xref: /openbmc/qemu/include/exec/cpu-all.h (revision 6e99f5741ff1b408ea76e6caf2bd4f76df4060e9)
1 /*
2  * defines common to all virtual CPUs
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #ifndef CPU_ALL_H
20 #define CPU_ALL_H
21 
22 #include "qemu-common.h"
23 #include "exec/cpu-common.h"
24 #include "exec/memory.h"
25 #include "qemu/thread.h"
26 #include "qom/cpu.h"
27 #include "qemu/rcu.h"
28 
29 #define EXCP_INTERRUPT 	0x10000 /* async interruption */
30 #define EXCP_HLT        0x10001 /* hlt instruction reached */
31 #define EXCP_DEBUG      0x10002 /* cpu stopped after a breakpoint or singlestep */
32 #define EXCP_HALTED     0x10003 /* cpu is halted (waiting for external event) */
33 #define EXCP_YIELD      0x10004 /* cpu wants to yield timeslice to another */
34 
35 /* some important defines:
36  *
37  * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
38  * otherwise little endian.
39  *
40  * TARGET_WORDS_BIGENDIAN : same for target cpu
41  */
42 
43 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
44 #define BSWAP_NEEDED
45 #endif
46 
47 #ifdef BSWAP_NEEDED
48 
49 static inline uint16_t tswap16(uint16_t s)
50 {
51     return bswap16(s);
52 }
53 
54 static inline uint32_t tswap32(uint32_t s)
55 {
56     return bswap32(s);
57 }
58 
59 static inline uint64_t tswap64(uint64_t s)
60 {
61     return bswap64(s);
62 }
63 
64 static inline void tswap16s(uint16_t *s)
65 {
66     *s = bswap16(*s);
67 }
68 
69 static inline void tswap32s(uint32_t *s)
70 {
71     *s = bswap32(*s);
72 }
73 
74 static inline void tswap64s(uint64_t *s)
75 {
76     *s = bswap64(*s);
77 }
78 
79 #else
80 
81 static inline uint16_t tswap16(uint16_t s)
82 {
83     return s;
84 }
85 
86 static inline uint32_t tswap32(uint32_t s)
87 {
88     return s;
89 }
90 
91 static inline uint64_t tswap64(uint64_t s)
92 {
93     return s;
94 }
95 
96 static inline void tswap16s(uint16_t *s)
97 {
98 }
99 
100 static inline void tswap32s(uint32_t *s)
101 {
102 }
103 
104 static inline void tswap64s(uint64_t *s)
105 {
106 }
107 
108 #endif
109 
110 #if TARGET_LONG_SIZE == 4
111 #define tswapl(s) tswap32(s)
112 #define tswapls(s) tswap32s((uint32_t *)(s))
113 #define bswaptls(s) bswap32s(s)
114 #else
115 #define tswapl(s) tswap64(s)
116 #define tswapls(s) tswap64s((uint64_t *)(s))
117 #define bswaptls(s) bswap64s(s)
118 #endif
119 
120 /* Target-endianness CPU memory access functions. These fit into the
121  * {ld,st}{type}{sign}{size}{endian}_p naming scheme described in bswap.h.
122  */
123 #if defined(TARGET_WORDS_BIGENDIAN)
124 #define lduw_p(p) lduw_be_p(p)
125 #define ldsw_p(p) ldsw_be_p(p)
126 #define ldl_p(p) ldl_be_p(p)
127 #define ldq_p(p) ldq_be_p(p)
128 #define ldfl_p(p) ldfl_be_p(p)
129 #define ldfq_p(p) ldfq_be_p(p)
130 #define stw_p(p, v) stw_be_p(p, v)
131 #define stl_p(p, v) stl_be_p(p, v)
132 #define stq_p(p, v) stq_be_p(p, v)
133 #define stfl_p(p, v) stfl_be_p(p, v)
134 #define stfq_p(p, v) stfq_be_p(p, v)
135 #else
136 #define lduw_p(p) lduw_le_p(p)
137 #define ldsw_p(p) ldsw_le_p(p)
138 #define ldl_p(p) ldl_le_p(p)
139 #define ldq_p(p) ldq_le_p(p)
140 #define ldfl_p(p) ldfl_le_p(p)
141 #define ldfq_p(p) ldfq_le_p(p)
142 #define stw_p(p, v) stw_le_p(p, v)
143 #define stl_p(p, v) stl_le_p(p, v)
144 #define stq_p(p, v) stq_le_p(p, v)
145 #define stfl_p(p, v) stfl_le_p(p, v)
146 #define stfq_p(p, v) stfq_le_p(p, v)
147 #endif
148 
149 /* MMU memory access macros */
150 
151 #if defined(CONFIG_USER_ONLY)
152 #include "exec/user/abitypes.h"
153 
154 /* On some host systems the guest address space is reserved on the host.
