1 /* 2 * internal execution defines for qemu 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #ifndef _EXEC_ALL_H_ 21 #define _EXEC_ALL_H_ 22 23 #include "qemu-common.h" 24 25 /* allow to see translation results - the slowdown should be negligible, so we leave it */ 26 #define DEBUG_DISAS 27 28 /* Page tracking code uses ram addresses in system mode, and virtual 29 addresses in userspace mode. Define tb_page_addr_t to be an appropriate 30 type. */ 31 #if defined(CONFIG_USER_ONLY) 32 typedef abi_ulong tb_page_addr_t; 33 #else 34 typedef ram_addr_t tb_page_addr_t; 35 #endif 36 37 /* is_jmp field values */ 38 #define DISAS_NEXT 0 /* next instruction can be analyzed */ 39 #define DISAS_JUMP 1 /* only pc was modified dynamically */ 40 #define DISAS_UPDATE 2 /* cpu state was modified dynamically */ 41 #define DISAS_TB_JUMP 3 /* only pc was modified statically */ 42 43 struct TranslationBlock; 44 typedef struct TranslationBlock TranslationBlock; 45 46 /* XXX: make safe guess about sizes */ 47 #define MAX_OP_PER_INSTR 266 48 49 #if HOST_LONG_BITS == 32 50 #define MAX_OPC_PARAM_PER_ARG 2 51 #else 52 #define MAX_OPC_PARAM_PER_ARG 1 53 #endif 54 #define MAX_OPC_PARAM_IARGS 5 55 #define MAX_OPC_PARAM_OARGS 1 56 #define MAX_OPC_PARAM_ARGS (MAX_OPC_PARAM_IARGS + MAX_OPC_PARAM_OARGS) 57 58 /* A Call op needs up to 4 + 2N parameters on 32-bit archs, 59 * and up to 4 + N parameters on 64-bit archs 60 * (N = number of input arguments + output arguments). */ 61 #define MAX_OPC_PARAM (4 + (MAX_OPC_PARAM_PER_ARG * MAX_OPC_PARAM_ARGS)) 62 #define OPC_BUF_SIZE 640 63 #define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR) 64 65 /* Maximum size a TCG op can expand to. This is complicated because a 66 single op may require several host instructions and register reloads. 67 For now take a wild guess at 192 bytes, which should allow at least 68 a couple of fixup instructions per argument. */ 69 #define TCG_MAX_OP_SIZE 192 70 71 #define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * MAX_OPC_PARAM) 72 73 #include "qemu/log.h" 74 75 void gen_intermediate_code(CPUArchState *env, struct TranslationBlock *tb); 76 void gen_intermediate_code_pc(CPUArchState *env, struct TranslationBlock *tb); 77 void restore_state_to_opc(CPUArchState *env, struct TranslationBlock *tb, 78 int pc_pos); 79 80 void cpu_gen_init(void); 81 int cpu_gen_code(CPUArchState *env, struct TranslationBlock *tb, 82 int *gen_code_size_ptr); 83 bool cpu_restore_state(CPUState *cpu, uintptr_t searched_pc); 84 void page_size_init(void); 85 86 void QEMU_NORETURN cpu_resume_from_signal(CPUState *cpu, void *puc); 87 void QEMU_NORETURN cpu_io_recompile(CPUState *cpu, uintptr_t retaddr); 88 TranslationBlock *tb_gen_code(CPUState *cpu, 89 target_ulong pc, target_ulong cs_base, int flags, 90 int cflags); 91 void cpu_exec_init(CPUArchState *env); 92 void QEMU_NORETURN cpu_loop_exit(CPUState *cpu); 93 int page_unprotect(target_ulong address, uintptr_t pc, void *puc); 94 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end, 95 int is_cpu_write_access); 96 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end, 97 int is_cpu_write_access); 98 #if !defined(CONFIG_USER_ONLY) 99 void tcg_cpu_address_space_init(CPUState *cpu, AddressSpace *as); 100 /* cputlb.c */ 101 void tlb_flush_page(CPUState *cpu, target_ulong addr); 102 void tlb_flush(CPUState *cpu, int flush_global); 103 void tlb_set_page(CPUState *cpu, target_ulong vaddr, 104 hwaddr paddr, int prot, 105 int mmu_idx, target_ulong size); 106 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr); 107 #else 108 static inline void tlb_flush_page(CPUState *cpu, target_ulong addr) 109 { 110 } 111 112 static inline void tlb_flush(CPUState *cpu, int flush_global) 113 { 114 } 115 #endif 116 117 #define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */ 118 119 #define CODE_GEN_PHYS_HASH_BITS 15 120 #define CODE_GEN_PHYS_HASH_SIZE (1 << CODE_GEN_PHYS_HASH_BITS) 121 122 /* estimated block size for TB allocation */ 123 /* XXX: use a per code average code fragment size and modulate it 124 according to the host CPU */ 125 #if defined(CONFIG_SOFTMMU) 126 #define CODE_GEN_AVG_BLOCK_SIZE 128 127 #else 128 #define CODE_GEN_AVG_BLOCK_SIZE 64 129 #endif 130 131 #if defined(__arm__) || defined(_ARCH_PPC) \ 132 || defined(__x86_64__) || defined(__i386__) \ 133 || defined(__sparc__) || defined(__aarch64__) \ 134 || defined(CONFIG_TCG_INTERPRETER) 