xref: /openbmc/qemu/include/exec/exec-all.h (revision 4a4ff4c5)
1 /*
2  * internal execution defines for qemu
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef EXEC_ALL_H
21 #define EXEC_ALL_H
22 
23 #include "qemu-common.h"
24 #include "exec/tb-context.h"
25 #include "sysemu/cpus.h"
26 
27 /* allow to see translation results - the slowdown should be negligible, so we leave it */
28 #define DEBUG_DISAS
29 
30 /* Page tracking code uses ram addresses in system mode, and virtual
31    addresses in userspace mode.  Define tb_page_addr_t to be an appropriate
32    type.  */
33 #if defined(CONFIG_USER_ONLY)
34 typedef abi_ulong tb_page_addr_t;
35 #define TB_PAGE_ADDR_FMT TARGET_ABI_FMT_lx
36 #else
37 typedef ram_addr_t tb_page_addr_t;
38 #define TB_PAGE_ADDR_FMT RAM_ADDR_FMT
39 #endif
40 
41 #include "qemu/log.h"
42 
43 void gen_intermediate_code(CPUState *cpu, struct TranslationBlock *tb);
44 void restore_state_to_opc(CPUArchState *env, struct TranslationBlock *tb,
45                           target_ulong *data);
46 
47 void cpu_gen_init(void);
48 
49 /**
50  * cpu_restore_state:
51  * @cpu: the vCPU state is to be restore to
52  * @searched_pc: the host PC the fault occurred at
53  * @will_exit: true if the TB executed will be interrupted after some
54                cpu adjustments. Required for maintaining the correct
55                icount valus
56  * @return: true if state was restored, false otherwise
57  *
58  * Attempt to restore the state for a fault occurring in translated
59  * code. If the searched_pc is not in translated code no state is
60  * restored and the function returns false.
61  */
62 bool cpu_restore_state(CPUState *cpu, uintptr_t searched_pc, bool will_exit);
63 
64 void QEMU_NORETURN cpu_loop_exit_noexc(CPUState *cpu);
65 void QEMU_NORETURN cpu_io_recompile(CPUState *cpu, uintptr_t retaddr);
66 TranslationBlock *tb_gen_code(CPUState *cpu,
67                               target_ulong pc, target_ulong cs_base,
68                               uint32_t flags,
69                               int cflags);
70 
71 void QEMU_NORETURN cpu_loop_exit(CPUState *cpu);
72 void QEMU_NORETURN cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc);
73 void QEMU_NORETURN cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc);
74 
75 #if !defined(CONFIG_USER_ONLY)
76 void cpu_reloading_memory_map(void);
77 /**
78  * cpu_address_space_init:
79  * @cpu: CPU to add this address space to
80  * @asidx: integer index of this address space
81  * @prefix: prefix to be used as name of address space
82  * @mr: the root memory region of address space
83  *
84  * Add the specified address space to the CPU's cpu_ases list.
85  * The address space added with @asidx 0 is the one used for the
86  * convenience pointer cpu->as.
87  * The target-specific code which registers ASes is responsible
88  * for defining what semantics address space 0, 1, 2, etc have.
89  *
90  * Before the first call to this function, the caller must set
91  * cpu->num_ases to the total number of address spaces it needs
92  * to support.
93  *
94  * Note that with KVM only one address space is supported.
95  */
96 void cpu_address_space_init(CPUState *cpu, int asidx,
97                             const char *prefix, MemoryRegion *mr);
98 #endif
99 
100 #if !defined(CONFIG_USER_ONLY) && defined(CONFIG_TCG)
101 /* cputlb.c */
102 /**
103  * tlb_flush_page:
104  * @cpu: CPU whose TLB should be flushed
105  * @addr: virtual address of page to be flushed
106  *
107  * Flush one page from the TLB of the specified CPU, for all
108  * MMU indexes.
109  */
110 void tlb_flush_page(CPUState *cpu, target_ulong addr);
111 /**
112  * tlb_flush_page_all_cpus:
113  * @cpu: src CPU of the flush
114  * @addr: virtual address of page to be flushed
115  *
116  * Flush one page from the TLB of the specified CPU, for all
117  * MMU indexes.
118  */
119 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr);
120 /**
121  * tlb_flush_page_all_cpus_synced:
122  * @cpu: src CPU of the flush
123  * @addr: virtual address of page to be flushed
124  *
125  * Flush one page from the TLB of the specified CPU, for all MMU
126  * indexes like tlb_flush_page_all_cpus except the source vCPUs work
127  * is scheduled as safe work meaning all flushes will be complete once
128  * the source vCPUs safe work is complete. This will depend on when
129  * the guests translation ends the TB.
