1 /* 2 * common defines for all CPUs 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #ifndef CPU_DEFS_H 20 #define CPU_DEFS_H 21 22 #ifndef NEED_CPU_H 23 #error cpu.h included from common code 24 #endif 25 26 #include "qemu/host-utils.h" 27 #include "qemu/thread.h" 28 #ifdef CONFIG_TCG 29 #include "tcg-target.h" 30 #endif 31 #ifndef CONFIG_USER_ONLY 32 #include "exec/hwaddr.h" 33 #endif 34 #include "exec/memattrs.h" 35 #include "hw/core/cpu.h" 36 37 #include "cpu-param.h" 38 39 #ifndef TARGET_LONG_BITS 40 # error TARGET_LONG_BITS must be defined in cpu-param.h 41 #endif 42 #ifndef NB_MMU_MODES 43 # error NB_MMU_MODES must be defined in cpu-param.h 44 #endif 45 #ifndef TARGET_PHYS_ADDR_SPACE_BITS 46 # error TARGET_PHYS_ADDR_SPACE_BITS must be defined in cpu-param.h 47 #endif 48 #ifndef TARGET_VIRT_ADDR_SPACE_BITS 49 # error TARGET_VIRT_ADDR_SPACE_BITS must be defined in cpu-param.h 50 #endif 51 #ifndef TARGET_PAGE_BITS 52 # ifdef TARGET_PAGE_BITS_VARY 53 # ifndef TARGET_PAGE_BITS_MIN 54 # error TARGET_PAGE_BITS_MIN must be defined in cpu-param.h 55 # endif 56 # else 57 # error TARGET_PAGE_BITS must be defined in cpu-param.h 58 # endif 59 #endif 60 61 #define TARGET_LONG_SIZE (TARGET_LONG_BITS / 8) 62 63 /* target_ulong is the type of a virtual address */ 64 #if TARGET_LONG_SIZE == 4 65 typedef int32_t target_long; 66 typedef uint32_t target_ulong; 67 #define TARGET_FMT_lx "%08x" 68 #define TARGET_FMT_ld "%d" 69 #define TARGET_FMT_lu "%u" 70 #elif TARGET_LONG_SIZE == 8 71 typedef int64_t target_long; 72 typedef uint64_t target_ulong; 73 #define TARGET_FMT_lx "%016" PRIx64 74 #define TARGET_FMT_ld "%" PRId64 75 #define TARGET_FMT_lu "%" PRIu64 76 #else 77 #error TARGET_LONG_SIZE undefined 78 #endif 79 80 #if !defined(CONFIG_USER_ONLY) && defined(CONFIG_TCG) 81 82 /* use a fully associative victim tlb of 8 entries */ 83 #define CPU_VTLB_SIZE 8 84 85 #if HOST_LONG_BITS == 32 && TARGET_LONG_BITS == 32 86 #define CPU_TLB_ENTRY_BITS 4 87 #else 88 #define CPU_TLB_ENTRY_BITS 5 89 #endif 90 91 #define CPU_TLB_DYN_MIN_BITS 6 92 #define CPU_TLB_DYN_DEFAULT_BITS 8 93 94 # if HOST_LONG_BITS == 32 95 /* Make sure we do not require a double-word shift for the TLB load */ 96 # define CPU_TLB_DYN_MAX_BITS (32 - TARGET_PAGE_BITS) 97 # else /* HOST_LONG_BITS == 64 */ 98 /* 99 * Assuming TARGET_PAGE_BITS==12, with 2**22 entries we can cover 2**(22+12) == 100 * 2**34 == 16G of address space. This is roughly what one would expect a 101 * TLB to cover in a modern (as of 2018) x86_64 CPU. For instance, Intel 102 * Skylake's Level-2 STLB has 16 1G entries. 103 * Also, make sure we do not size the TLB past the guest's address space. 104 */ 105 # ifdef TARGET_PAGE_BITS_VARY 106 # define CPU_TLB_DYN_MAX_BITS \ 107 MIN(22, TARGET_VIRT_ADDR_SPACE_BITS - TARGET_PAGE_BITS) 108 # else 109 # define CPU_TLB_DYN_MAX_BITS \ 110 MIN_CONST(22, TARGET_VIRT_ADDR_SPACE_BITS - TARGET_PAGE_BITS) 111 # endif 112 # endif 113 114 typedef struct CPUTLBEntry { 115 /* bit TARGET_LONG_BITS to TARGET_PAGE_BITS : virtual address 116 bit TARGET_PAGE_BITS-1..4 : Nonzero for accesses that should not 117 go directly to ram. 118 bit 3 : indicates that the entry is invalid 119 bit 2..0 : zero 120 */ 121 union { 122 struct { 123 target_ulong addr_read; 124 target_ulong addr_write; 125 target_ulong addr_code; 126 /* Addend to virtual address to get host address. IO accesses 127 use the corresponding iotlb value. */ 128 uintptr_t addend; 129 }; 130 /* padding to get a power of two size */ 131 uint8_t dummy[1 << CPU_TLB_ENTRY_BITS]; 132 }; 133 } CPUTLBEntry; 134 135 QEMU_BUILD_BUG_ON(sizeof(CPUTLBEntry) != (1 << CPU_TLB_ENTRY_BITS)); 136 137 /* The IOTLB is not accessed directly inline by