407 * jmp_lock also protects the CF_INVALID cflag; a jump must not be chained 408 * to a destination TB that has CF_INVALID set. 409 */ 410 uintptr_t jmp_list_head; 411 uintptr_t jmp_list_next[2]; 412 uintptr_t jmp_dest[2]; 413 }; 414 415 extern bool parallel_cpus; 416 417 /* Hide the atomic_read to make code a little easier on the eyes */ 418 static inline uint32_t tb_cflags(const TranslationBlock *tb) 419 { 420 return atomic_read(&tb->cflags); 421 } 422 423 /* current cflags for hashing/comparison */ 424 static inline uint32_t curr_cflags(void) 425 { 426 return (parallel_cpus ? CF_PARALLEL : 0) 427 | (use_icount ? CF_USE_ICOUNT : 0); 428 } 429 430 /* TranslationBlock invalidate API */ 431 #if defined(CONFIG_USER_ONLY) 432 void tb_invalidate_phys_addr(target_ulong addr); 433 void tb_invalidate_phys_range(target_ulong start, target_ulong end); 434 #else 435 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs); 436 #endif 437 void tb_flush(CPUState *cpu); 438 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr); 439 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc, 440 target_ulong cs_base, uint32_t flags, 441 uint32_t cf_mask); 442 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr); 443 444 /* GETPC is the true target of the return instruction that we'll execute. */ 445 #if defined(CONFIG_TCG_INTERPRETER) 446 extern uintptr_t tci_tb_ptr; 447 # define GETPC() tci_tb_ptr 448 #else 449 # define GETPC() \ 450 ((uintptr_t)__builtin_extract_return_addr(__builtin_return_address(0))) 451 #endif 452 453 /* The true return address will often point to a host insn that is part of 454 the next translated guest insn. Adjust the address backward to point to 455 the middle of the call insn. Subtracting one would do the job except for 456 several compressed mode architectures (arm, mips) which set the low bit 457 to indicate the compressed mode; subtracting two works around that. It 458 is also the case that there are no host isas that contain a call insn 459 smaller than 4 bytes, so we don't worry about special-casing this. */ 460 #define GETPC_ADJ 2 461 462 #if !defined(CONFIG_USER_ONLY) && defined(CONFIG_DEBUG_TCG) 463 void assert_no_pages_locked(void); 464 #else 465 static inline void assert_no_pages_locked(void) 466 { 467 } 468 #endif 469 470 #if !defined(CONFIG_USER_ONLY) 471 472 /** 473 * iotlb_to_section: 474 * @cpu: CPU performing the access 475 * @index: TCG CPU IOTLB entry 476 * 477 * Given a TCG CPU IOTLB entry, return the MemoryRegionSection that 478 * it refers to. @index will have been initially created and returned 479 * by memory_region_section_get_iotlb(). 480 */ 481 struct MemoryRegionSection *iotlb_to_section(CPUState *cpu, 482 hwaddr index, MemTxAttrs attrs); 483 #endif 484 485 #if defined(CONFIG_USER_ONLY) 486 void mmap_lock(void); 487 void mmap_unlock(void); 488 bool have_mmap_lock(void); 489 490 static inline tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr) 491 { 492 return addr; 493 } 494 #else 495 static inline void mmap_lock(void) {} 496 static inline void mmap_unlock(void) {} 497 498 /* cputlb.c */ 499 tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr); 500 501 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length); 502 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr); 503 504 /* exec.c */ 505 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr); 506 507 MemoryRegionSection * 508 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr, 509 hwaddr *xlat, hwaddr *plen, 510 MemTxAttrs attrs, int *prot); 511 hwaddr memory_region_section_get_iotlb(CPUState *cpu, 512 MemoryRegionSection *section); 513 #endif 514 515 /* vl.c */ 516 extern int singlestep; 517 518 #endif 519