1 #ifndef CPU_COMMON_H 2 #define CPU_COMMON_H 3 4 /* CPU interfaces that are target independent. */ 5 6 #ifndef CONFIG_USER_ONLY 7 #include "exec/hwaddr.h" 8 #endif 9 10 /* The CPU list lock nests outside page_(un)lock or mmap_(un)lock */ 11 void qemu_init_cpu_list(void); 12 void cpu_list_lock(void); 13 void cpu_list_unlock(void); 14 15 void tcg_flush_softmmu_tlb(CPUState *cs); 16 17 void tcg_iommu_init_notifier_list(CPUState *cpu); 18 void tcg_iommu_free_notifier_list(CPUState *cpu); 19 20 #if !defined(CONFIG_USER_ONLY) 21 22 enum device_endian { 23 DEVICE_NATIVE_ENDIAN, 24 DEVICE_BIG_ENDIAN, 25 DEVICE_LITTLE_ENDIAN, 26 }; 27 28 #if defined(HOST_WORDS_BIGENDIAN) 29 #define DEVICE_HOST_ENDIAN DEVICE_BIG_ENDIAN 30 #else 31 #define DEVICE_HOST_ENDIAN DEVICE_LITTLE_ENDIAN 32 #endif 33 34 /* address in the RAM (different from a physical address) */ 35 #if defined(CONFIG_XEN_BACKEND) 36 typedef uint64_t ram_addr_t; 37 # define RAM_ADDR_MAX UINT64_MAX 38 # define RAM_ADDR_FMT "%" PRIx64 39 #else 40 typedef uintptr_t ram_addr_t; 41 # define RAM_ADDR_MAX UINTPTR_MAX 42 # define RAM_ADDR_FMT "%" PRIxPTR 43 #endif 44 45 /* memory API */ 46 47 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length); 48 /* This should not be used by devices. */ 49 ram_addr_t qemu_ram_addr_from_host(void *ptr); 50 RAMBlock *qemu_ram_block_by_name(const char *name); 51 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, 52 ram_addr_t *offset); 53 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host); 54 void qemu_ram_set_idstr(RAMBlock *block, const char *name, DeviceState *dev); 55 void qemu_ram_unset_idstr(RAMBlock *block); 56 const char *qemu_ram_get_idstr(RAMBlock *rb); 57 void *qemu_ram_get_host_addr(RAMBlock *rb); 58 ram_addr_t qemu_ram_get_offset(RAMBlock *rb); 59 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb); 60 bool qemu_ram_is_shared(RAMBlock *rb); 61 bool qemu_ram_is_uf_zeroable(RAMBlock *rb); 62 void qemu_ram_set_uf_zeroable(RAMBlock *rb); 63 bool qemu_ram_is_migratable(RAMBlock *rb); 64 void qemu_ram_set_migratable(RAMBlock *rb); 65 void qemu_ram_unset_migratable(RAMBlock *rb); 66 67 size_t qemu_ram_pagesize(RAMBlock *block); 68 size_t qemu_ram_pagesize_largest(void); 69 70 void cpu_physical_memory_rw(hwaddr addr, void *buf, 71 hwaddr len, bool is_write); 72 static inline void cpu_physical_memory_read(hwaddr addr, 73 void *buf, hwaddr len) 74 { 75 cpu_physical_memory_rw(addr, buf, len, false); 76 } 77 static inline void cpu_physical_memory_write(hwaddr addr, 78 const void *buf, hwaddr len) 79 { 80 cpu_physical_memory_rw(addr, (void *)buf, len, true); 81 } 82 void *cpu_physical_memory_map(hwaddr addr, 83 hwaddr *plen, 84 bool is_write); 85 void cpu_physical_memory_unmap(void *buffer, hwaddr len, 86 bool is_write, hwaddr access_len); 87 void cpu_register_map_client(QEMUBH *bh); 88 void cpu_unregister_map_client(QEMUBH *bh); 89 90 bool cpu_physical_memory_is_io(hwaddr phys_addr); 91 92 /* Coalesced MMIO regions are areas where write operations can be reordered. 93 * This usually implies that write operations are side-effect free. This allows 94 * batching which can make a major impact on performance when using 95 * virtualization. 96 */ 97 void qemu_flush_coalesced_mmio_buffer(void); 98 99 void cpu_flush_icache_range(hwaddr start, hwaddr len); 100 101 typedef int (RAMBlockIterFunc)(RAMBlock *rb, void *opaque); 102 103 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque); 104 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length); 105 106 #endif 107 108 #endif /* CPU_COMMON_H */ 109