xref: /openbmc/qemu/include/exec/cpu-common.h (revision effd60c8)
1 #ifndef CPU_COMMON_H
2 #define CPU_COMMON_H
3 
4 /* CPU interfaces that are target independent.  */
5 
6 #ifndef CONFIG_USER_ONLY
7 #include "exec/hwaddr.h"
8 #endif
9 
10 #define EXCP_INTERRUPT  0x10000 /* async interruption */
11 #define EXCP_HLT        0x10001 /* hlt instruction reached */
12 #define EXCP_DEBUG      0x10002 /* cpu stopped after a breakpoint or singlestep */
13 #define EXCP_HALTED     0x10003 /* cpu is halted (waiting for external event) */
14 #define EXCP_YIELD      0x10004 /* cpu wants to yield timeslice to another */
15 #define EXCP_ATOMIC     0x10005 /* stop-the-world and emulate atomic */
16 
17 /**
18  * vaddr:
19  * Type wide enough to contain any #target_ulong virtual address.
20  */
21 typedef uint64_t vaddr;
22 #define VADDR_PRId PRId64
23 #define VADDR_PRIu PRIu64
24 #define VADDR_PRIo PRIo64
25 #define VADDR_PRIx PRIx64
26 #define VADDR_PRIX PRIX64
27 #define VADDR_MAX UINT64_MAX
28 
29 void cpu_exec_init_all(void);
30 void cpu_exec_step_atomic(CPUState *cpu);
31 
32 /* Using intptr_t ensures that qemu_*_page_mask is sign-extended even
33  * when intptr_t is 32-bit and we are aligning a long long.
34  */
35 extern uintptr_t qemu_host_page_size;
36 extern intptr_t qemu_host_page_mask;
37 
38 #define HOST_PAGE_ALIGN(addr) ROUND_UP((addr), qemu_host_page_size)
39 #define REAL_HOST_PAGE_ALIGN(addr) ROUND_UP((addr), qemu_real_host_page_size())
40 
41 /* The CPU list lock nests outside page_(un)lock or mmap_(un)lock */
42 extern QemuMutex qemu_cpu_list_lock;
43 void qemu_init_cpu_list(void);
44 void cpu_list_lock(void);
45 void cpu_list_unlock(void);
46 unsigned int cpu_list_generation_id_get(void);
47 
48 void tcg_iommu_init_notifier_list(CPUState *cpu);
49 void tcg_iommu_free_notifier_list(CPUState *cpu);
50 
51 #if !defined(CONFIG_USER_ONLY)
52 
53 enum device_endian {
54     DEVICE_NATIVE_ENDIAN,
55     DEVICE_BIG_ENDIAN,
56     DEVICE_LITTLE_ENDIAN,
57 };
58 
59 #if HOST_BIG_ENDIAN
60 #define DEVICE_HOST_ENDIAN DEVICE_BIG_ENDIAN
61 #else
62 #define DEVICE_HOST_ENDIAN DEVICE_LITTLE_ENDIAN
63 #endif
64 
65 /* address in the RAM (different from a physical address) */
66 #if defined(CONFIG_XEN_BACKEND)
67 typedef uint64_t ram_addr_t;
68 #  define RAM_ADDR_MAX UINT64_MAX
69 #  define RAM_ADDR_FMT "%" PRIx64
70 #else
71 typedef uintptr_t ram_addr_t;
72 #  define RAM_ADDR_MAX UINTPTR_MAX
73 #  define RAM_ADDR_FMT "%" PRIxPTR
74 #endif
75 
76 /* memory API */
77 
78 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length);
79 /* This should not be used by devices.  */
80 ram_addr_t qemu_ram_addr_from_host(void *ptr);
81 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr);
82 RAMBlock *qemu_ram_block_by_name(const char *name);
83 
84 /*
85  * Translates a host ptr back to a RAMBlock and an offset in that RAMBlock.
86  *
87  * @ptr: The host pointer to translate.
88  * @round_offset: Whether to round the result offset down to a target page
89  * @offset: Will be set to the offset within the returned RAMBlock.
90  *
91  * Returns: RAMBlock (or NULL if not found)
92  *
93  * By the time this function returns, the returned pointer is not protected
94  * by RCU anymore.  If the caller is not within an RCU critical section and
95  * does not hold the BQL, it must have other means of protecting the
96  * pointer, such as a reference to the memory region that owns the RAMBlock.
