xref: /openbmc/qemu/include/exec/exec-all.h (revision 3e8f1628)
1 /*
2  * internal execution defines for qemu
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef EXEC_ALL_H
21 #define EXEC_ALL_H
22 
23 #include "cpu.h"
24 #include "exec/tb-context.h"
25 #ifdef CONFIG_TCG
26 #include "exec/cpu_ldst.h"
27 #endif
28 #include "sysemu/cpu-timers.h"
29 
30 /* allow to see translation results - the slowdown should be negligible, so we leave it */
31 #define DEBUG_DISAS
32 
33 /* Page tracking code uses ram addresses in system mode, and virtual
34    addresses in userspace mode.  Define tb_page_addr_t to be an appropriate
35    type.  */
36 #if defined(CONFIG_USER_ONLY)
37 typedef abi_ulong tb_page_addr_t;
38 #define TB_PAGE_ADDR_FMT TARGET_ABI_FMT_lx
39 #else
40 typedef ram_addr_t tb_page_addr_t;
41 #define TB_PAGE_ADDR_FMT RAM_ADDR_FMT
42 #endif
43 
44 #include "qemu/log.h"
45 
46 void gen_intermediate_code(CPUState *cpu, TranslationBlock *tb, int max_insns);
47 void restore_state_to_opc(CPUArchState *env, TranslationBlock *tb,
48                           target_ulong *data);
49 
50 /**
51  * cpu_restore_state:
52  * @cpu: the vCPU state is to be restore to
53  * @searched_pc: the host PC the fault occurred at
54  * @will_exit: true if the TB executed will be interrupted after some
55                cpu adjustments. Required for maintaining the correct
56                icount valus
57  * @return: true if state was restored, false otherwise
58  *
59  * Attempt to restore the state for a fault occurring in translated
60  * code. If the searched_pc is not in translated code no state is
61  * restored and the function returns false.
62  */
63 bool cpu_restore_state(CPUState *cpu, uintptr_t searched_pc, bool will_exit);
64 
65 void QEMU_NORETURN cpu_loop_exit_noexc(CPUState *cpu);
66 void QEMU_NORETURN cpu_loop_exit(CPUState *cpu);
67 void QEMU_NORETURN cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc);
68 void QEMU_NORETURN cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc);
69 
70 /**
71  * cpu_loop_exit_requested:
72  * @cpu: The CPU state to be tested
73  *
74  * Indicate if somebody asked for a return of the CPU to the main loop
75  * (e.g., via cpu_exit() or cpu_interrupt()).
76  *
77  * This is helpful for architectures that support interruptible
78  * instructions. After writing back all state to registers/memory, this
79  * call can be used to check if it makes sense to return to the main loop
80  * or to continue executing the interruptible instruction.
81  */
82 static inline bool cpu_loop_exit_requested(CPUState *cpu)
83 {
84     return (int32_t)qatomic_read(&cpu_neg(cpu)->icount_decr.u32) < 0;
85 }
86 
87 #if !defined(CONFIG_USER_ONLY)
88 void cpu_reloading_memory_map(void);
89 /**
90  * cpu_address_space_init:
91  * @cpu: CPU to add this address space to
92  * @asidx: integer index of this address space
93  * @prefix: prefix to be used as name of address space
94  * @mr: the root memory region of address space
95  *
96  * Add the specified address space to the CPU's cpu_ases list.
97  * The address space added with @asidx 0 is the one used for the
98  * convenience pointer cpu->as.
99  * The target-specific code which registers ASes is responsible
100  * for defining what semantics address space 0, 1, 2, etc have.
101  *
102  * Before the first call to this function, the caller must set
103  * cpu->num_ases to the total number of address spaces it needs
104  * to support.
105  *
106  * Note that with KVM only one address space is supported.
107  */
108 void cpu_address_space_init(CPUState *cpu, int asidx,
109                             const char *prefix, MemoryRegion *mr);
110 #endif
111 
112 #if !defined(CONFIG_USER_ONLY) && defined(CONFIG_TCG)
113 /* cputlb.c */
114 /**
115  * tlb_init - initialize a CPU's TLB
116  * @cpu: CPU whose TLB should be initialized
117  */
118 void tlb_init(CPUState *cpu);
119 /**
120  * tlb_destroy - destroy a CPU's TLB
121  * @cpu: CPU whose TLB should be destroyed
122  */
123 void tlb_destroy(CPUState *cpu);
124 /**
125  * tlb_flush_page:
126  * @cpu: CPU whose TLB should be flushed
127  * @addr: virtual address of page to be flushed
128  *
129  * Flush one page from the TLB of the specified CPU, for all
130  * MMU indexes.
