xref: /openbmc/qemu/include/exec/exec-all.h (revision 1e05197f)
1 /*
2  * internal execution defines for qemu
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef EXEC_ALL_H
21 #define EXEC_ALL_H
22 
23 #include "qemu-common.h"
24 #include "exec/tb-context.h"
25 #include "sysemu/cpus.h"
26 
27 /* allow to see translation results - the slowdown should be negligible, so we leave it */
28 #define DEBUG_DISAS
29 
30 /* Page tracking code uses ram addresses in system mode, and virtual
31    addresses in userspace mode.  Define tb_page_addr_t to be an appropriate
32    type.  */
33 #if defined(CONFIG_USER_ONLY)
34 typedef abi_ulong tb_page_addr_t;
35 #define TB_PAGE_ADDR_FMT TARGET_ABI_FMT_lx
36 #else
37 typedef ram_addr_t tb_page_addr_t;
38 #define TB_PAGE_ADDR_FMT RAM_ADDR_FMT
39 #endif
40 
41 #include "qemu/log.h"
42 
43 void gen_intermediate_code(CPUState *cpu, struct TranslationBlock *tb);
44 void restore_state_to_opc(CPUArchState *env, struct TranslationBlock *tb,
45                           target_ulong *data);
46 
47 void cpu_gen_init(void);
48 
49 /**
50  * cpu_restore_state:
51  * @cpu: the vCPU state is to be restore to
52  * @searched_pc: the host PC the fault occurred at
53  * @will_exit: true if the TB executed will be interrupted after some
54                cpu adjustments. Required for maintaining the correct
55                icount valus
56  * @return: true if state was restored, false otherwise
57  *
58  * Attempt to restore the state for a fault occurring in translated
59  * code. If the searched_pc is not in translated code no state is
60  * restored and the function returns false.
61  */
62 bool cpu_restore_state(CPUState *cpu, uintptr_t searched_pc, bool will_exit);
63 
64 void QEMU_NORETURN cpu_loop_exit_noexc(CPUState *cpu);
65 void QEMU_NORETURN cpu_io_recompile(CPUState *cpu, uintptr_t retaddr);
66 TranslationBlock *tb_gen_code(CPUState *cpu,
67                               target_ulong pc, target_ulong cs_base,
68                               uint32_t flags,
69                               int cflags);
70 
71 void QEMU_NORETURN cpu_loop_exit(CPUState *cpu);
72 void QEMU_NORETURN cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc);
73 void QEMU_NORETURN cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc);
74 
75 #if !defined(CONFIG_USER_ONLY)
76 void cpu_reloading_memory_map(void);
77 /**
78  * cpu_address_space_init:
79  * @cpu: CPU to add this address space to
80  * @asidx: integer index of this address space
81  * @prefix: prefix to be used as name of address space
82  * @mr: the root memory region of address space
83  *
84  * Add the specified address space to the CPU's cpu_ases list.
85  * The address space added with @asidx 0 is the one used for the
86  * convenience pointer cpu->as.
87  * The target-specific code which registers ASes is responsible
88  * for defining what semantics address space 0, 1, 2, etc have.
89  *
90  * Before the first call to this function, the caller must set
91  * cpu->num_ases to the total number of address spaces it needs
92  * to support.
93  *
94  * Note that with KVM only one address space is supported.
95  */
96 void cpu_address_space_init(CPUState *cpu, int asidx,
97                             const char *prefix, MemoryRegion *mr);
98 #endif
99 
100 #if !defined(CONFIG_USER_ONLY) && defined(CONFIG_TCG)
101 /* cputlb.c */
102 /**
103  * tlb_flush_page:
104  * @cpu: CPU whose TLB should be flushed
105  * @addr: virtual address of page to be flushed
106  *
107  * Flush one page from the TLB of the specified CPU, for all
108  * MMU indexes.
109  */
110 void tlb_flush_page(CPUState *cpu, target_ulong addr);
111 /**
112  * tlb_flush_page_all_cpus:
113  * @cpu: src CPU of the flush
114  * @addr: virtual address of page to be flushed
115  *
116  * Flush one page from the TLB of the specified CPU, for all
117  * MMU indexes.
118  */
119 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr);
120 /**
121  * tlb_flush_page_all_cpus_synced:
122  * @cpu: src CPU of the flush
123  * @addr: virtual address of page to be flushed
124  *
125  * Flush one page from the TLB of the specified CPU, for all MMU
126  * indexes like tlb_flush_page_all_cpus except the source vCPUs work
127  * is scheduled as safe work meaning all flushes will be complete once
128  * the source vCPUs safe work is complete. This will depend on when
129  * the guests translation ends the TB.
