xref: /openbmc/qemu/include/exec/exec-all.h (revision 58ea30f5)
1 /*
2  * internal execution defines for qemu
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef EXEC_ALL_H
21 #define EXEC_ALL_H
22 
23 #include "qemu-common.h"
24 #include "exec/tb-context.h"
25 #include "sysemu/cpus.h"
26 
27 /* allow to see translation results - the slowdown should be negligible, so we leave it */
28 #define DEBUG_DISAS
29 
30 /* Page tracking code uses ram addresses in system mode, and virtual
31    addresses in userspace mode.  Define tb_page_addr_t to be an appropriate
32    type.  */
33 #if defined(CONFIG_USER_ONLY)
34 typedef abi_ulong tb_page_addr_t;
35 #define TB_PAGE_ADDR_FMT TARGET_ABI_FMT_lx
36 #else
37 typedef ram_addr_t tb_page_addr_t;
38 #define TB_PAGE_ADDR_FMT RAM_ADDR_FMT
39 #endif
40 
41 #include "qemu/log.h"
42 
43 void gen_intermediate_code(CPUState *cpu, TranslationBlock *tb, int max_insns);
44 void restore_state_to_opc(CPUArchState *env, TranslationBlock *tb,
45                           target_ulong *data);
46 
47 void cpu_gen_init(void);
48 
49 /**
50  * cpu_restore_state:
51  * @cpu: the vCPU state is to be restore to
52  * @searched_pc: the host PC the fault occurred at
53  * @will_exit: true if the TB executed will be interrupted after some
54                cpu adjustments. Required for maintaining the correct
55                icount valus
56  * @return: true if state was restored, false otherwise
57  *
58  * Attempt to restore the state for a fault occurring in translated
59  * code. If the searched_pc is not in translated code no state is
60  * restored and the function returns false.
61  */
62 bool cpu_restore_state(CPUState *cpu, uintptr_t searched_pc, bool will_exit);
63 
64 void QEMU_NORETURN cpu_loop_exit_noexc(CPUState *cpu);
65 void QEMU_NORETURN cpu_io_recompile(CPUState *cpu, uintptr_t retaddr);
66 TranslationBlock *tb_gen_code(CPUState *cpu,
67                               target_ulong pc, target_ulong cs_base,
68                               uint32_t flags,
69                               int cflags);
70 
71 void QEMU_NORETURN cpu_loop_exit(CPUState *cpu);
72 void QEMU_NORETURN cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc);
73 void QEMU_NORETURN cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc);
74 
75 #if !defined(CONFIG_USER_ONLY)
76 void cpu_reloading_memory_map(void);
77 /**
78  * cpu_address_space_init:
79  * @cpu: CPU to add this address space to
80  * @asidx: integer index of this address space
81  * @prefix: prefix to be used as name of address space
82  * @mr: the root memory region of address space
83  *
84  * Add the specified address space to the CPU's cpu_ases list.
85  * The address space added with @asidx 0 is the one used for the
86  * convenience pointer cpu->as.
87  * The target-specific code which registers ASes is responsible
88  * for defining what semantics address space 0, 1, 2, etc have.
89  *
90  * Before the first call to this function, the caller must set
91  * cpu->num_ases to the total number of address spaces it needs
92  * to support.
93  *
94  * Note that with KVM only one address space is supported.
95  */
96 void cpu_address_space_init(CPUState *cpu, int asidx,
97                             const char *prefix, MemoryRegion *mr);
98 #endif
99 
100 #if !defined(CONFIG_USER_ONLY) && defined(CONFIG_TCG)
101 /* cputlb.c */
102 /**
103  * tlb_init - initialize a CPU's TLB
104  * @cpu: CPU whose TLB should be initialized
105  */
106 void tlb_init(CPUState *cpu);
107 /**
108  * tlb_flush_page:
109  * @cpu: CPU whose TLB should be flushed
110  * @addr: virtual address of page to be flushed
111  *
112  * Flush one page from the TLB of the specified CPU, for all
113  * MMU indexes.