131  */
132 void tlb_flush_page(CPUState *cpu, target_ulong addr);
133 /**
134  * tlb_flush_page_all_cpus:
135  * @cpu: src CPU of the flush
136  * @addr: virtual address of page to be flushed
137  *
138  * Flush one page from the TLB of the specified CPU, for all
139  * MMU indexes.
140  */
141 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr);
142 /**
143  * tlb_flush_page_all_cpus_synced:
144  * @cpu: src CPU of the flush
145  * @addr: virtual address of page to be flushed
146  *
147  * Flush one page from the TLB of the specified CPU, for all MMU
148  * indexes like tlb_flush_page_all_cpus except the source vCPUs work
149  * is scheduled as safe work meaning all flushes will be complete once
150  * the source vCPUs safe work is complete. This will depend on when
151  * the guests translation ends the TB.
152  */
153 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr);
154 /**
155  * tlb_flush:
156  * @cpu: CPU whose TLB should be flushed
157  *
158  * Flush the entire TLB for the specified CPU. Most CPU architectures
159  * allow the implementation to drop entries from the TLB at any time
160  * so this is generally safe. If more selective flushing is required
161  * use one of the other functions for efficiency.
162  */
163 void tlb_flush(CPUState *cpu);
164 /**
165  * tlb_flush_all_cpus:
166  * @cpu: src CPU of the flush
167  */
168 void tlb_flush_all_cpus(CPUState *src_cpu);
169 /**
170  * tlb_flush_all_cpus_synced:
171  * @cpu: src CPU of the flush
172  *
173  * Like tlb_flush_all_cpus except this except the source vCPUs work is
174  * scheduled as safe work meaning all flushes will be complete once
175  * the source vCPUs safe work is complete. This will depend on when
176  * the guests translation ends the TB.
177  */
178 void tlb_flush_all_cpus_synced(CPUState *src_cpu);
179 /**
180  * tlb_flush_page_by_mmuidx:
181  * @cpu: CPU whose TLB should be flushed
182  * @addr: virtual address of page to be flushed
183  * @idxmap: bitmap of MMU indexes to flush
184  *
185  * Flush one page from the TLB of the specified CPU, for the specified
186  * MMU indexes.
187  */
188 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr,
189                               uint16_t idxmap);
190 /**
191  * tlb_flush_page_by_mmuidx_all_cpus:
192  * @cpu: Originating CPU of the flush
193  * @addr: virtual address of page to be flushed
194  * @idxmap: bitmap of MMU indexes to flush
195  *
196  * Flush one page from the TLB of all CPUs, for the specified
197  * MMU indexes.
198  */
199 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr,
200                                        uint16_t idxmap);
201 /**
202  * tlb_flush_page_by_mmuidx_all_cpus_synced:
203  * @cpu: Originating CPU of the flush
204  * @addr: virtual address of page to be flushed
205  * @idxmap: bitmap of MMU indexes to flush
206  *
207  * Flush one page from the TLB of all CPUs, for the specified MMU
208  * indexes like tlb_flush_page_by_mmuidx_all_cpus except the source
209  * vCPUs work is scheduled as safe work meaning all flushes will be
210  * complete once  the source vCPUs safe work is complete. This will
211  * depend on when the guests translation ends the TB.
212  */
213 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu, target_ulong addr,
214                                               uint16_t idxmap);
215 /**
216  * tlb_flush_by_mmuidx:
217  * @cpu: CPU whose TLB should be flushed
218  * @wait: If true ensure synchronisation by exiting the cpu_loop
219  * @idxmap: bitmap of MMU indexes to flush
220  *
221  * Flush all entries from the TLB of the specified CPU, for the specified
222  * MMU indexes.
223  */
224 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap);
225 /**
226  * tlb_flush_by_mmuidx_all_cpus:
227  * @cpu: Originating CPU of the flush
228  * @idxmap: bitmap of MMU indexes to flush
229  *
230  * Flush all entries from all TLBs of all CPUs, for the specified
231  * MMU indexes.
