xref: /openbmc/qemu/include/exec/cpu-common.h (revision f7160f32)
1 #ifndef CPU_COMMON_H
2 #define CPU_COMMON_H
3 
4 /* CPU interfaces that are target independent.  */
5 
6 #ifndef CONFIG_USER_ONLY
7 #include "exec/hwaddr.h"
8 #endif
9 
10 /* The CPU list lock nests outside page_(un)lock or mmap_(un)lock */
11 void qemu_init_cpu_list(void);
12 void cpu_list_lock(void);
13 void cpu_list_unlock(void);
14 
15 void tcg_flush_softmmu_tlb(CPUState *cs);
16 
17 #if !defined(CONFIG_USER_ONLY)
18 
19 enum device_endian {
20     DEVICE_NATIVE_ENDIAN,
21     DEVICE_BIG_ENDIAN,
22     DEVICE_LITTLE_ENDIAN,
23 };
24 
25 #if defined(HOST_WORDS_BIGENDIAN)
26 #define DEVICE_HOST_ENDIAN DEVICE_BIG_ENDIAN
27 #else
28 #define DEVICE_HOST_ENDIAN DEVICE_LITTLE_ENDIAN
29 #endif
30 
31 /* address in the RAM (different from a physical address) */
32 #if defined(CONFIG_XEN_BACKEND)
33 typedef uint64_t ram_addr_t;
34 #  define RAM_ADDR_MAX UINT64_MAX
35 #  define RAM_ADDR_FMT "%" PRIx64
36 #else
37 typedef uintptr_t ram_addr_t;
38 #  define RAM_ADDR_MAX UINTPTR_MAX
39 #  define RAM_ADDR_FMT "%" PRIxPTR
40 #endif
41 
42 extern ram_addr_t ram_size;
43 
44 /* memory API */
45 
46 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length);
47 /* This should not be used by devices.  */
48 ram_addr_t qemu_ram_addr_from_host(void *ptr);
49 RAMBlock *qemu_ram_block_by_name(const char *name);
50 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
51                                    ram_addr_t *offset);
52 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host);
53 void qemu_ram_set_idstr(RAMBlock *block, const char *name, DeviceState *dev);
54 void qemu_ram_unset_idstr(RAMBlock *block);
55 const char *qemu_ram_get_idstr(RAMBlock *rb);
56 void *qemu_ram_get_host_addr(RAMBlock *rb);
57 ram_addr_t qemu_ram_get_offset(RAMBlock *rb);
58 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb);
59 bool qemu_ram_is_shared(RAMBlock *rb);
60 bool qemu_ram_is_uf_zeroable(RAMBlock *rb);
61 void qemu_ram_set_uf_zeroable(RAMBlock *rb);
62 bool qemu_ram_is_migratable(RAMBlock *rb);
63 void qemu_ram_set_migratable(RAMBlock *rb);
64 void qemu_ram_unset_migratable(RAMBlock *rb);
65 
66 size_t qemu_ram_pagesize(RAMBlock *block);
67 size_t qemu_ram_pagesize_largest(void);
68 
69 void cpu_physical_memory_rw(hwaddr addr, void *buf,
70                             hwaddr len, bool is_write);
71 static inline void cpu_physical_memory_read(hwaddr addr,
72                                             void *buf, hwaddr len)
73 {
74     cpu_physical_memory_rw(addr, buf, len, false);
75 }
76 static inline void cpu_physical_memory_write(hwaddr addr,
77                                              const void *buf, hwaddr len)
78 {
79     cpu_physical_memory_rw(addr, (void *)buf, len, true);
80 }
81 void *cpu_physical_memory_map(hwaddr addr,
82                               hwaddr *plen,
83                               bool is_write);
84 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
85                                bool is_write, hwaddr access_len);
86 void cpu_register_map_client(QEMUBH *bh);
87 void cpu_unregister_map_client(QEMUBH *bh);
88 
89 bool cpu_physical_memory_is_io(hwaddr phys_addr);
90 
91 /* Coalesced MMIO regions are areas where write operations can be reordered.
92  * This usually implies that write operations are side-effect free.  This allows
93  * batching which can make a major impact on performance when using
94  * virtualization.
95  */
96 void qemu_flush_coalesced_mmio_buffer(void);
97 
98 void cpu_flush_icache_range(hwaddr start, hwaddr len);
99 
100 typedef int (RAMBlockIterFunc)(RAMBlock *rb, void *opaque);
101 
102 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque);
103 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length);
104 
105 #endif
106 
107 #endif /* CPU_COMMON_H */
108