114  */
115 void tlb_flush_page(CPUState *cpu, target_ulong addr);
116 /**
117  * tlb_flush_page_all_cpus:
118  * @cpu: src CPU of the flush
119  * @addr: virtual address of page to be flushed
120  *
121  * Flush one page from the TLB of the specified CPU, for all
122  * MMU indexes.
123  */
124 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr);
125 /**
126  * tlb_flush_page_all_cpus_synced:
127  * @cpu: src CPU of the flush
128  * @addr: virtual address of page to be flushed
129  *
130  * Flush one page from the TLB of the specified CPU, for all MMU
131  * indexes like tlb_flush_page_all_cpus except the source vCPUs work
132  * is scheduled as safe work meaning all flushes will be complete once
133  * the source vCPUs safe work is complete. This will depend on when
134  * the guests translation ends the TB.
135  */
136 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr);
137 /**
138  * tlb_flush:
139  * @cpu: CPU whose TLB should be flushed
140  *
141  * Flush the entire TLB for the specified CPU. Most CPU architectures
142  * allow the implementation to drop entries from the TLB at any time
143  * so this is generally safe. If more selective flushing is required
144  * use one of the other functions for efficiency.
145  */
146 void tlb_flush(CPUState *cpu);
147 /**
148  * tlb_flush_all_cpus:
149  * @cpu: src CPU of the flush
150  */
151 void tlb_flush_all_cpus(CPUState *src_cpu);
152 /**
153  * tlb_flush_all_cpus_synced:
154  * @cpu: src CPU of the flush
155  *
156  * Like tlb_flush_all_cpus except this except the source vCPUs work is
157  * scheduled as safe work meaning all flushes will be complete once
158  * the source vCPUs safe work is complete. This will depend on when
159  * the guests translation ends the TB.
160  */
161 void tlb_flush_all_cpus_synced(CPUState *src_cpu);
162 /**
163  * tlb_flush_page_by_mmuidx:
164  * @cpu: CPU whose TLB should be flushed
165  * @addr: virtual address of page to be flushed
166  * @idxmap: bitmap of MMU indexes to flush
167  *
168  * Flush one page from the TLB of the specified CPU, for the specified
169  * MMU indexes.
170  */
171 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr,
172                               uint16_t idxmap);
173 /**
174  * tlb_flush_page_by_mmuidx_all_cpus:
175  * @cpu: Originating CPU of the flush
176  * @addr: virtual address of page to be flushed
177  * @idxmap: bitmap of MMU indexes to flush
178  *
179  * Flush one page from the TLB of all CPUs, for the specified
180  * MMU indexes.
181  */
182 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr,
183                                        uint16_t idxmap);
184 /**
185  * tlb_flush_page_by_mmuidx_all_cpus_synced:
186  * @cpu: Originating CPU of the flush
187  * @addr: virtual address of page to be flushed
188  * @idxmap: bitmap of MMU indexes to flush
189  *
190  * Flush one page from the TLB of all CPUs, for the specified MMU
191  * indexes like tlb_flush_page_by_mmuidx_all_cpus except the source
192  * vCPUs work is scheduled as safe work meaning all flushes will be
193  * complete once  the source vCPUs safe work is complete. This will
194  * depend on when the guests translation ends the TB.
195  */
196 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu, target_ulong addr,
197                                               uint16_t idxmap);
198 /**
199  * tlb_flush_by_mmuidx:
200  * @cpu: CPU whose TLB should be flushed
201  * @wait: If true ensure synchronisation by exiting the cpu_loop
202  * @idxmap: bitmap of MMU indexes to flush
203  *
204  * Flush all entries from the TLB of the specified CPU, for the specified
205  * MMU indexes.
206  */
207 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap);
208 /**
209  * tlb_flush_by_mmuidx_all_cpus:
210  * @cpu: Originating CPU of the flush
211  * @idxmap: bitmap of MMU indexes to flush
212  *
213  * Flush all entries from all TLBs of all CPUs, for the specified
214  * MMU indexes.