135 #define USE_DIRECT_JUMP 136 #endif 137 138 struct TranslationBlock { 139 target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */ 140 target_ulong cs_base; /* CS base for this block */ 141 uint64_t flags; /* flags defining in which context the code was generated */ 142 uint16_t size; /* size of target code for this block (1 <= 143 size <= TARGET_PAGE_SIZE) */ 144 uint16_t cflags; /* compile flags */ 145 #define CF_COUNT_MASK 0x7fff 146 #define CF_LAST_IO 0x8000 /* Last insn may be an IO access. */ 147 148 void *tc_ptr; /* pointer to the translated code */ 149 /* next matching tb for physical address. */ 150 struct TranslationBlock *phys_hash_next; 151 /* first and second physical page containing code. The lower bit 152 of the pointer tells the index in page_next[] */ 153 struct TranslationBlock *page_next[2]; 154 tb_page_addr_t page_addr[2]; 155 156 /* the following data are used to directly call another TB from 157 the code of this one. */ 158 uint16_t tb_next_offset[2]; /* offset of original jump target */ 159 #ifdef USE_DIRECT_JUMP 160 uint16_t tb_jmp_offset[2]; /* offset of jump instruction */ 161 #else 162 uintptr_t tb_next[2]; /* address of jump generated code */ 163 #endif 164 /* list of TBs jumping to this one. This is a circular list using 165 the two least significant bits of the pointers to tell what is 166 the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 = 167 jmp_first */ 168 struct TranslationBlock *jmp_next[2]; 169 struct TranslationBlock *jmp_first; 170 uint32_t icount; 171 }; 172 173 #include "exec/spinlock.h" 174 175 typedef struct TBContext TBContext; 176 177 struct TBContext { 178 179 TranslationBlock *tbs; 180 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE]; 181 int nb_tbs; 182 /* any access to the tbs or the page table must use this lock */ 183 spinlock_t tb_lock; 184 185 /* statistics */ 186 int tb_flush_count; 187 int tb_phys_invalidate_count; 188 189 int tb_invalidated_flag; 190 }; 191 192 static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc) 193 { 194 target_ulong tmp; 195 tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)); 196 return (tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK; 197 } 198 199 static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc) 200 { 201 target_ulong tmp; 202 tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)); 203 return (((tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK) 204 | (tmp & TB_JMP_ADDR_MASK)); 205 } 206 207 static inline unsigned int tb_phys_hash_func(tb_page_addr_t pc) 208 { 209 return (pc >> 2) & (CODE_GEN_PHYS_HASH_SIZE - 1); 210 } 211 212 void tb_free(TranslationBlock *tb); 213 void tb_flush(CPUArchState *env); 214 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr); 215 216 #if defined(USE_DIRECT_JUMP) 217 218 #if defined(CONFIG_TCG_INTERPRETER) 219 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr) 220 { 221 /* patch the branch destination */ 222 *(uint32_t *)jmp_addr = addr - (jmp_addr + 4); 223 /* no need to flush icache explicitly */ 224 } 225 #elif defined(_ARCH_PPC) 226 void ppc_tb_set_jmp_target(unsigned long jmp_addr, unsigned long addr); 227 #define tb_set_jmp_target1 ppc_tb_set_jmp_target 228 #elif defined(__i386__) || defined(__x86_64__) 229 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr) 230 { 231 /* patch the branch destination */ 232 stl_le_p((void*)jmp_addr, addr - (jmp_addr + 4)); 233 /* no need to flush icache explicitly */ 234 } 235 #elif defined(__aarch64__) 236 void aarch64_tb_set_jmp_target(uintptr_t jmp_addr, uintptr_t addr); 237 #define tb_set_jmp_target1 aarch64_tb_set_jmp_target 238 #elif defined(__arm__) 239 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr) 240 { 241 #if !QEMU_GNUC_PREREQ(4, 1) 242 register unsigned long _beg __asm ("a1"); 243 register unsigned long _end __asm ("a2"); 244 register unsigned long _flg __asm ("a3"); 245 #endif 246 247 /* we could use a ldr pc, [pc, #-4] kind of branch and avoid the flush */ 248 *(uint32_t *)jmp_addr = 249 (*(uint32_t *)jmp_addr & ~0xffffff) 250 | (((addr - (jmp_addr + 8)) >> 2) & 0xffffff); 251 252 #if QEMU_GNUC_PREREQ(4, 1) 253 __builtin___clear_cache((char *) jmp_addr, (char *) jmp_addr + 4); 254 #else 255 /* flush icache */ 256 _beg = jmp_addr; 257 _end = jmp_addr + 4; 258 _flg = 0; 259 __asm __volatile__ ("swi 0x9f0002" : : "r" (_beg), "r" (_end), "r" (_flg)); 