130  */
131 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr);
132 /**
133  * tlb_flush:
134  * @cpu: CPU whose TLB should be flushed
135  *
136  * Flush the entire TLB for the specified CPU. Most CPU architectures
137  * allow the implementation to drop entries from the TLB at any time
138  * so this is generally safe. If more selective flushing is required
139  * use one of the other functions for efficiency.
140  */
141 void tlb_flush(CPUState *cpu);
142 /**
143  * tlb_flush_all_cpus:
144  * @cpu: src CPU of the flush
145  */
146 void tlb_flush_all_cpus(CPUState *src_cpu);
147 /**
148  * tlb_flush_all_cpus_synced:
149  * @cpu: src CPU of the flush
150  *
151  * Like tlb_flush_all_cpus except this except the source vCPUs work is
152  * scheduled as safe work meaning all flushes will be complete once
153  * the source vCPUs safe work is complete. This will depend on when
154  * the guests translation ends the TB.
155  */
156 void tlb_flush_all_cpus_synced(CPUState *src_cpu);
157 /**
158  * tlb_flush_page_by_mmuidx:
159  * @cpu: CPU whose TLB should be flushed
160  * @addr: virtual address of page to be flushed
161  * @idxmap: bitmap of MMU indexes to flush
162  *
163  * Flush one page from the TLB of the specified CPU, for the specified
164  * MMU indexes.
165  */
166 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr,
167                               uint16_t idxmap);
168 /**
169  * tlb_flush_page_by_mmuidx_all_cpus:
170  * @cpu: Originating CPU of the flush
171  * @addr: virtual address of page to be flushed
172  * @idxmap: bitmap of MMU indexes to flush
173  *
174  * Flush one page from the TLB of all CPUs, for the specified
175  * MMU indexes.
176  */
177 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr,
178                                        uint16_t idxmap);
179 /**
180  * tlb_flush_page_by_mmuidx_all_cpus_synced:
181  * @cpu: Originating CPU of the flush
182  * @addr: virtual address of page to be flushed
183  * @idxmap: bitmap of MMU indexes to flush
184  *
185  * Flush one page from the TLB of all CPUs, for the specified MMU
186  * indexes like tlb_flush_page_by_mmuidx_all_cpus except the source
187  * vCPUs work is scheduled as safe work meaning all flushes will be
188  * complete once  the source vCPUs safe work is complete. This will
189  * depend on when the guests translation ends the TB.
190  */
191 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu, target_ulong addr,
192                                               uint16_t idxmap);
193 /**
194  * tlb_flush_by_mmuidx:
195  * @cpu: CPU whose TLB should be flushed
196  * @wait: If true ensure synchronisation by exiting the cpu_loop
197  * @idxmap: bitmap of MMU indexes to flush
198  *
199  * Flush all entries from the TLB of the specified CPU, for the specified
200  * MMU indexes.
201  */
202 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap);
203 /**
204  * tlb_flush_by_mmuidx_all_cpus:
205  * @cpu: Originating CPU of the flush
206  * @idxmap: bitmap of MMU indexes to flush
207  *
208  * Flush all entries from all TLBs of all CPUs, for the specified
209  * MMU indexes.
210  */
211 void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap);
212 /**
213  * tlb_flush_by_mmuidx_all_cpus_synced:
214  * @cpu: Originating CPU of the flush
215  * @idxmap: bitmap of MMU indexes to flush
216  *
217  * Flush all entries from all TLBs of all CPUs, for the specified
218  * MMU indexes like tlb_flush_by_mmuidx_all_cpus except except the source
219  * vCPUs work is scheduled as safe work meaning all flushes will be
220  * complete once  the source vCPUs safe work is complete. This will
221  * depend on when the guests translation ends the TB.
222  */
223 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu, uint16_t idxmap);
224 /**
225  * tlb_set_page_with_attrs:
226  * @cpu: CPU to add this TLB entry for
227  * @vaddr: virtual address of page to add entry for
228  * @paddr: physical address of the page
229  * @attrs: memory transaction attributes
230  * @prot: access permissions (PAGE_READ/PAGE_WRITE/PAGE_EXEC bits)
231  * @mmu_idx: MMU index to insert TLB entry for
232  * @size: size of the page in bytes
233  *
234  * Add an entry to this CPU's TLB (a mapping from virtual address
235  * @vaddr to physical address @paddr) with the specified memory
236  * transaction attributes. This is generally called by the target CPU
237  * specific code after it has been called through the tlb_fill()
238  * entry point and performed a successful page table walk to find
239  * the physical address and attributes for the virtual address
240  * which provoked the TLB miss.
