1 #ifndef CPU_COMMON_H 2 #define CPU_COMMON_H 3 4 /* CPU interfaces that are target independent. */ 5 6 #ifndef CONFIG_USER_ONLY 7 #include "exec/hwaddr.h" 8 #endif 9 10 #include "qemu/bswap.h" 11 #include "qemu/queue.h" 12 #include "qemu/fprintf-fn.h" 13 14 /** 15 * CPUListState: 16 * @cpu_fprintf: Print function. 17 * @file: File to print to using @cpu_fprint. 18 * 19 * State commonly used for iterating over CPU models. 20 */ 21 typedef struct CPUListState { 22 fprintf_function cpu_fprintf; 23 FILE *file; 24 } CPUListState; 25 26 /* The CPU list lock nests outside tb_lock/tb_unlock. */ 27 void qemu_init_cpu_list(void); 28 void cpu_list_lock(void); 29 void cpu_list_unlock(void); 30 31 #if !defined(CONFIG_USER_ONLY) 32 33 enum device_endian { 34 DEVICE_NATIVE_ENDIAN, 35 DEVICE_BIG_ENDIAN, 36 DEVICE_LITTLE_ENDIAN, 37 }; 38 39 #if defined(HOST_WORDS_BIGENDIAN) 40 #define DEVICE_HOST_ENDIAN DEVICE_BIG_ENDIAN 41 #else 42 #define DEVICE_HOST_ENDIAN DEVICE_LITTLE_ENDIAN 43 #endif 44 45 /* address in the RAM (different from a physical address) */ 46 #if defined(CONFIG_XEN_BACKEND) 47 typedef uint64_t ram_addr_t; 48 # define RAM_ADDR_MAX UINT64_MAX 49 # define RAM_ADDR_FMT "%" PRIx64 50 #else 51 typedef uintptr_t ram_addr_t; 52 # define RAM_ADDR_MAX UINTPTR_MAX 53 # define RAM_ADDR_FMT "%" PRIxPTR 54 #endif 55 56 extern ram_addr_t ram_size; 57 58 /* memory API */ 59 60 typedef void CPUWriteMemoryFunc(void *opaque, hwaddr addr, uint32_t value); 61 typedef uint32_t CPUReadMemoryFunc(void *opaque, hwaddr addr); 62 63 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length); 64 /* This should not be used by devices. */ 65 ram_addr_t qemu_ram_addr_from_host(void *ptr); 66 RAMBlock *qemu_ram_block_by_name(const char *name); 67 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, 68 ram_addr_t *offset); 69 void qemu_ram_set_idstr(RAMBlock *block, const char *name, DeviceState *dev); 70 void qemu_ram_unset_idstr(RAMBlock *block); 71 const char *qemu_ram_get_idstr(RAMBlock *rb); 72 size_t qemu_ram_pagesize(RAMBlock *block); 73 size_t qemu_ram_pagesize_largest(void); 74 75 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf, 76 int len, int is_write); 77 static inline void cpu_physical_memory_read(hwaddr addr, 78 void *buf, int len) 79 { 80 cpu_physical_memory_rw(addr, buf, len, 0); 81 } 82 static inline void cpu_physical_memory_write(hwaddr addr, 83 const void *buf, int len) 84 { 85 cpu_physical_memory_rw(addr, (void *)buf, len, 1); 86 } 87 void *cpu_physical_memory_map(hwaddr addr, 88 hwaddr *plen, 89 int is_write); 90 void cpu_physical_memory_unmap(void *buffer, hwaddr len, 91 int is_write, hwaddr access_len); 92 void cpu_register_map_client(QEMUBH *bh); 93 void cpu_unregister_map_client(QEMUBH *bh); 94 95 bool cpu_physical_memory_is_io(hwaddr phys_addr); 96 97 /* Coalesced MMIO regions are areas where write operations can be reordered. 98 * This usually implies that write operations are side-effect free. This allows 99 * batching which can make a major impact on performance when using 100 * virtualization. 101 */ 102 void qemu_flush_coalesced_mmio_buffer(void); 103 104 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr, 105 const uint8_t *buf, int len); 106 void cpu_flush_icache_range(hwaddr start, int len); 107 108 extern struct MemoryRegion io_mem_rom; 109 extern struct MemoryRegion io_mem_notdirty; 110 111 typedef int (RAMBlockIterFunc)(const char *block_name, void *host_addr, 112 ram_addr_t offset, ram_addr_t length, void *opaque); 113 114 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque); 115 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length); 116 117 #endif 118 119 #endif /* CPU_COMMON_H */ 120