232  */
233 void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap);
234 /**
235  * tlb_flush_by_mmuidx_all_cpus_synced:
236  * @cpu: Originating CPU of the flush
237  * @idxmap: bitmap of MMU indexes to flush
238  *
239  * Flush all entries from all TLBs of all CPUs, for the specified
240  * MMU indexes like tlb_flush_by_mmuidx_all_cpus except except the source
241  * vCPUs work is scheduled as safe work meaning all flushes will be
242  * complete once  the source vCPUs safe work is complete. This will
243  * depend on when the guests translation ends the TB.
244  */
245 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu, uint16_t idxmap);
246 
247 /**
248  * tlb_flush_page_bits_by_mmuidx
249  * @cpu: CPU whose TLB should be flushed
250  * @addr: virtual address of page to be flushed
251  * @idxmap: bitmap of mmu indexes to flush
252  * @bits: number of significant bits in address
253  *
254  * Similar to tlb_flush_page_mask, but with a bitmap of indexes.
255  */
256 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, target_ulong addr,
257                                    uint16_t idxmap, unsigned bits);
258 
259 /* Similarly, with broadcast and syncing. */
260 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr,
261                                             uint16_t idxmap, unsigned bits);
262 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced
263     (CPUState *cpu, target_ulong addr, uint16_t idxmap, unsigned bits);
264 
265 /**
266  * tlb_set_page_with_attrs:
267  * @cpu: CPU to add this TLB entry for
268  * @vaddr: virtual address of page to add entry for
269  * @paddr: physical address of the page
270  * @attrs: memory transaction attributes
271  * @prot: access permissions (PAGE_READ/PAGE_WRITE/PAGE_EXEC bits)
272  * @mmu_idx: MMU index to insert TLB entry for
273  * @size: size of the page in bytes
274  *
275  * Add an entry to this CPU's TLB (a mapping from virtual address
276  * @vaddr to physical address @paddr) with the specified memory
277  * transaction attributes. This is generally called by the target CPU
278  * specific code after it has been called through the tlb_fill()
279  * entry point and performed a successful page table walk to find
280  * the physical address and attributes for the virtual address
281  * which provoked the TLB miss.
282  *
283  * At most one entry for a given virtual address is permitted. Only a
284  * single TARGET_PAGE_SIZE region is mapped; the supplied @size is only
285  * used by tlb_flush_page.
286  */
287 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
288                              hwaddr paddr, MemTxAttrs attrs,
289                              int prot, int mmu_idx, target_ulong size);
290 /* tlb_set_page:
291  *
292  * This function is equivalent to calling tlb_set_page_with_attrs()
293  * with an @attrs argument of MEMTXATTRS_UNSPECIFIED. It's provided
294  * as a convenience for CPUs which don't use memory transaction attributes.
295  */
296 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
297                   hwaddr paddr, int prot,
298                   int mmu_idx, target_ulong size);
299 #else
300 static inline void tlb_init(CPUState *cpu)
301 {
302 }
303 static inline void tlb_destroy(CPUState *cpu)
304 {
305 }
306 static inline void tlb_flush_page(CPUState *cpu, target_ulong addr)
307 {
308 }
309 static inline void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
310 {
311 }
312 static inline void tlb_flush_page_all_cpus_synced(CPUState *src,
313                                                   target_ulong addr)
314 {
315 }
316 static inline void tlb_flush(CPUState *cpu)
317 {
318 }
319 static inline void tlb_flush_all_cpus(CPUState *src_cpu)
320 {
321 }
322 static inline void tlb_flush_all_cpus_synced(CPUState *src_cpu)
323 {
324 }
325 static inline void tlb_flush_page_by_mmuidx(CPUState *cpu,
326                                             target_ulong addr, uint16_t idxmap)
327 {
328 }
329 
330 static inline void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
331 {
332 }
333 static inline void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu,
334                                                      target_ulong addr,
335                                                      uint16_t idxmap)
336 {
337 }
338 static inline void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu,
339                                                             target_ulong addr,
340                                                             uint16_t idxmap)
341 {
342 }
343 static inline void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap)
344 {
345 }
346 
347 static inline void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu,
348                                                        uint16_t idxmap)
349 {
350 }
351 static inline void tlb_flush_page_bits_by_mmuidx(CPUState *cpu,
352                                                  target_ulong addr,
353                                                  uint16_t idxmap,
354                                                  unsigned bits)
355 {
356 }
357 static inline void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *cpu,
358                                                           target_ulong addr,
359                                                           uint16_t idxmap,
360                                                           unsigned bits)
361 {
362 }
363 static inline void
364 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *cpu, target_ulong addr,
365                                               uint16_t idxmap, unsigned bits)
366 {
367 }
368 #endif
369 /**
370  * probe_access:
371  * @env: CPUArchState
372  * @addr: guest virtual address to look up
373  * @size: size of the access
374  * @access_type: read, write or execute permission
375  * @mmu_idx: MMU index to use for lookup
376  * @retaddr: return address for unwinding
377  *
378  * Look up the guest virtual address @addr.  Raise an exception if the
379  * page does not satisfy @access_type.  Raise an exception if the
380  * access (@addr, @size) hits a watchpoint.  For writes, mark a clean
381  * page as dirty.