241  *
242  * At most one entry for a given virtual address is permitted. Only a
243  * single TARGET_PAGE_SIZE region is mapped; the supplied @size is only
244  * used by tlb_flush_page.
245  */
246 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
247                              hwaddr paddr, MemTxAttrs attrs,
248                              int prot, int mmu_idx, target_ulong size);
249 /* tlb_set_page:
250  *
251  * This function is equivalent to calling tlb_set_page_with_attrs()
252  * with an @attrs argument of MEMTXATTRS_UNSPECIFIED. It's provided
253  * as a convenience for CPUs which don't use memory transaction attributes.
254  */
255 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
256                   hwaddr paddr, int prot,
257                   int mmu_idx, target_ulong size);
258 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr);
259 void probe_write(CPUArchState *env, target_ulong addr, int size, int mmu_idx,
260                  uintptr_t retaddr);
261 #else
262 static inline void tlb_flush_page(CPUState *cpu, target_ulong addr)
263 {
264 }
265 static inline void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
266 {
267 }
268 static inline void tlb_flush_page_all_cpus_synced(CPUState *src,
269                                                   target_ulong addr)
270 {
271 }
272 static inline void tlb_flush(CPUState *cpu)
273 {
274 }
275 static inline void tlb_flush_all_cpus(CPUState *src_cpu)
276 {
277 }
278 static inline void tlb_flush_all_cpus_synced(CPUState *src_cpu)
279 {
280 }
281 static inline void tlb_flush_page_by_mmuidx(CPUState *cpu,
282                                             target_ulong addr, uint16_t idxmap)
283 {
284 }
285 
286 static inline void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
287 {
288 }
289 static inline void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu,
290                                                      target_ulong addr,
291                                                      uint16_t idxmap)
292 {
293 }
294 static inline void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu,
295                                                             target_ulong addr,
296                                                             uint16_t idxmap)
297 {
298 }
299 static inline void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap)
300 {
301 }
302 static inline void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu,
303                                                        uint16_t idxmap)
304 {
305 }
306 static inline void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
307 {
308 }
309 #endif
310 
311 #define CODE_GEN_ALIGN           16 /* must be >= of the size of a icache line */
312 
313 /* Estimated block size for TB allocation.  */
314 /* ??? The following is based on a 2015 survey of x86_64 host output.
315    Better would seem to be some sort of dynamically sized TB array,
316    adapting to the block sizes actually being produced.  */
317 #if defined(CONFIG_SOFTMMU)
318 #define CODE_GEN_AVG_BLOCK_SIZE 400
319 #else
320 #define CODE_GEN_AVG_BLOCK_SIZE 150
321 #endif
322 
323 /*
324  * Translation Cache-related fields of a TB.
325  * This struct exists just for convenience; we keep track of TB's in a binary
326  * search tree, and the only fields needed to compare TB's in the tree are
327  * @ptr and @size.
328  * Note: the address of search data can be obtained by adding @size to @ptr.
329  */
330 struct tb_tc {
331     void *ptr;    /* pointer to the translated code */
332     size_t size;
333 };
334 
335 struct TranslationBlock {
336     target_ulong pc;   /* simulated PC corresponding to this block (EIP + CS base) */
337     target_ulong cs_base; /* CS base for this block */
338     uint32_t flags; /* flags defining in which context the code was generated */
339     uint16_t size;      /* size of target code for this block (1 <=
340                            size <= TARGET_PAGE_SIZE) */
341     uint16_t icount;
342     uint32_t cflags;    /* compile flags */
343 #define CF_COUNT_MASK  0x00007fff
344 #define CF_LAST_IO     0x00008000 /* Last insn may be an IO access.  */
345 #define CF_NOCACHE     0x00010000 /* To be freed after execution */
346 #define CF_USE_ICOUNT  0x00020000
347 #define CF_INVALID     0x00040000 /* TB is stale. Setters need tb_lock */
348 #define CF_PARALLEL    0x00080000 /* Generate code for a parallel context */
349 /* cflags' mask for hashing/comparison */
350 #define CF_HASH_MASK   \
351     (CF_COUNT_MASK | CF_LAST_IO | CF_USE_ICOUNT | CF_PARALLEL)
352 
353     /* Per-vCPU dynamic tracing state used to generate this TB */
354     uint32_t trace_vcpu_dstate;
355 
356     struct tb_tc tc;
357 
358     /* original tb when cflags has CF_NOCACHE */
359     struct TranslationBlock *orig_tb;
360     /* first and second physical page containing code. The lower bit
361        of the pointer tells the index in page_next[] */
362     struct TranslationBlock *page_next[2];
363     tb_page_addr_t page_addr[2];
364 
365     /* The following data are used to directly call another TB from
366      * the code of this one. This can be done either by emitting direct or
367      * indirect native jump instructions. These jumps are reset so that the TB
368      * just continues its execution. The TB can be linked to another one by
369      * setting one of the jump targets (or patching the jump instruction). Only
370      * two of such jumps are supported.