215  */
216 void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap);
217 /**
218  * tlb_flush_by_mmuidx_all_cpus_synced:
219  * @cpu: Originating CPU of the flush
220  * @idxmap: bitmap of MMU indexes to flush
221  *
222  * Flush all entries from all TLBs of all CPUs, for the specified
223  * MMU indexes like tlb_flush_by_mmuidx_all_cpus except except the source
224  * vCPUs work is scheduled as safe work meaning all flushes will be
225  * complete once  the source vCPUs safe work is complete. This will
226  * depend on when the guests translation ends the TB.
227  */
228 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu, uint16_t idxmap);
229 /**
230  * tlb_set_page_with_attrs:
231  * @cpu: CPU to add this TLB entry for
232  * @vaddr: virtual address of page to add entry for
233  * @paddr: physical address of the page
234  * @attrs: memory transaction attributes
235  * @prot: access permissions (PAGE_READ/PAGE_WRITE/PAGE_EXEC bits)
236  * @mmu_idx: MMU index to insert TLB entry for
237  * @size: size of the page in bytes
238  *
239  * Add an entry to this CPU's TLB (a mapping from virtual address
240  * @vaddr to physical address @paddr) with the specified memory
241  * transaction attributes. This is generally called by the target CPU
242  * specific code after it has been called through the tlb_fill()
243  * entry point and performed a successful page table walk to find
244  * the physical address and attributes for the virtual address
245  * which provoked the TLB miss.
246  *
247  * At most one entry for a given virtual address is permitted. Only a
248  * single TARGET_PAGE_SIZE region is mapped; the supplied @size is only
249  * used by tlb_flush_page.
250  */
251 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
252                              hwaddr paddr, MemTxAttrs attrs,
253                              int prot, int mmu_idx, target_ulong size);
254 /* tlb_set_page:
255  *
256  * This function is equivalent to calling tlb_set_page_with_attrs()
257  * with an @attrs argument of MEMTXATTRS_UNSPECIFIED. It's provided
258  * as a convenience for CPUs which don't use memory transaction attributes.
259  */
260 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
261                   hwaddr paddr, int prot,
262                   int mmu_idx, target_ulong size);
263 void probe_write(CPUArchState *env, target_ulong addr, int size, int mmu_idx,
264                  uintptr_t retaddr);
265 #else
266 static inline void tlb_init(CPUState *cpu)
267 {
268 }
269 static inline void tlb_flush_page(CPUState *cpu, target_ulong addr)
270 {
271 }
272 static inline void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
273 {
274 }
275 static inline void tlb_flush_page_all_cpus_synced(CPUState *src,
276                                                   target_ulong addr)
277 {
278 }
279 static inline void tlb_flush(CPUState *cpu)
280 {
281 }
282 static inline void tlb_flush_all_cpus(CPUState *src_cpu)
283 {
284 }
285 static inline void tlb_flush_all_cpus_synced(CPUState *src_cpu)
286 {
287 }
288 static inline void tlb_flush_page_by_mmuidx(CPUState *cpu,
289                                             target_ulong addr, uint16_t idxmap)
290 {
291 }
292 
293 static inline void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
294 {
295 }
296 static inline void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu,
297                                                      target_ulong addr,
298                                                      uint16_t idxmap)
299 {
300 }
301 static inline void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu,
302                                                             target_ulong addr,
303                                                             uint16_t idxmap)
304 {
305 }
306 static inline void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap)
307 {
308 }
309 
310 static inline void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu,
311                                                        uint16_t idxmap)
312 {
313 }
314 #endif
315 
316 #define CODE_GEN_ALIGN           16 /* must be >= of the size of a icache line */
317 
318 /* Estimated block size for TB allocation.  */
319 /* ??? The following is based on a 2015 survey of x86_64 host output.
320    Better would seem to be some sort of dynamically sized TB array,
321    adapting to the block sizes actually being produced.  */
322 #if defined(CONFIG_SOFTMMU)
323 #define CODE_GEN_AVG_BLOCK_SIZE 400
324 #else
325 #define CODE_GEN_AVG_BLOCK_SIZE 150
326 #endif
327 
328 /*
329  * Translation Cache-related fields of a TB.