382  *
383  * Finally, return the host address for a page that is backed by RAM,
384  * or NULL if the page requires I/O.
385  */
386 void *probe_access(CPUArchState *env, target_ulong addr, int size,
387                    MMUAccessType access_type, int mmu_idx, uintptr_t retaddr);
388 
389 static inline void *probe_write(CPUArchState *env, target_ulong addr, int size,
390                                 int mmu_idx, uintptr_t retaddr)
391 {
392     return probe_access(env, addr, size, MMU_DATA_STORE, mmu_idx, retaddr);
393 }
394 
395 static inline void *probe_read(CPUArchState *env, target_ulong addr, int size,
396                                int mmu_idx, uintptr_t retaddr)
397 {
398     return probe_access(env, addr, size, MMU_DATA_LOAD, mmu_idx, retaddr);
399 }
400 
401 /**
402  * probe_access_flags:
403  * @env: CPUArchState
404  * @addr: guest virtual address to look up
405  * @access_type: read, write or execute permission
406  * @mmu_idx: MMU index to use for lookup
407  * @nonfault: suppress the fault
408  * @phost: return value for host address
409  * @retaddr: return address for unwinding
410  *
411  * Similar to probe_access, loosely returning the TLB_FLAGS_MASK for
412  * the page, and storing the host address for RAM in @phost.
413  *
414  * If @nonfault is set, do not raise an exception but return TLB_INVALID_MASK.
415  * Do not handle watchpoints, but include TLB_WATCHPOINT in the returned flags.
416  * Do handle clean pages, so exclude TLB_NOTDIRY from the returned flags.
417  * For simplicity, all "mmio-like" flags are folded to TLB_MMIO.
418  */
419 int probe_access_flags(CPUArchState *env, target_ulong addr,
420                        MMUAccessType access_type, int mmu_idx,
421                        bool nonfault, void **phost, uintptr_t retaddr);
422 
423 #define CODE_GEN_ALIGN           16 /* must be >= of the size of a icache line */
424 
425 /* Estimated block size for TB allocation.  */
426 /* ??? The following is based on a 2015 survey of x86_64 host output.
427    Better would seem to be some sort of dynamically sized TB array,
428    adapting to the block sizes actually being produced.  */
429 #if defined(CONFIG_SOFTMMU)
430 #define CODE_GEN_AVG_BLOCK_SIZE 400
431 #else
432 #define CODE_GEN_AVG_BLOCK_SIZE 150
433 #endif
434 
435 /*
436  * Translation Cache-related fields of a TB.
437  * This struct exists just for convenience; we keep track of TB's in a binary
438  * search tree, and the only fields needed to compare TB's in the tree are
439  * @ptr and @size.
440  * Note: the address of search data can be obtained by adding @size to @ptr.
