1 #ifndef CPU_COMMON_H 2 #define CPU_COMMON_H 3 4 /* CPU interfaces that are target independent. */ 5 6 #ifndef CONFIG_USER_ONLY 7 #include "exec/hwaddr.h" 8 #endif 9 10 /* The CPU list lock nests outside page_(un)lock or mmap_(un)lock */ 11 void qemu_init_cpu_list(void); 12 void cpu_list_lock(void); 13 void cpu_list_unlock(void); 14 15 void tcg_flush_softmmu_tlb(CPUState *cs); 16 17 #if !defined(CONFIG_USER_ONLY) 18 19 enum device_endian { 20 DEVICE_NATIVE_ENDIAN, 21 DEVICE_BIG_ENDIAN, 22 DEVICE_LITTLE_ENDIAN, 23 }; 24 25 #if defined(HOST_WORDS_BIGENDIAN) 26 #define DEVICE_HOST_ENDIAN DEVICE_BIG_ENDIAN 27 #else 28 #define DEVICE_HOST_ENDIAN DEVICE_LITTLE_ENDIAN 29 #endif 30 31 /* address in the RAM (different from a physical address) */ 32 #if defined(CONFIG_XEN_BACKEND) 33 typedef uint64_t ram_addr_t; 34 # define RAM_ADDR_MAX UINT64_MAX 35 # define RAM_ADDR_FMT "%" PRIx64 36 #else 37 typedef uintptr_t ram_addr_t; 38 # define RAM_ADDR_MAX UINTPTR_MAX 39 # define RAM_ADDR_FMT "%" PRIxPTR 40 #endif 41 42 extern ram_addr_t ram_size; 43 44 /* memory API */ 45 46 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length); 47 /* This should not be used by devices. */ 48 ram_addr_t qemu_ram_addr_from_host(void *ptr); 49 RAMBlock *qemu_ram_block_by_name(const char *name); 50 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, 51 ram_addr_t *offset); 52 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host); 53 void qemu_ram_set_idstr(RAMBlock *block, const char *name, DeviceState *dev); 54 void qemu_ram_unset_idstr(RAMBlock *block); 55 const char *qemu_ram_get_idstr(RAMBlock *rb); 56 void *qemu_ram_get_host_addr(RAMBlock *rb); 57 ram_addr_t qemu_ram_get_offset(RAMBlock *rb); 58 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb); 59 bool qemu_ram_is_shared(RAMBlock *rb); 60 bool qemu_ram_is_uf_zeroable(RAMBlock *rb); 61 void qemu_ram_set_uf_zeroable(RAMBlock *rb); 62 bool qemu_ram_is_migratable(RAMBlock *rb); 63 void qemu_ram_set_migratable(RAMBlock *rb); 64 void qemu_ram_unset_migratable(RAMBlock *rb); 65 66 size_t qemu_ram_pagesize(RAMBlock *block); 67 size_t qemu_ram_pagesize_largest(void); 68 69 void cpu_physical_memory_rw(hwaddr addr, void *buf, 70 hwaddr len, bool is_write); 71 static inline void cpu_physical_memory_read(hwaddr addr, 72 void *buf, hwaddr len) 73 { 74 cpu_physical_memory_rw(addr, buf, len, false); 75 } 76 static inline void cpu_physical_memory_write(hwaddr addr, 77 const void *buf, hwaddr len) 78 { 79 cpu_physical_memory_rw(addr, (void *)buf, len, true); 80 } 81 void *cpu_physical_memory_map(hwaddr addr, 82 hwaddr *plen, 83 bool is_write); 84 void cpu_physical_memory_unmap(void *buffer, hwaddr len, 85 bool is_write, hwaddr access_len); 86 void cpu_register_map_client(QEMUBH *bh); 87 void cpu_unregister_map_client(QEMUBH *bh); 88 89 bool cpu_physical_memory_is_io(hwaddr phys_addr); 90 91 /* Coalesced MMIO regions are areas where write operations can be reordered. 92 * This usually implies that write operations are side-effect free. This allows 93 * batching which can make a major impact on performance when using 94 * virtualization. 95 */ 96 void qemu_flush_coalesced_mmio_buffer(void); 97 98 void cpu_flush_icache_range(hwaddr start, hwaddr len); 99 100 typedef int (RAMBlockIterFunc)(RAMBlock *rb, void *opaque); 101 102 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque); 103 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length); 104 105 #endif 106 107 #endif /* CPU_COMMON_H */ 108