1 #ifndef CPU_COMMON_H 2 #define CPU_COMMON_H 3 4 /* CPU interfaces that are target independent. */ 5 6 #ifndef CONFIG_USER_ONLY 7 #include "exec/hwaddr.h" 8 #endif 9 10 #define EXCP_INTERRUPT 0x10000 /* async interruption */ 11 #define EXCP_HLT 0x10001 /* hlt instruction reached */ 12 #define EXCP_DEBUG 0x10002 /* cpu stopped after a breakpoint or singlestep */ 13 #define EXCP_HALTED 0x10003 /* cpu is halted (waiting for external event) */ 14 #define EXCP_YIELD 0x10004 /* cpu wants to yield timeslice to another */ 15 #define EXCP_ATOMIC 0x10005 /* stop-the-world and emulate atomic */ 16 17 /** 18 * vaddr: 19 * Type wide enough to contain any #target_ulong virtual address. 20 */ 21 typedef uint64_t vaddr; 22 #define VADDR_PRId PRId64 23 #define VADDR_PRIu PRIu64 24 #define VADDR_PRIo PRIo64 25 #define VADDR_PRIx PRIx64 26 #define VADDR_PRIX PRIX64 27 #define VADDR_MAX UINT64_MAX 28 29 void cpu_exec_init_all(void); 30 void cpu_exec_step_atomic(CPUState *cpu); 31 32 /* Using intptr_t ensures that qemu_*_page_mask is sign-extended even 33 * when intptr_t is 32-bit and we are aligning a long long. 34 */ 35 extern uintptr_t qemu_host_page_size; 36 extern intptr_t qemu_host_page_mask; 37 38 #define HOST_PAGE_ALIGN(addr) ROUND_UP((addr), qemu_host_page_size) 39 #define REAL_HOST_PAGE_ALIGN(addr) ROUND_UP((addr), qemu_real_host_page_size()) 40 41 /* The CPU list lock nests outside page_(un)lock or mmap_(un)lock */ 42 extern QemuMutex qemu_cpu_list_lock; 43 void qemu_init_cpu_list(void); 44 void cpu_list_lock(void); 45 void cpu_list_unlock(void); 46 unsigned int cpu_list_generation_id_get(void); 47 48 void tcg_iommu_init_notifier_list(CPUState *cpu); 49 void tcg_iommu_free_notifier_list(CPUState *cpu); 50 51 #if !defined(CONFIG_USER_ONLY) 52 53 enum device_endian { 54 DEVICE_NATIVE_ENDIAN, 55 DEVICE_BIG_ENDIAN, 56 DEVICE_LITTLE_ENDIAN, 57 }; 58 59 #if HOST_BIG_ENDIAN 60 #define DEVICE_HOST_ENDIAN DEVICE_BIG_ENDIAN 61 #else 62 #define DEVICE_HOST_ENDIAN DEVICE_LITTLE_ENDIAN 63 #endif 64 65 /* address in the RAM (different from a physical address) */ 66 #if defined(CONFIG_XEN_BACKEND) 67 typedef uint64_t ram_addr_t; 68 # define RAM_ADDR_MAX UINT64_MAX 69 # define RAM_ADDR_FMT "%" PRIx64 70 #else 71 typedef uintptr_t ram_addr_t; 72 # define RAM_ADDR_MAX UINTPTR_MAX 73 # define RAM_ADDR_FMT "%" PRIxPTR 74 #endif 75 76 /* memory API */ 77 78 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length); 79 /* This should not be used by devices. */ 80 ram_addr_t qemu_ram_addr_from_host(void *ptr); 81 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr); 82 RAMBlock *qemu_ram_block_by_name(const char *name); 83 84 /* 85 * Translates a host ptr back to a RAMBlock and an offset in that RAMBlock. 86 * 87 * @ptr: The host pointer to translate. 88 * @round_offset: Whether to round the result offset down to a target page 89 * @offset: Will be set to the offset within the returned RAMBlock. 90 * 91 * Returns: RAMBlock (or NULL if not found) 92 * 93 * By the time this function returns, the returned pointer is not protected 94 * by RCU anymore. If the caller is not within an RCU critical section and 95 * does not hold the BQL, it must have other means of protecting the 96 * pointer, such as a reference to the memory region that owns the RAMBlock. 97 */ 98 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, 99 ram_addr_t *offset); 100 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host); 101 void qemu_ram_set_idstr(RAMBlock *block, const char *name, DeviceState *dev); 102 void qemu_ram_unset_idstr(RAMBlock *block); 103 const char *qemu_ram_get_idstr(RAMBlock *rb); 104 void *qemu_ram_get_host_addr(RAMBlock *rb); 105 ram_addr_t qemu_ram_get_offset(RAMBlock *rb); 106 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb); 107 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb); 108 bool qemu_ram_is_shared(RAMBlock *rb); 109 bool qemu_ram_is_noreserve(RAMBlock *rb); 110 bool qemu_ram_is_uf_zeroable(RAMBlock *rb); 111 void qemu_ram_set_uf_zeroable(RAMBlock *rb); 112 bool