330  * This struct exists just for convenience; we keep track of TB's in a binary
331  * search tree, and the only fields needed to compare TB's in the tree are
332  * @ptr and @size.
333  * Note: the address of search data can be obtained by adding @size to @ptr.
334  */
335 struct tb_tc {
336     void *ptr;    /* pointer to the translated code */
337     size_t size;
338 };
339 
340 struct TranslationBlock {
341     target_ulong pc;   /* simulated PC corresponding to this block (EIP + CS base) */
342     target_ulong cs_base; /* CS base for this block */
343     uint32_t flags; /* flags defining in which context the code was generated */
344     uint16_t size;      /* size of target code for this block (1 <=
345                            size <= TARGET_PAGE_SIZE) */
346     uint16_t icount;
347     uint32_t cflags;    /* compile flags */
348 #define CF_COUNT_MASK  0x00007fff
349 #define CF_LAST_IO     0x00008000 /* Last insn may be an IO access.  */
350 #define CF_NOCACHE     0x00010000 /* To be freed after execution */
351 #define CF_USE_ICOUNT  0x00020000
352 #define CF_INVALID     0x00040000 /* TB is stale. Set with @jmp_lock held */
353 #define CF_PARALLEL    0x00080000 /* Generate code for a parallel context */
354 #define CF_CLUSTER_MASK 0xff000000 /* Top 8 bits are cluster ID */
355 #define CF_CLUSTER_SHIFT 24
356 /* cflags' mask for hashing/comparison */
357 #define CF_HASH_MASK   \
358     (CF_COUNT_MASK | CF_LAST_IO | CF_USE_ICOUNT | CF_PARALLEL | CF_CLUSTER_MASK)
359 
360     /* Per-vCPU dynamic tracing state used to generate this TB */
361     uint32_t trace_vcpu_dstate;
362 
363     struct tb_tc tc;
364 
365     /* original tb when cflags has CF_NOCACHE */
366     struct TranslationBlock *orig_tb;
367     /* first and second physical page containing code. The lower bit
368        of the pointer tells the index in page_next[].
369        The list is protected by the TB's page('s) lock(s) */
370     uintptr_t page_next[2];
371     tb_page_addr_t page_addr[2];
372 
373     /* jmp_lock placed here to fill a 4-byte hole. Its documentation is below */
374     QemuSpin jmp_lock;
375 
376     /* The following data are used to directly call another TB from
377      * the code of this one. This can be done either by emitting direct or
378      * indirect native jump instructions. These jumps are reset so that the TB
379      * just continues its execution. The TB can be linked to another one by
380      * setting one of the jump targets (or patching the jump instruction). Only
381      * two of such jumps are supported.
382      */
383     uint16_t jmp_reset_offset[2]; /* offset of original jump target */
384 #define TB_JMP_RESET_OFFSET_INVALID 0xffff /* indicates no jump generated */
385     uintptr_t jmp_target_arg[2];  /* target address or offset */
386 
387     /*
388      * Each TB has a NULL-terminated list (jmp_list_head) of incoming jumps.
389      * Each TB can have two outgoing jumps, and therefore can participate
390      * in two lists. The list entries are kept in jmp_list_next[2]. The least
391      * significant bit (LSB) of the pointers in these lists is used to encode
392      * which of the two list entries is to be used in the pointed TB.
393      *
394      * List traversals are protected by jmp_lock. The destination TB of each
395      * outgoing jump is kept in jmp_dest[] so that the appropriate jmp_lock
396      * can be acquired from any origin TB.
397      *
398      * jmp_dest[] are tagged pointers as well. The LSB is set when the TB is
399      * being invalidated, so that no further outgoing jumps from it can be set.
400      *
401      * jmp_lock also protects the CF_INVALID cflag; a jump must not be chained
402      * to a destination TB that has CF_INVALID set.
