1 /* 2 * CPU interfaces that are target independent. 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * SPDX-License-Identifier: LGPL-2.1+ 7 */ 8 #ifndef CPU_COMMON_H 9 #define CPU_COMMON_H 10 11 #include "exec/vaddr.h" 12 #ifndef CONFIG_USER_ONLY 13 #include "exec/hwaddr.h" 14 #endif 15 #include "hw/core/cpu.h" 16 #include "tcg/debug-assert.h" 17 #include "exec/page-protection.h" 18 19 #define EXCP_INTERRUPT 0x10000 /* async interruption */ 20 #define EXCP_HLT 0x10001 /* hlt instruction reached */ 21 #define EXCP_DEBUG 0x10002 /* cpu stopped after a breakpoint or singlestep */ 22 #define EXCP_HALTED 0x10003 /* cpu is halted (waiting for external event) */ 23 #define EXCP_YIELD 0x10004 /* cpu wants to yield timeslice to another */ 24 #define EXCP_ATOMIC 0x10005 /* stop-the-world and emulate atomic */ 25 26 void cpu_exec_init_all(void); 27 void cpu_exec_step_atomic(CPUState *cpu); 28 29 #define REAL_HOST_PAGE_ALIGN(addr) ROUND_UP((addr), qemu_real_host_page_size()) 30 31 /* The CPU list lock nests outside page_(un)lock or mmap_(un)lock */ 32 extern QemuMutex qemu_cpu_list_lock; 33 void qemu_init_cpu_list(void); 34 void cpu_list_lock(void); 35 void cpu_list_unlock(void); 36 unsigned int cpu_list_generation_id_get(void); 37 38 void tcg_iommu_init_notifier_list(CPUState *cpu); 39 void tcg_iommu_free_notifier_list(CPUState *cpu); 40 41 #if !defined(CONFIG_USER_ONLY) 42 43 enum device_endian { 44 DEVICE_NATIVE_ENDIAN, 45 DEVICE_BIG_ENDIAN, 46 DEVICE_LITTLE_ENDIAN, 47 }; 48 49 #if HOST_BIG_ENDIAN 50 #define DEVICE_HOST_ENDIAN DEVICE_BIG_ENDIAN 51 #else 52 #define DEVICE_HOST_ENDIAN DEVICE_LITTLE_ENDIAN 53 #endif 54 55 /* address in the RAM (different from a physical address) */ 56 #if defined(CONFIG_XEN_BACKEND) 57 typedef uint64_t ram_addr_t; 58 # define RAM_ADDR_MAX UINT64_MAX 59 # define RAM_ADDR_FMT "%" PRIx64 60 #else 61 typedef uintptr_t ram_addr_t; 62 # define RAM_ADDR_MAX UINTPTR_MAX 63 # define RAM_ADDR_FMT "%" PRIxPTR 64 #endif 65 66 /* memory API */ 67 68 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length); 69 /* This should not be used by devices. */ 70 ram_addr_t qemu_ram_addr_from_host(void *ptr); 71 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr); 72 RAMBlock *qemu_ram_block_by_name(const char *name); 73 74 /* 75 * Translates a host ptr back to a RAMBlock and an offset in that RAMBlock. 76 * 77 * @ptr: The host pointer to translate. 78 * @round_offset: Whether to round the result offset down to a target page 79 * @offset: Will be set to the offset within the returned RAMBlock. 80 * 81 * Returns: RAMBlock (or NULL if not found) 82 * 83 * By the time this function returns, the returned pointer is not protected 84 * by RCU anymore. If the caller is not within an RCU critical section and 85 * does not hold the BQL, it must have other means of protecting the 86 * pointer, such as a reference to the memory region that owns the RAMBlock. 87 */ 88 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, 89 ram_addr_t *offset); 90 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host); 91 void qemu_ram_set_idstr(RAMBlock *block, const char *name, DeviceState *dev); 92 void qemu_ram_unset_idstr(RAMBlock *block); 93 const char *qemu_ram_get_idstr(RAMBlock *rb); 94 void *qemu_ram_get_host_addr(RAMBlock *rb); 95 ram_addr_t qemu_ram_get_offset(RAMBlock *rb); 96 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb); 97 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb); 98 bool qemu_ram_is_shared(RAMBlock *rb); 99 bool qemu_ram_is_noreserve(RAMBlock *rb); 100 bool qemu_ram_is_uf_zeroable(RAMBlock *rb); 101 void qemu_ram_set_uf_zeroable(RAMBlock *rb); 102 bool qemu_ram_is_migratable(RAMBlock *rb); 103 void qemu_ram_set_migratable(RAMBlock *rb); 104 void qemu_ram_unset_migratable(RAMBlock *rb); 105 bool qemu_ram_is_named_file(RAMBlock *rb); 106 int qemu_ram_get_fd(RAMBlock *rb); 107 108 size_t qemu_ram_pagesize(RAMBlock *block); 109 size_t qemu_ram_pagesize_largest(void); 110 111 /** 112 * cpu_address_space_init: 113 * @cpu: CPU to add this address space to 114 * @asidx: integer index of this address space 115 * @prefix: prefix to be used as name of address space 116 * @mr: the root memory region of address space 117 * 118 * Add the specified address space to the CPU's cpu_ases list. 119 * The address space added with @asidx 0 is the one used for the 120 * convenience pointer cpu->as. 121 * The target-specific code which registers ASes is responsible 122 * for defining what semantics address space 0, 1, 2, etc have. 123 * 124 * Before the first call to this function, the caller must set 125 * cpu->num_ases to the total number of address spaces it needs 126 * to support. 