generated TCG code, 138 * so the CPUIOTLBEntry layout is not as critical as that of the 139 * CPUTLBEntry. (This is also why we don't want to combine the two 140 * structs into one.) 141 */ 142 typedef struct CPUIOTLBEntry { 143 /* 144 * @addr contains: 145 * - in the lower TARGET_PAGE_BITS, a physical section number 146 * - with the lower TARGET_PAGE_BITS masked off, an offset which 147 * must be added to the virtual address to obtain: 148 * + the ram_addr_t of the target RAM (if the physical section 149 * number is PHYS_SECTION_NOTDIRTY or PHYS_SECTION_ROM) 150 * + the offset within the target MemoryRegion (otherwise) 151 */ 152 hwaddr addr; 153 MemTxAttrs attrs; 154 } CPUIOTLBEntry; 155 156 /* 157 * Data elements that are per MMU mode, minus the bits accessed by 158 * the TCG fast path. 159 */ 160 typedef struct CPUTLBDesc { 161 /* 162 * Describe a region covering all of the large pages allocated 163 * into the tlb. When any page within this region is flushed, 164 * we must flush the entire tlb. The region is matched if 165 * (addr & large_page_mask) == large_page_addr. 166 */ 167 target_ulong large_page_addr; 168 target_ulong large_page_mask; 169 /* host time (in ns) at the beginning of the time window */ 170 int64_t window_begin_ns; 171 /* maximum number of entries observed in the window */ 172 size_t window_max_entries; 173 size_t n_used_entries; 174 /* The next index to use in the tlb victim table. */ 175 size_t vindex; 176 /* The tlb victim table, in two parts. */ 177 CPUTLBEntry vtable[CPU_VTLB_SIZE]; 178 CPUIOTLBEntry viotlb[CPU_VTLB_SIZE]; 179 /* The iotlb. */ 180 CPUIOTLBEntry *iotlb; 181 } CPUTLBDesc; 182 183 /* 184 * Data elements that are per MMU mode, accessed by the fast path. 185 * The structure is aligned to aid loading the pair with one insn. 186 */ 187 typedef struct CPUTLBDescFast { 188 /* Contains (n_entries - 1) << CPU_TLB_ENTRY_BITS */ 189 uintptr_t mask; 190 /* The array of tlb entries itself. */ 191 CPUTLBEntry *table; 192 } CPUTLBDescFast QEMU_ALIGNED(2 * sizeof(void *)); 193 194 /* 195 * Data elements that are shared between all MMU modes. 196 */ 197 typedef struct CPUTLBCommon { 198 /* Serialize updates to f.table and d.vtable, and others as noted. */ 199 QemuSpin lock; 200 /* 201 * Within dirty, for each bit N, modifications have been made to 202 * mmu_idx N since the last time that mmu_idx was flushed. 203 * Protected by tlb_c.lock. 204 */ 205 uint16_t dirty; 206 /* 207 * Statistics. These are not lock protected, but are read and 208 * written atomically. This allows the monitor to print a snapshot 209 * of the stats without interfering with the cpu. 210 */ 211 size_t full_flush_count; 212 size_t part_flush_count; 213 size_t elide_flush_count; 214 } CPUTLBCommon; 215 216 /* 217 * The entire softmmu tlb, for all MMU modes. 218 * The meaning of each of the MMU modes is defined in the target code. 219 * Since this is placed within CPUNegativeOffsetState, the smallest 220 * negative offsets are at the end of the struct. 221 */ 222 223 typedef struct CPUTLB { 224 CPUTLBCommon c; 225 CPUTLBDesc d[NB_MMU_MODES]; 226 CPUTLBDescFast f[NB_MMU_MODES]; 227 } CPUTLB; 228 229 /* This will be used by TCG backends to compute offsets. */ 230 #define TLB_MASK_TABLE_OFS(IDX) \ 231 ((int)offsetof(ArchCPU, neg.tlb.f[IDX]) - (int)offsetof(ArchCPU, env)) 232 233 #else 234 235 typedef struct CPUTLB { } CPUTLB; 236 237 #endif /* !CONFIG_USER_ONLY && CONFIG_TCG */ 238 239 /* 240 * This structure must be placed in ArchCPU immediately 241 * before CPUArchState, as a field named "neg". 242 */ 243 typedef struct CPUNegativeOffsetState { 244 CPUTLB tlb; 245 IcountDecr icount_decr; 246 } CPUNegativeOffsetState; 247 248 #endif 249