441  */
442 struct tb_tc {
443     const void *ptr;    /* pointer to the translated code */
444     size_t size;
445 };
446 
447 struct TranslationBlock {
448     target_ulong pc;   /* simulated PC corresponding to this block (EIP + CS base) */
449     target_ulong cs_base; /* CS base for this block */
450     uint32_t flags; /* flags defining in which context the code was generated */
451     uint16_t size;      /* size of target code for this block (1 <=
452                            size <= TARGET_PAGE_SIZE) */
453     uint16_t icount;
454     uint32_t cflags;    /* compile flags */
455 #define CF_COUNT_MASK  0x00007fff
456 #define CF_LAST_IO     0x00008000 /* Last insn may be an IO access.  */
457 #define CF_NOCACHE     0x00010000 /* To be freed after execution */
458 #define CF_USE_ICOUNT  0x00020000
459 #define CF_INVALID     0x00040000 /* TB is stale. Set with @jmp_lock held */
460 #define CF_PARALLEL    0x00080000 /* Generate code for a parallel context */
461 #define CF_CLUSTER_MASK 0xff000000 /* Top 8 bits are cluster ID */
462 #define CF_CLUSTER_SHIFT 24
463 /* cflags' mask for hashing/comparison */
464 #define CF_HASH_MASK   \
465     (CF_COUNT_MASK | CF_LAST_IO | CF_USE_ICOUNT | CF_PARALLEL | CF_CLUSTER_MASK)
466 
467     /* Per-vCPU dynamic tracing state used to generate this TB */
468     uint32_t trace_vcpu_dstate;
469 
470     struct tb_tc tc;
471 
472     /* original tb when cflags has CF_NOCACHE */
473     struct TranslationBlock *orig_tb;
474     /* first and second physical page containing code. The lower bit
475        of the pointer tells the index in page_next[].
476        The list is protected by the TB's page('s) lock(s) */
477     uintptr_t page_next[2];
478     tb_page_addr_t page_addr[2];
479 
480     /* jmp_lock placed here to fill a 4-byte hole. Its documentation is below */
481     QemuSpin jmp_lock;
482 
483     /* The following data are used to directly call another TB from
484      * the code of this one. This can be done either by emitting direct or
485      * indirect native jump instructions. These jumps are reset so that the TB
486      * just continues its execution. The TB can be linked to another one by
487      * setting one of the jump targets (or patching the jump instruction). Only
488      * two of such jumps are supported.
489      */
490     uint16_t jmp_reset_offset[2]; /* offset of original jump target */
491 #define TB_JMP_RESET_OFFSET_INVALID 0xffff /* indicates no jump generated */
492     uintptr_t jmp_target_arg[2];  /* target address or offset */
493 
494     /*
495      * Each TB has a NULL-terminated list (jmp_list_head) of incoming jumps.
496      * Each TB can have two outgoing jumps, and therefore can participate
497      * in two lists. The list entries are kept in jmp_list_next[2]. The least
498      * significant bit (LSB) of the pointers in these lists is used to encode
499      * which of the two list entries is to be used in the pointed TB.
500      *
501      * List traversals are protected by jmp_lock. The destination TB of each
502      * outgoing jump is kept in jmp_dest[] so that the appropriate jmp_lock
503      * can be acquired from any origin TB.
504      *
505      * jmp_dest[] are tagged pointers as well. The LSB is set when the TB is
506      * being invalidated, so that no further outgoing jumps from it can be set.
507      *
508      * jmp_lock also protects the CF_INVALID cflag; a jump must not be chained
509      * to a destination TB that has CF_INVALID set.