127 * 128 * Note that with KVM only one address space is supported. 129 */ 130 void cpu_address_space_init(CPUState *cpu, int asidx, 131 const char *prefix, MemoryRegion *mr); 132 /** 133 * cpu_address_space_destroy: 134 * @cpu: CPU for which address space needs to be destroyed 135 * @asidx: integer index of this address space 136 * 137 * Note that with KVM only one address space is supported. 138 */ 139 void cpu_address_space_destroy(CPUState *cpu, int asidx); 140 141 void cpu_physical_memory_rw(hwaddr addr, void *buf, 142 hwaddr len, bool is_write); 143 static inline void cpu_physical_memory_read(hwaddr addr, 144 void *buf, hwaddr len) 145 { 146 cpu_physical_memory_rw(addr, buf, len, false); 147 } 148 static inline void cpu_physical_memory_write(hwaddr addr, 149 const void *buf, hwaddr len) 150 { 151 cpu_physical_memory_rw(addr, (void *)buf, len, true); 152 } 153 void *cpu_physical_memory_map(hwaddr addr, 154 hwaddr *plen, 155 bool is_write); 156 void cpu_physical_memory_unmap(void *buffer, hwaddr len, 157 bool is_write, hwaddr access_len); 158 159 bool cpu_physical_memory_is_io(hwaddr phys_addr); 160 161 /* Coalesced MMIO regions are areas where write operations can be reordered. 162 * This usually implies that write operations are side-effect free. This allows 163 * batching which can make a major impact on performance when using 164 * virtualization. 165 */ 166 void qemu_flush_coalesced_mmio_buffer(void); 167 168 void cpu_flush_icache_range(hwaddr start, hwaddr len); 169 170 typedef int (RAMBlockIterFunc)(RAMBlock *rb, void *opaque); 171 172 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque); 173 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length); 174 int ram_block_discard_guest_memfd_range(RAMBlock *rb, uint64_t start, 175 size_t length); 176 177 #endif 178 179 /* Returns: 0 on success, -1 on error */ 180 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr, 181 void *ptr, size_t len, bool is_write); 182 183 /* vl.c */ 184 void list_cpus(void); 185 186 #ifdef CONFIG_TCG 187 188 bool tcg_cflags_has(CPUState *cpu, uint32_t flags); 189 void tcg_cflags_set(CPUState *cpu, uint32_t flags); 190 191 /* current cflags for hashing/comparison */ 192 uint32_t curr_cflags(CPUState *cpu); 193 194 /** 195 * cpu_unwind_state_data: 196 * @cpu: the cpu context 197 * @host_pc: the host pc within the translation 198 * @data: output data 199 * 200 * Attempt to load the the unwind state for a host pc occurring in 201 * translated code. If @host_pc is not in translated code, the 202 * function returns false; otherwise @data is loaded. 203 * This is the same unwind info as given to restore_state_to_opc. 204 */ 205 bool cpu_unwind_state_data(CPUState *cpu, uintptr_t host_pc, uint64_t *data); 206 207 /** 208 * cpu_restore_state: 209 * @cpu: the cpu context 210 * @host_pc: the host pc within the translation 211 * @return: true if state was restored, false otherwise 212 * 213 * Attempt to restore the state for a fault occurring in translated 214 * code. If @host_pc is not in translated code no state is 215 * restored and the function returns false. 216 */ 217 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc); 218 219 G_NORETURN void cpu_loop_exit_noexc(CPUState *cpu); 220 G_NORETURN void cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc); 221 #endif /* CONFIG_TCG */ 222 G_NORETURN void cpu_loop_exit(CPUState *cpu); 223 G_NORETURN void cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc); 224 225 /* accel/tcg/cpu-exec.c */ 226 int cpu_exec(CPUState *cpu); 227 228 /** 229 * env_archcpu(env) 230 * @env: The architecture environment 231 * 232 * Return the ArchCPU associated with the environment. 233 */ 234 static inline ArchCPU *env_archcpu(CPUArchState *env) 235 { 236 return (void *)env - sizeof(CPUState); 237 } 238 239 /** 240 * env_cpu(env) 241 * @env: The architecture environment 242 * 243 * Return the CPUState associated with the environment. 244 */ 245 static inline CPUState *env_cpu(CPUArchState *env) 246 { 247 return (void *)env - sizeof(CPUState); 248 } 249 250 #ifndef CONFIG_USER_ONLY 251 /** 252 * cpu_mmu_index: 253 * @env: The cpu environment 254 * @ifetch: True for code access, false for data access. 255 * 256 * Return the core mmu index for the current translation regime. 257 * This function is used by generic TCG code paths. 258 * 259 * The user-only version of this function is inline in cpu-all.h, 260 * where it always returns MMU_USER_IDX. 261 */ 262 static inline int cpu_mmu_index(CPUState *cs, bool ifetch) 263 { 264 int ret = cs->cc->mmu_index(cs, ifetch); 265 tcg_debug_assert(ret >= 0 && ret < NB_MMU_MODES); 266 return ret; 267 } 268 #endif /* !CONFIG_USER_ONLY */ 269 270 #endif /* CPU_COMMON_H */ 271