130  */
131 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr);
132 /**
133  * tlb_flush:
134  * @cpu: CPU whose TLB should be flushed
135  *
136  * Flush the entire TLB for the specified CPU. Most CPU architectures
137  * allow the implementation to drop entries from the TLB at any time
138  * so this is generally safe. If more selective flushing is required
139  * use one of the other functions for efficiency.
140  */
141 void tlb_flush(CPUState *cpu);
142 /**
143  * tlb_flush_all_cpus:
144  * @cpu: src CPU of the flush
145  */
146 void tlb_flush_all_cpus(CPUState *src_cpu);
147 /**
148  * tlb_flush_all_cpus_synced:
149  * @cpu: src CPU of the flush
150  *
151  * Like tlb_flush_all_cpus except this except the source vCPUs work is
152  * scheduled as safe work meaning all flushes will be complete once
153  * the source vCPUs safe work is complete. This will depend on when
154  * the guests translation ends the TB.
155  */
156 void tlb_flush_all_cpus_synced(CPUState *src_cpu);
157 /**
158  * tlb_flush_page_by_mmuidx:
159  * @cpu: CPU whose TLB should be flushed
160  * @addr: virtual address of page to be flushed
161  * @idxmap: bitmap of MMU indexes to flush
162  *
163  * Flush one page from the TLB of the specified CPU, for the specified
164  * MMU indexes.
165  */
166 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr,
167                               uint16_t idxmap);
168 /**
169  * tlb_flush_page_by_mmuidx_all_cpus:
170  * @cpu: Originating CPU of the flush
171  * @addr: virtual address of page to be flushed
172  * @idxmap: bitmap of MMU indexes to flush
173  *
174  * Flush one page from the TLB of all CPUs, for the specified
175  * MMU indexes.
176  */
177 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr,
178                                        uint16_t idxmap);
179 /**
180  * tlb_flush_page_by_mmuidx_all_cpus_synced:
181  * @cpu: Originating CPU of the flush
182  * @addr: virtual address of page to be flushed
183  * @idxmap: bitmap of MMU indexes to flush
184  *
185  * Flush one page from the TLB of all CPUs, for the specified MMU
186  * indexes like tlb_flush_page_by_mmuidx_all_cpus except the source
187  * vCPUs work is scheduled as safe work meaning all flushes will be
188  * complete once  the source vCPUs safe work is complete. This will
189  * depend on when the guests translation ends the TB.
190  */
191 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu, target_ulong addr,
192                                               uint16_t idxmap);
193 /**
194  * tlb_flush_by_mmuidx:
195  * @cpu: CPU whose TLB should be flushed
196  * @wait: If true ensure synchronisation by exiting the cpu_loop
197  * @idxmap: bitmap of MMU indexes to flush
198  *
199  * Flush all entries from the TLB of the specified CPU, for the specified
200  * MMU indexes.
201  */
202 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap);
203 /**
204  * tlb_flush_by_mmuidx_all_cpus:
205  * @cpu: Originating CPU of the flush
206  * @idxmap: bitmap of MMU indexes to flush
207  *
208  * Flush all entries from all TLBs of all CPUs, for the specified
209  * MMU indexes.
210  */
211 void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap);
212 /**
213  * tlb_flush_by_mmuidx_all_cpus_synced:
214  * @cpu: Originating CPU of the flush
215  * @idxmap: bitmap of MMU indexes to flush
216  *
217  * Flush all entries from all TLBs of all CPUs, for the specified
218  * MMU indexes like tlb_flush_by_mmuidx_all_cpus except except the source
219  * vCPUs work is scheduled as safe work meaning all flushes will be
220  * complete once  the source vCPUs safe work is complete. This will
221  * depend on when the guests translation ends the TB.
222  */
223 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu, uint16_t idxmap);
224 /**
225  * tlb_set_page_with_attrs:
226  * @cpu: CPU to add this TLB entry for
227  * @vaddr: virtual address of page to add entry for
228  * @paddr: physical address of the page
229  * @attrs: memory transaction attributes
230  * @prot: access permissions (PAGE_READ/PAGE_WRITE/PAGE_EXEC bits)
231  * @mmu_idx: MMU index to insert TLB entry for
232  * @size: size of the page in bytes
233  *
234  * Add an entry to this CPU's TLB (a mapping from virtual address
235  * @vaddr to physical address @paddr) with the specified memory
236  * transaction attributes. This is generally called by the target CPU
237  * specific code after it has been called through the tlb_fill()
238  * entry point and performed a successful page table walk to find
239  * the physical address and attributes for the virtual address
240  * which provoked the TLB miss.
241  *
242  * At most one entry for a given virtual address is permitted. Only a
243  * single TARGET_PAGE_SIZE region is mapped; the supplied @size is only
244  * used by tlb_flush_page.