510      */
511     uintptr_t jmp_list_head;
512     uintptr_t jmp_list_next[2];
513     uintptr_t jmp_dest[2];
514 };
515 
516 extern bool parallel_cpus;
517 
518 /* Hide the qatomic_read to make code a little easier on the eyes */
519 static inline uint32_t tb_cflags(const TranslationBlock *tb)
520 {
521     return qatomic_read(&tb->cflags);
522 }
523 
524 /* current cflags for hashing/comparison */
525 static inline uint32_t curr_cflags(void)
526 {
527     return (parallel_cpus ? CF_PARALLEL : 0)
528          | (icount_enabled() ? CF_USE_ICOUNT : 0);
529 }
530 
531 /* TranslationBlock invalidate API */
532 #if defined(CONFIG_USER_ONLY)
533 void tb_invalidate_phys_addr(target_ulong addr);
534 void tb_invalidate_phys_range(target_ulong start, target_ulong end);
535 #else
536 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs);
537 #endif
538 void tb_flush(CPUState *cpu);
539 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr);
540 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
541                                    target_ulong cs_base, uint32_t flags,
542                                    uint32_t cf_mask);
543 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr);
544 
545 /* GETPC is the true target of the return instruction that we'll execute.  */
546 #if defined(CONFIG_TCG_INTERPRETER)
547 extern __thread uintptr_t tci_tb_ptr;
548 # define GETPC() tci_tb_ptr
549 #else
550 # define GETPC() \
551     ((uintptr_t)__builtin_extract_return_addr(__builtin_return_address(0)))
552 #endif
553 
554 /* The true return address will often point to a host insn that is part of
555    the next translated guest insn.  Adjust the address backward to point to
556    the middle of the call insn.  Subtracting one would do the job except for
557    several compressed mode architectures (arm, mips) which set the low bit
558    to indicate the compressed mode; subtracting two works around that.  It
559    is also the case that there are no host isas that contain a call insn
560    smaller than 4 bytes, so we don't worry about special-casing this.  */
561 #define GETPC_ADJ   2
562 
563 #if !defined(CONFIG_USER_ONLY) && defined(CONFIG_DEBUG_TCG)
564 void assert_no_pages_locked(void);
565 #else
566 static inline void assert_no_pages_locked(void)
567 {
568 }
569 #endif
570 
571 #if !defined(CONFIG_USER_ONLY)
572 
573 /**
574  * iotlb_to_section:
575  * @cpu: CPU performing the access
576  * @index: TCG CPU IOTLB entry
577  *
578  * Given a TCG CPU IOTLB entry, return the MemoryRegionSection that
579  * it refers to. @index will have been initially created and returned
580  * by memory_region_section_get_iotlb().
581  */
582 struct MemoryRegionSection *iotlb_to_section(CPUState *cpu,
583                                              hwaddr index, MemTxAttrs attrs);
584 #endif
585 
586 #if defined(CONFIG_USER_ONLY)
587 void mmap_lock(void);
588 void mmap_unlock(void);
589 bool have_mmap_lock(void);
590 
591 /**
592  * get_page_addr_code() - user-mode version
593  * @env: CPUArchState
594  * @addr: guest virtual address of guest code
595  *
596  * Returns @addr.
597  */
598 static inline tb_page_addr_t get_page_addr_code(CPUArchState *env,
599                                                 target_ulong addr)
600 {
601     return addr;
602 }
603 
604 /**
605  * get_page_addr_code_hostp() - user-mode version
606  * @env: CPUArchState
607  * @addr: guest virtual address of guest code
608  *
609  * Returns @addr.
610  *
611  * If @hostp is non-NULL, sets *@hostp to the host address where @addr's content
612  * is kept.
613  */
614 static inline tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env,
615                                                       target_ulong addr,
616                                                       void **hostp)
617 {
618     if (hostp) {
619         *hostp = g2h_untagged(addr);
620     }
621     return addr;
622 }
623 #else
624 static inline void mmap_lock(void) {}
625 static inline void mmap_unlock(void) {}
626 
627 /**
628  * get_page_addr_code() - full-system version
629  * @env: CPUArchState
630  * @addr: guest virtual address of guest code
631  *
632  * If we cannot translate and execute from the entire RAM page, or if
633  * the region is not backed by RAM, returns -1. Otherwise, returns the
634  * ram_addr_t corresponding to the guest code at @addr.
635  *
636  * Note: this function can trigger an exception.
637  */
638 tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr);
639 
640 /**
641  * get_page_addr_code_hostp() - full-system version
642  * @env: CPUArchState
643  * @addr: guest virtual address of guest code
644  *
645  * See get_page_addr_code() (full-system version) for documentation on the
646  * return value.
647  *
648  * Sets *@hostp (when @hostp is non-NULL) as follows.
649  * If the return value is -1, sets *@hostp to NULL. Otherwise, sets *@hostp
650  * to the host address where @addr's content is kept.
651  *
652  * Note: this function can trigger an exception.
653  */
654 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr,
655                                         void **hostp);
656 
657 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length);
658 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr);
659 
660 MemoryRegionSection *
661 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
662                                   hwaddr *xlat, hwaddr *plen,
663                                   MemTxAttrs attrs, int *prot);
664 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
665                                        MemoryRegionSection *section);
666 #endif
667 
668 #endif
669