qemu_ram_is_migratable(RAMBlock *rb); 113 void qemu_ram_set_migratable(RAMBlock *rb); 114 void qemu_ram_unset_migratable(RAMBlock *rb); 115 bool qemu_ram_is_named_file(RAMBlock *rb); 116 int qemu_ram_get_fd(RAMBlock *rb); 117 118 size_t qemu_ram_pagesize(RAMBlock *block); 119 size_t qemu_ram_pagesize_largest(void); 120 121 /** 122 * cpu_address_space_init: 123 * @cpu: CPU to add this address space to 124 * @asidx: integer index of this address space 125 * @prefix: prefix to be used as name of address space 126 * @mr: the root memory region of address space 127 * 128 * Add the specified address space to the CPU's cpu_ases list. 129 * The address space added with @asidx 0 is the one used for the 130 * convenience pointer cpu->as. 131 * The target-specific code which registers ASes is responsible 132 * for defining what semantics address space 0, 1, 2, etc have. 133 * 134 * Before the first call to this function, the caller must set 135 * cpu->num_ases to the total number of address spaces it needs 136 * to support. 137 * 138 * Note that with KVM only one address space is supported. 139 */ 140 void cpu_address_space_init(CPUState *cpu, int asidx, 141 const char *prefix, MemoryRegion *mr); 142 143 void cpu_physical_memory_rw(hwaddr addr, void *buf, 144 hwaddr len, bool is_write); 145 static inline void cpu_physical_memory_read(hwaddr addr, 146 void *buf, hwaddr len) 147 { 148 cpu_physical_memory_rw(addr, buf, len, false); 149 } 150 static inline void cpu_physical_memory_write(hwaddr addr, 151 const void *buf, hwaddr len) 152 { 153 cpu_physical_memory_rw(addr, (void *)buf, len, true); 154 } 155 void *cpu_physical_memory_map(hwaddr addr, 156 hwaddr *plen, 157 bool is_write); 158 void cpu_physical_memory_unmap(void *buffer, hwaddr len, 159 bool is_write, hwaddr access_len); 160 void cpu_register_map_client(QEMUBH *bh); 161 void cpu_unregister_map_client(QEMUBH *bh); 162 163 bool cpu_physical_memory_is_io(hwaddr phys_addr); 164 165 /* Coalesced MMIO regions are areas where write operations can be reordered. 166 * This usually implies that write operations are side-effect free. This allows 167 * batching which can make a major impact on performance when using 168 * virtualization. 169 */ 170 void qemu_flush_coalesced_mmio_buffer(void); 171 172 void cpu_flush_icache_range(hwaddr start, hwaddr len); 173 174 typedef int (RAMBlockIterFunc)(RAMBlock *rb, void *opaque); 175 176 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque); 177 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length); 178 179 #endif 180 181 /* Returns: 0 on success, -1 on error */ 182 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr, 183 void *ptr, size_t len, bool is_write); 184 185 /* vl.c */ 186 void list_cpus(void); 187 188 #ifdef CONFIG_TCG 189 /** 190 * cpu_unwind_state_data: 191 * @cpu: the cpu context 192 * @host_pc: the host pc within the translation 193 * @data: output data 194 * 195 * Attempt to load the the unwind state for a host pc occurring in 196 * translated code. If @host_pc is not in translated code, the 197 * function returns false; otherwise @data is loaded. 198 * This is the same unwind info as given to restore_state_to_opc. 199 */ 200 bool cpu_unwind_state_data(CPUState *cpu, uintptr_t host_pc, uint64_t *data); 201 202 /** 203 * cpu_restore_state: 204 * @cpu: the cpu context 205 * @host_pc: the host pc within the translation 206 * @return: true if state was restored, false otherwise 207 * 208 * Attempt to restore the state for a fault occurring in translated 209 * code. If @host_pc is not in translated code no state is 210 * restored and the function returns false. 211 */ 212 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc); 213 214 G_NORETURN void cpu_loop_exit_noexc(CPUState *cpu); 215 G_NORETURN void cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc); 216 #endif /* CONFIG_TCG */ 217 G_NORETURN void cpu_loop_exit(CPUState *cpu); 218 G_NORETURN void cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc); 219 220 #endif /* CPU_COMMON_H */ 221