97  */
98 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
99                                    ram_addr_t *offset);
100 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host);
101 void qemu_ram_set_idstr(RAMBlock *block, const char *name, DeviceState *dev);
102 void qemu_ram_unset_idstr(RAMBlock *block);
103 const char *qemu_ram_get_idstr(RAMBlock *rb);
104 void *qemu_ram_get_host_addr(RAMBlock *rb);
105 ram_addr_t qemu_ram_get_offset(RAMBlock *rb);
106 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb);
107 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb);
108 bool qemu_ram_is_shared(RAMBlock *rb);
109 bool qemu_ram_is_noreserve(RAMBlock *rb);
110 bool qemu_ram_is_uf_zeroable(RAMBlock *rb);
111 void qemu_ram_set_uf_zeroable(RAMBlock *rb);
112 bool qemu_ram_is_migratable(RAMBlock *rb);
113 void qemu_ram_set_migratable(RAMBlock *rb);
114 void qemu_ram_unset_migratable(RAMBlock *rb);
115 bool qemu_ram_is_named_file(RAMBlock *rb);
116 int qemu_ram_get_fd(RAMBlock *rb);
117 
118 size_t qemu_ram_pagesize(RAMBlock *block);
119 size_t qemu_ram_pagesize_largest(void);
120 
121 /**
122  * cpu_address_space_init:
123  * @cpu: CPU to add this address space to
124  * @asidx: integer index of this address space
125  * @prefix: prefix to be used as name of address space
126  * @mr: the root memory region of address space
127  *
128  * Add the specified address space to the CPU's cpu_ases list.
129  * The address space added with @asidx 0 is the one used for the
130  * convenience pointer cpu->as.
131  * The target-specific code which registers ASes is responsible
132  * for defining what semantics address space 0, 1, 2, etc have.
133  *
134  * Before the first call to this function, the caller must set
135  * cpu->num_ases to the total number of address spaces it needs
136  * to support.
137  *
138  * Note that with KVM only one address space is supported.
139  */
140 void cpu_address_space_init(CPUState *cpu, int asidx,
141                             const char *prefix, MemoryRegion *mr);
142 
143 void cpu_physical_memory_rw(hwaddr addr, void *buf,
144                             hwaddr len, bool is_write);
145 static inline void cpu_physical_memory_read(hwaddr addr,
146                                             void *buf, hwaddr len)
147 {
148     cpu_physical_memory_rw(addr, buf, len, false);
149 }
150 static inline void cpu_physical_memory_write(hwaddr addr,
151                                              const void *buf, hwaddr len)
152 {
153     cpu_physical_memory_rw(addr, (void *)buf, len, true);
154 }
155 void *cpu_physical_memory_map(hwaddr addr,
156                               hwaddr *plen,
157                               bool is_write);
158 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
159                                bool is_write, hwaddr access_len);
160 void cpu_register_map_client(QEMUBH *bh);
161 void cpu_unregister_map_client(QEMUBH *bh);
162 
163 bool cpu_physical_memory_is_io(hwaddr phys_addr);
164 
165 /* Coalesced MMIO regions are areas where write operations can be reordered.
166  * This usually implies that write operations are side-effect free.  This allows
167  * batching which can make a major impact on performance when using
168  * virtualization.
169  */
170 void qemu_flush_coalesced_mmio_buffer(void);
171 
172 void cpu_flush_icache_range(hwaddr start, hwaddr len);
173 
174 typedef int (RAMBlockIterFunc)(RAMBlock *rb, void *opaque);
175 
176 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque);
177 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length);
178 
179 #endif
180 
181 /* Returns: 0 on success, -1 on error */
182 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
183                         void *ptr, size_t len, bool is_write);
184 
185 /* vl.c */
186 void list_cpus(void);
187 
188 #ifdef CONFIG_TCG
189 /**
190  * cpu_unwind_state_data:
191  * @cpu: the cpu context
192  * @host_pc: the host pc within the translation
193  * @data: output data
194  *
195  * Attempt to load the the unwind state for a host pc occurring in
196  * translated code.  If @host_pc is not in translated code, the
197  * function returns false; otherwise @data is loaded.
198  * This is the same unwind info as given to restore_state_to_opc.
199  */
200 bool cpu_unwind_state_data(CPUState *cpu, uintptr_t host_pc, uint64_t *data);
201 
202 /**
203  * cpu_restore_state:
204  * @cpu: the cpu context
205  * @host_pc: the host pc within the translation
206  * @return: true if state was restored, false otherwise
207  *
208  * Attempt to restore the state for a fault occurring in translated
209  * code. If @host_pc is not in translated code no state is
210  * restored and the function returns false.
211  */
212 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc);
213 
214 G_NORETURN void cpu_loop_exit_noexc(CPUState *cpu);
215 G_NORETURN void cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc);
216 #endif /* CONFIG_TCG */
217 G_NORETURN void cpu_loop_exit(CPUState *cpu);
218 G_NORETURN void cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc);
219 
220 #endif /* CPU_COMMON_H */
221