371      */
372     uint16_t jmp_reset_offset[2]; /* offset of original jump target */
373 #define TB_JMP_RESET_OFFSET_INVALID 0xffff /* indicates no jump generated */
374     uintptr_t jmp_target_arg[2];  /* target address or offset */
375 
376     /* Each TB has an associated circular list of TBs jumping to this one.
377      * jmp_list_first points to the first TB jumping to this one.
378      * jmp_list_next is used to point to the next TB in a list.
379      * Since each TB can have two jumps, it can participate in two lists.
380      * jmp_list_first and jmp_list_next are 4-byte aligned pointers to a
381      * TranslationBlock structure, but the two least significant bits of
382      * them are used to encode which data field of the pointed TB should
383      * be used to traverse the list further from that TB:
384      * 0 => jmp_list_next[0], 1 => jmp_list_next[1], 2 => jmp_list_first.
385      * In other words, 0/1 tells which jump is used in the pointed TB,
386      * and 2 means that this is a pointer back to the target TB of this list.
387      */
388     uintptr_t jmp_list_next[2];
389     uintptr_t jmp_list_first;
390 };
391 
392 extern bool parallel_cpus;
393 
394 /* Hide the atomic_read to make code a little easier on the eyes */
395 static inline uint32_t tb_cflags(const TranslationBlock *tb)
396 {
397     return atomic_read(&tb->cflags);
398 }
399 
400 /* current cflags for hashing/comparison */
401 static inline uint32_t curr_cflags(void)
402 {
403     return (parallel_cpus ? CF_PARALLEL : 0)
404          | (use_icount ? CF_USE_ICOUNT : 0);
405 }
406 
407 void tb_remove(TranslationBlock *tb);
408 void tb_flush(CPUState *cpu);
409 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr);
410 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
411                                    target_ulong cs_base, uint32_t flags,
412                                    uint32_t cf_mask);
413 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr);
414 
415 /* GETPC is the true target of the return instruction that we'll execute.  */
416 #if defined(CONFIG_TCG_INTERPRETER)
417 extern uintptr_t tci_tb_ptr;
418 # define GETPC() tci_tb_ptr
419 #else
420 # define GETPC() \
421     ((uintptr_t)__builtin_extract_return_addr(__builtin_return_address(0)))
422 #endif
423 
424 /* The true return address will often point to a host insn that is part of
425    the next translated guest insn.  Adjust the address backward to point to
426    the middle of the call insn.  Subtracting one would do the job except for
427    several compressed mode architectures (arm, mips) which set the low bit
428    to indicate the compressed mode; subtracting two works around that.  It
429    is also the case that there are no host isas that contain a call insn
430    smaller than 4 bytes, so we don't worry about special-casing this.  */
431 #define GETPC_ADJ   2
432 
433 void tb_lock(void);
434 void tb_unlock(void);
435 void tb_lock_reset(void);
436 
437 #if !defined(CONFIG_USER_ONLY)
438 
439 struct MemoryRegion *iotlb_to_region(CPUState *cpu,
440                                      hwaddr index, MemTxAttrs attrs);
441 
442 void tlb_fill(CPUState *cpu, target_ulong addr, int size,
443               MMUAccessType access_type, int mmu_idx, uintptr_t retaddr);
444 
445 #endif
446 
447 #if defined(CONFIG_USER_ONLY)
448 void mmap_lock(void);
449 void mmap_unlock(void);
450 bool have_mmap_lock(void);
451 
452 static inline tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
453 {
454     return addr;
455 }
456 #else
457 static inline void mmap_lock(void) {}
458 static inline void mmap_unlock(void) {}
459 
460 /* cputlb.c */
461 tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr);
462 
463 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length);
464 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr);
465 
466 /* exec.c */
467 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr);
468 
469 MemoryRegionSection *
470 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
471                                   hwaddr *xlat, hwaddr *plen);
472 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
473                                        MemoryRegionSection *section,
474                                        target_ulong vaddr,
475                                        hwaddr paddr, hwaddr xlat,
476                                        int prot,
477                                        target_ulong *address);
478 bool memory_region_is_unassigned(MemoryRegion *mr);
479 
480 #endif
481 
482 /* vl.c */
483 extern int singlestep;
484 
485 #endif
486