260 #endif 261 } 262 #elif defined(__sparc__) 263 void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr); 264 #else 265 #error tb_set_jmp_target1 is missing 266 #endif 267 268 static inline void tb_set_jmp_target(TranslationBlock *tb, 269 int n, uintptr_t addr) 270 { 271 uint16_t offset = tb->tb_jmp_offset[n]; 272 tb_set_jmp_target1((uintptr_t)(tb->tc_ptr + offset), addr); 273 } 274 275 #else 276 277 /* set the jump target */ 278 static inline void tb_set_jmp_target(TranslationBlock *tb, 279 int n, uintptr_t addr) 280 { 281 tb->tb_next[n] = addr; 282 } 283 284 #endif 285 286 static inline void tb_add_jump(TranslationBlock *tb, int n, 287 TranslationBlock *tb_next) 288 { 289 /* NOTE: this test is only needed for thread safety */ 290 if (!tb->jmp_next[n]) { 291 /* patch the native jump address */ 292 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc_ptr); 293 294 /* add in TB jmp circular list */ 295 tb->jmp_next[n] = tb_next->jmp_first; 296 tb_next->jmp_first = (TranslationBlock *)((uintptr_t)(tb) | (n)); 297 } 298 } 299 300 /* GETRA is the true target of the return instruction that we'll execute, 301 defined here for simplicity of defining the follow-up macros. */ 302 #if defined(CONFIG_TCG_INTERPRETER) 303 extern uintptr_t tci_tb_ptr; 304 # define GETRA() tci_tb_ptr 305 #else 306 # define GETRA() \ 307 ((uintptr_t)__builtin_extract_return_addr(__builtin_return_address(0))) 308 #endif 309 310 /* The true return address will often point to a host insn that is part of 311 the next translated guest insn. Adjust the address backward to point to 312 the middle of the call insn. Subtracting one would do the job except for 313 several compressed mode architectures (arm, mips) which set the low bit 314 to indicate the compressed mode; subtracting two works around that. It 315 is also the case that there are no host isas that contain a call insn 316 smaller than 4 bytes, so we don't worry about special-casing this. */ 317 #if defined(CONFIG_TCG_INTERPRETER) 318 # define GETPC_ADJ 0 319 #else 320 # define GETPC_ADJ 2 321 #endif 322 323 #define GETPC() (GETRA() - GETPC_ADJ) 324 325 #if !defined(CONFIG_USER_ONLY) 326 327 void phys_mem_set_alloc(void *(*alloc)(size_t)); 328 329 struct MemoryRegion *iotlb_to_region(AddressSpace *as, hwaddr index); 330 bool io_mem_read(struct MemoryRegion *mr, hwaddr addr, 331 uint64_t *pvalue, unsigned size); 332 bool io_mem_write(struct MemoryRegion *mr, hwaddr addr, 333 uint64_t value, unsigned size); 334 335 void tlb_fill(CPUState *cpu, target_ulong addr, int is_write, int mmu_idx, 336 uintptr_t retaddr); 337 338 uint8_t helper_ldb_cmmu(CPUArchState *env, target_ulong addr, int mmu_idx); 339 uint16_t helper_ldw_cmmu(CPUArchState *env, target_ulong addr, int mmu_idx); 340 uint32_t helper_ldl_cmmu(CPUArchState *env, target_ulong addr, int mmu_idx); 341 uint64_t helper_ldq_cmmu(CPUArchState *env, target_ulong addr, int mmu_idx); 342 343 #define ACCESS_TYPE (NB_MMU_MODES + 1) 344 #define MEMSUFFIX _code 345 346 #define DATA_SIZE 1 347 #include "exec/softmmu_header.h" 348 349 #define DATA_SIZE 2 350 #include "exec/softmmu_header.h" 351 352 #define DATA_SIZE 4 353 #include "exec/softmmu_header.h" 354 355 #define DATA_SIZE 8 356 #include "exec/softmmu_header.h" 357 358 #undef ACCESS_TYPE 359 #undef MEMSUFFIX 360 361 #endif 362 363 #if defined(CONFIG_USER_ONLY) 364 static inline tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr) 365 { 366 return addr; 367 } 368 #else 369 /* cputlb.c */ 370 tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr); 371 #endif 372 373 typedef void (CPUDebugExcpHandler)(CPUArchState *env); 374 375 void cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler); 376 377 /* vl.c */ 378 extern int singlestep; 379 380 /* cpu-exec.c */ 381 extern volatile sig_atomic_t exit_request; 382 383 /** 384 * cpu_can_do_io: 385 * @cpu: The CPU for which to check IO. 386 * 387 * Deterministic execution requires that IO only be performed on the last 388 * instruction of a TB so that interrupts take effect immediately. 389 * 390 * Returns: %true if memory-mapped IO is safe, %false otherwise. 391 */ 392 static inline bool cpu_can_do_io(CPUState *cpu) 393 { 394 if (!use_icount) { 395 return true; 396 } 397 /* If not executing code then assume we are ok. */ 398 if (cpu->current_tb == NULL) { 399 return true; 400 } 401 return cpu->can_do_io != 0; 402 } 403 404 #endif 405