245  */
246 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
247                              hwaddr paddr, MemTxAttrs attrs,
248                              int prot, int mmu_idx, target_ulong size);
249 /* tlb_set_page:
250  *
251  * This function is equivalent to calling tlb_set_page_with_attrs()
252  * with an @attrs argument of MEMTXATTRS_UNSPECIFIED. It's provided
253  * as a convenience for CPUs which don't use memory transaction attributes.
254  */
255 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
256                   hwaddr paddr, int prot,
257                   int mmu_idx, target_ulong size);
258 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs);
259 void probe_write(CPUArchState *env, target_ulong addr, int size, int mmu_idx,
260                  uintptr_t retaddr);
261 #else
262 static inline void tlb_flush_page(CPUState *cpu, target_ulong addr)
263 {
264 }
265 static inline void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
266 {
267 }
268 static inline void tlb_flush_page_all_cpus_synced(CPUState *src,
269                                                   target_ulong addr)
270 {
271 }
272 static inline void tlb_flush(CPUState *cpu)
273 {
274 }
275 static inline void tlb_flush_all_cpus(CPUState *src_cpu)
276 {
277 }
278 static inline void tlb_flush_all_cpus_synced(CPUState *src_cpu)
279 {
280 }
281 static inline void tlb_flush_page_by_mmuidx(CPUState *cpu,
282                                             target_ulong addr, uint16_t idxmap)
283 {
284 }
285 
286 static inline void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
287 {
288 }
289 static inline void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu,
290                                                      target_ulong addr,
291                                                      uint16_t idxmap)
292 {
293 }
294 static inline void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu,
295                                                             target_ulong addr,
296                                                             uint16_t idxmap)
297 {
298 }
299 static inline void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap)
300 {
301 }
302 static inline void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu,
303                                                        uint16_t idxmap)
304 {
305 }
306 static inline void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr,
307                                            MemTxAttrs attrs)
308 {
309 }
310 #endif
311 
312 #define CODE_GEN_ALIGN           16 /* must be >= of the size of a icache line */
313 
314 /* Estimated block size for TB allocation.  */
315 /* ??? The following is based on a 2015 survey of x86_64 host output.
316    Better would seem to be some sort of dynamically sized TB array,
317    adapting to the block sizes actually being produced.  */
318 #if defined(CONFIG_SOFTMMU)
319 #define CODE_GEN_AVG_BLOCK_SIZE 400
320 #else
321 #define CODE_GEN_AVG_BLOCK_SIZE 150
322 #endif
323 
324 /*
325  * Translation Cache-related fields of a TB.
326  * This struct exists just for convenience; we keep track of TB's in a binary
327  * search tree, and the only fields needed to compare TB's in the tree are
328  * @ptr and @size.
329  * Note: the address of search data can be obtained by adding @size to @ptr.
330  */
331 struct tb_tc {
332     void *ptr;    /* pointer to the translated code */
333     size_t size;
334 };
335 
336 struct TranslationBlock {
337     target_ulong pc;   /* simulated PC corresponding to this block (EIP + CS base) */
338     target_ulong cs_base; /* CS base for this block */
339     uint32_t flags; /* flags defining in which context the code was generated */
340     uint16_t size;      /* size of target code for this block (1 <=
341                            size <= TARGET_PAGE_SIZE) */
342     uint16_t icount;
343     uint32_t cflags;    /* compile flags */
344 #define CF_COUNT_MASK  0x00007fff
345 #define CF_LAST_IO     0x00008000 /* Last insn may be an IO access.  */
346 #define CF_NOCACHE     0x00010000 /* To be freed after execution */
347 #define CF_USE_ICOUNT  0x00020000
348 #define CF_INVALID     0x00040000 /* TB is stale. Setters need tb_lock */
349 #define CF_PARALLEL    0x00080000 /* Generate code for a parallel context */
350 /* cflags' mask for hashing/comparison */
351 #define CF_HASH_MASK   \
352     (CF_COUNT_MASK | CF_LAST_IO | CF_USE_ICOUNT | CF_PARALLEL)
353 
354     /* Per-vCPU dynamic tracing state used to generate this TB */
355     uint32_t trace_vcpu_dstate;
356 
357     struct tb_tc tc;
358 
359     /* original tb when cflags has CF_NOCACHE */
360     struct TranslationBlock *orig_tb;
361     /* first and second physical page containing code. The lower bit
362        of the pointer tells the index in page_next[] */
363     uintptr_t page_next[2];
364     tb_page_addr_t page_addr[2];
365 
366     /* The following data are used to directly call another TB from
367      * the code of this one. This can be done either by emitting direct or
368      * indirect native jump instructions. These jumps are reset so that the TB
369      * just continues its execution. The TB can be linked to another one by
370      * setting one of the jump targets (or patching the jump instruction). Only
371      * two of such jumps are supported.