403      */
404     uintptr_t jmp_list_head;
405     uintptr_t jmp_list_next[2];
406     uintptr_t jmp_dest[2];
407 };
408 
409 extern bool parallel_cpus;
410 
411 /* Hide the atomic_read to make code a little easier on the eyes */
412 static inline uint32_t tb_cflags(const TranslationBlock *tb)
413 {
414     return atomic_read(&tb->cflags);
415 }
416 
417 /* current cflags for hashing/comparison */
418 static inline uint32_t curr_cflags(void)
419 {
420     return (parallel_cpus ? CF_PARALLEL : 0)
421          | (use_icount ? CF_USE_ICOUNT : 0);
422 }
423 
424 /* TranslationBlock invalidate API */
425 #if defined(CONFIG_USER_ONLY)
426 void tb_invalidate_phys_addr(target_ulong addr);
427 void tb_invalidate_phys_range(target_ulong start, target_ulong end);
428 #else
429 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs);
430 #endif
431 void tb_flush(CPUState *cpu);
432 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr);
433 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
434                                    target_ulong cs_base, uint32_t flags,
435                                    uint32_t cf_mask);
436 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr);
437 
438 /* GETPC is the true target of the return instruction that we'll execute.  */
439 #if defined(CONFIG_TCG_INTERPRETER)
440 extern uintptr_t tci_tb_ptr;
441 # define GETPC() tci_tb_ptr
442 #else
443 # define GETPC() \
444     ((uintptr_t)__builtin_extract_return_addr(__builtin_return_address(0)))
445 #endif
446 
447 /* The true return address will often point to a host insn that is part of
448    the next translated guest insn.  Adjust the address backward to point to
449    the middle of the call insn.  Subtracting one would do the job except for
450    several compressed mode architectures (arm, mips) which set the low bit
451    to indicate the compressed mode; subtracting two works around that.  It
452    is also the case that there are no host isas that contain a call insn
453    smaller than 4 bytes, so we don't worry about special-casing this.  */
454 #define GETPC_ADJ   2
455 
456 #if !defined(CONFIG_USER_ONLY) && defined(CONFIG_DEBUG_TCG)
457 void assert_no_pages_locked(void);
458 #else
459 static inline void assert_no_pages_locked(void)
460 {
461 }
462 #endif
463 
464 #if !defined(CONFIG_USER_ONLY)
465 
466 /**
467  * iotlb_to_section:
468  * @cpu: CPU performing the access
469  * @index: TCG CPU IOTLB entry
470  *
471  * Given a TCG CPU IOTLB entry, return the MemoryRegionSection that
472  * it refers to. @index will have been initially created and returned
473  * by memory_region_section_get_iotlb().
474  */
475 struct MemoryRegionSection *iotlb_to_section(CPUState *cpu,
476                                              hwaddr index, MemTxAttrs attrs);
477 
478 /*
479  * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
480  * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
481  * be discarded and looked up again (e.g. via tlb_entry()).
482  */
483 void tlb_fill(CPUState *cpu, target_ulong addr, int size,
484               MMUAccessType access_type, int mmu_idx, uintptr_t retaddr);
485 
486 #endif
487 
488 #if defined(CONFIG_USER_ONLY)
489 void mmap_lock(void);
490 void mmap_unlock(void);
491 bool have_mmap_lock(void);
492 
493 static inline tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
494 {
495     return addr;
496 }
497 #else
498 static inline void mmap_lock(void) {}
499 static inline void mmap_unlock(void) {}
500 
501 /* cputlb.c */
502 tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr);
503 
504 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length);
505 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr);
506 
507 /* exec.c */
508 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr);
509 
510 MemoryRegionSection *
511 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
512                                   hwaddr *xlat, hwaddr *plen,
513                                   MemTxAttrs attrs, int *prot);
514 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
515                                        MemoryRegionSection *section,
516                                        target_ulong vaddr,
517                                        hwaddr paddr, hwaddr xlat,
518                                        int prot,
519                                        target_ulong *address);
520 #endif
521 
522 /* vl.c */
523 extern int singlestep;
524 
525 #endif
526