xref: /openbmc/qemu/include/exec/cpu-common.h (revision da34e65c)
1 #ifndef CPU_COMMON_H
2 #define CPU_COMMON_H 1
3 
4 /* CPU interfaces that are target independent.  */
5 
6 #ifndef CONFIG_USER_ONLY
7 #include "exec/hwaddr.h"
8 #endif
9 
10 #ifndef NEED_CPU_H
11 #include "exec/poison.h"
12 #endif
13 
14 #include "qemu/bswap.h"
15 #include "qemu/queue.h"
16 #include "qemu/fprintf-fn.h"
17 #include "qemu/typedefs.h"
18 
19 /**
20  * CPUListState:
21  * @cpu_fprintf: Print function.
22  * @file: File to print to using @cpu_fprint.
23  *
24  * State commonly used for iterating over CPU models.
25  */
26 typedef struct CPUListState {
27     fprintf_function cpu_fprintf;
28     FILE *file;
29 } CPUListState;
30 
31 typedef enum MMUAccessType {
32     MMU_DATA_LOAD  = 0,
33     MMU_DATA_STORE = 1,
34     MMU_INST_FETCH = 2
35 } MMUAccessType;
36 
37 #if !defined(CONFIG_USER_ONLY)
38 
39 enum device_endian {
40     DEVICE_NATIVE_ENDIAN,
41     DEVICE_BIG_ENDIAN,
42     DEVICE_LITTLE_ENDIAN,
43 };
44 
45 /* address in the RAM (different from a physical address) */
46 #if defined(CONFIG_XEN_BACKEND)
47 typedef uint64_t ram_addr_t;
48 #  define RAM_ADDR_MAX UINT64_MAX
49 #  define RAM_ADDR_FMT "%" PRIx64
50 #else
51 typedef uintptr_t ram_addr_t;
52 #  define RAM_ADDR_MAX UINTPTR_MAX
53 #  define RAM_ADDR_FMT "%" PRIxPTR
54 #endif
55 
56 extern ram_addr_t ram_size;
57 
58 /* memory API */
59 
60 typedef void CPUWriteMemoryFunc(void *opaque, hwaddr addr, uint32_t value);
61 typedef uint32_t CPUReadMemoryFunc(void *opaque, hwaddr addr);
62 
63 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length);
64 /* This should not be used by devices.  */
65 MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr);
66 RAMBlock *qemu_ram_block_by_name(const char *name);
67 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
68                                    ram_addr_t *ram_addr, ram_addr_t *offset);
69 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev);
70 void qemu_ram_unset_idstr(ram_addr_t addr);
71 const char *qemu_ram_get_idstr(RAMBlock *rb);
72 
73 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
74                             int len, int is_write);
75 static inline void cpu_physical_memory_read(hwaddr addr,
76                                             void *buf, int len)
77 {
78     cpu_physical_memory_rw(addr, buf, len, 0);
79 }
80 static inline void cpu_physical_memory_write(hwaddr addr,
81                                              const void *buf, int len)
82 {
83     cpu_physical_memory_rw(addr, (void *)buf, len, 1);
84 }
85 void *cpu_physical_memory_map(hwaddr addr,
86                               hwaddr *plen,
87                               int is_write);
88 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
89                                int is_write, hwaddr access_len);
90 void cpu_register_map_client(QEMUBH *bh);
91 void cpu_unregister_map_client(QEMUBH *bh);
92 
93 bool cpu_physical_memory_is_io(hwaddr phys_addr);
94 
95 /* Coalesced MMIO regions are areas where write operations can be reordered.
96  * This usually implies that write operations are side-effect free.  This allows
97  * batching which can make a major impact on performance when using
98  * virtualization.
99  */
100 void qemu_flush_coalesced_mmio_buffer(void);
101 
102 uint32_t ldub_phys(AddressSpace *as, hwaddr addr);
103 uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr);
104 uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr);
105 uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr);
106 uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr);
107 uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr);
108 uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr);
109 void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val);
110 void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
111 void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
112 void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
113 void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
114 void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val);
115 void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val);
116 
117 #ifdef NEED_CPU_H
118 uint32_t lduw_phys(AddressSpace *as, hwaddr addr);
119 uint32_t ldl_phys(AddressSpace *as, hwaddr addr);
120 uint64_t ldq_phys(AddressSpace *as, hwaddr addr);
121 void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val);
122 void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val);
123 void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val);
124 void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val);
125 #endif
126 
127 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
128                                    const uint8_t *buf, int len);
129 void cpu_flush_icache_range(hwaddr start, int len);
130 
131 extern struct MemoryRegion io_mem_rom;
132 extern struct MemoryRegion io_mem_notdirty;
133 
134 typedef int (RAMBlockIterFunc)(const char *block_name, void *host_addr,
135     ram_addr_t offset, ram_addr_t length, void *opaque);
136 
137 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque);
138 
139 #endif
140 
141 #endif /* !CPU_COMMON_H */
142