372      */
373     uint16_t jmp_reset_offset[2]; /* offset of original jump target */
374 #define TB_JMP_RESET_OFFSET_INVALID 0xffff /* indicates no jump generated */
375     uintptr_t jmp_target_arg[2];  /* target address or offset */
376 
377     /* Each TB has an associated circular list of TBs jumping to this one.
378      * jmp_list_first points to the first TB jumping to this one.
379      * jmp_list_next is used to point to the next TB in a list.
380      * Since each TB can have two jumps, it can participate in two lists.
381      * jmp_list_first and jmp_list_next are 4-byte aligned pointers to a
382      * TranslationBlock structure, but the two least significant bits of
383      * them are used to encode which data field of the pointed TB should
384      * be used to traverse the list further from that TB:
385      * 0 => jmp_list_next[0], 1 => jmp_list_next[1], 2 => jmp_list_first.
386      * In other words, 0/1 tells which jump is used in the pointed TB,
387      * and 2 means that this is a pointer back to the target TB of this list.
388      */
389     uintptr_t jmp_list_next[2];
390     uintptr_t jmp_list_first;
391 };
392 
393 extern bool parallel_cpus;
394 
395 /* Hide the atomic_read to make code a little easier on the eyes */
396 static inline uint32_t tb_cflags(const TranslationBlock *tb)
397 {
398     return atomic_read(&tb->cflags);
399 }
400 
401 /* current cflags for hashing/comparison */
402 static inline uint32_t curr_cflags(void)
403 {
404     return (parallel_cpus ? CF_PARALLEL : 0)
405          | (use_icount ? CF_USE_ICOUNT : 0);
406 }
407 
408 void tb_flush(CPUState *cpu);
409 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr);
410 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
411                                    target_ulong cs_base, uint32_t flags,
412                                    uint32_t cf_mask);
413 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr);
414 
415 /* GETPC is the true target of the return instruction that we'll execute.  */
416 #if defined(CONFIG_TCG_INTERPRETER)
417 extern uintptr_t tci_tb_ptr;
418 # define GETPC() tci_tb_ptr
419 #else
420 # define GETPC() \
421     ((uintptr_t)__builtin_extract_return_addr(__builtin_return_address(0)))
422 #endif
423 
424 /* The true return address will often point to a host insn that is part of
425    the next translated guest insn.  Adjust the address backward to point to
426    the middle of the call insn.  Subtracting one would do the job except for
427    several compressed mode architectures (arm, mips) which set the low bit
428    to indicate the compressed mode; subtracting two works around that.  It
429    is also the case that there are no host isas that contain a call insn
430    smaller than 4 bytes, so we don't worry about special-casing this.  */
431 #define GETPC_ADJ   2
432 
433 void tb_lock(void);
434 void tb_unlock(void);
435 void tb_lock_reset(void);
436 
437 #if !defined(CONFIG_USER_ONLY)
438 
439 /**
440  * iotlb_to_section:
441  * @cpu: CPU performing the access
442  * @index: TCG CPU IOTLB entry
443  *
444  * Given a TCG CPU IOTLB entry, return the MemoryRegionSection that
445  * it refers to. @index will have been initially created and returned
446  * by memory_region_section_get_iotlb().
447  */
448 struct MemoryRegionSection *iotlb_to_section(CPUState *cpu,
449                                              hwaddr index, MemTxAttrs attrs);
450 
451 void tlb_fill(CPUState *cpu, target_ulong addr, int size,
452               MMUAccessType access_type, int mmu_idx, uintptr_t retaddr);
453 
454 #endif
455 
456 #if defined(CONFIG_USER_ONLY)
457 void mmap_lock(void);
458 void mmap_unlock(void);
459 bool have_mmap_lock(void);
460 
461 static inline tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
462 {
463     return addr;
464 }
465 #else
466 static inline void mmap_lock(void) {}
467 static inline void mmap_unlock(void) {}
468 
469 /* cputlb.c */
470 tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr);
471 
472 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length);
473 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr);
474 
475 /* exec.c */
476 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr);
477 
478 MemoryRegionSection *
479 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
480                                   hwaddr *xlat, hwaddr *plen,
481                                   MemTxAttrs attrs, int *prot);
482 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
483                                        MemoryRegionSection *section,
484                                        target_ulong vaddr,
485                                        hwaddr paddr, hwaddr xlat,
486                                        int prot,
487                                        target_ulong *address);
488 bool memory_region_is_unassigned(MemoryRegion *mr);
489 
490 #endif
491 
492 /* vl.c */
493 extern int singlestep;
494 
495 #endif
496