155  * This allows the guest address space to be offset to a convenient location.
156  */
157 extern unsigned long guest_base;
158 extern int have_guest_base;
159 extern unsigned long reserved_va;
160 
161 #define GUEST_ADDR_MAX (reserved_va ? reserved_va : \
162                                     (1ul << TARGET_VIRT_ADDR_SPACE_BITS) - 1)
163 #else
164 
165 #include "exec/hwaddr.h"
166 uint32_t lduw_phys(AddressSpace *as, hwaddr addr);
167 uint32_t ldl_phys(AddressSpace *as, hwaddr addr);
168 uint64_t ldq_phys(AddressSpace *as, hwaddr addr);
169 void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val);
170 void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val);
171 void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val);
172 void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val);
173 
174 uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
175                             MemTxAttrs attrs, MemTxResult *result);
176 uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
177                             MemTxAttrs attrs, MemTxResult *result);
178 uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
179                             MemTxAttrs attrs, MemTxResult *result);
180 void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
181                             MemTxAttrs attrs, MemTxResult *result);
182 void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
183                             MemTxAttrs attrs, MemTxResult *result);
184 void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
185                             MemTxAttrs attrs, MemTxResult *result);
186 void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
187                             MemTxAttrs attrs, MemTxResult *result);
188 #endif
189 
190 /* page related stuff */
191 
192 #ifdef TARGET_PAGE_BITS_VARY
193 extern bool target_page_bits_decided;
194 extern int target_page_bits;
195 #define TARGET_PAGE_BITS ({ assert(target_page_bits_decided); \
196                             target_page_bits; })
197 #else
198 #define TARGET_PAGE_BITS_MIN TARGET_PAGE_BITS
199 #endif
200 
201 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
202 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
203 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
204 
205 /* Using intptr_t ensures that qemu_*_page_mask is sign-extended even
206  * when intptr_t is 32-bit and we are aligning a long long.
207  */
208 extern uintptr_t qemu_real_host_page_size;
209 extern intptr_t qemu_real_host_page_mask;
210 extern uintptr_t qemu_host_page_size;
211 extern intptr_t qemu_host_page_mask;
212 
213 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
214 #define REAL_HOST_PAGE_ALIGN(addr) (((addr) + qemu_real_host_page_size - 1) & \
215                                     qemu_real_host_page_mask)
216 
217 /* same as PROT_xxx */
218 #define PAGE_READ      0x0001
219 #define PAGE_WRITE     0x0002
220 #define PAGE_EXEC      0x0004
221 #define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
222 #define PAGE_VALID     0x0008
223 /* original state of the write flag (used when tracking self-modifying
224    code */
225 #define PAGE_WRITE_ORG 0x0010
226 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
227 /* FIXME: Code that sets/uses this is broken and needs to go away.  */
228 #define PAGE_RESERVED  0x0020
229 #endif
230 
231 #if defined(CONFIG_USER_ONLY)
232 void page_dump(FILE *f);
233 
234 typedef int (*walk_memory_regions_fn)(void *, target_ulong,
235                                       target_ulong, unsigned long);
236 int walk_memory_regions(void *, walk_memory_regions_fn);
237 
238 int page_get_flags(target_ulong address);
239 void page_set_flags(target_ulong start, target_ulong end, int flags);
240 int page_check_range(target_ulong start, target_ulong len, int flags);
241 #endif
242 
243 CPUArchState *cpu_copy(CPUArchState *env);
244 
245 /* Flags for use in ENV->INTERRUPT_PENDING.
246 
247    The numbers assigned here are non-sequential in order to preserve
248    binary compatibility with the vmstate dump.  Bit 0 (0x0001) was
249    previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
250    the vmstate dump.  */
251 
252 /* External hardware interrupt pending.  This is typically used for
253    interrupts from devices.  */
254 #define CPU_INTERRUPT_HARD        0x0002
255 
256 /* Exit the current TB.  This is typically used when some system-level device
257    makes some change to the memory mapping.  E.g. the a20 line change.  */
258 #define CPU_INTERRUPT_EXITTB      0x0004
259 
260 /* Halt the CPU.  */
261 #define CPU_INTERRUPT_HALT        0x0020
262 
263 /* Debug event pending.  */
264 #define CPU_INTERRUPT_DEBUG       0x0080
265 
266 /* Reset signal.  */
267 #define CPU_INTERRUPT_RESET       0x0400
268 
269 /* Several target-specific external hardware interrupts.  Each target/cpu.h
270    should define proper names based on these defines.  */
271 #define CPU_INTERRUPT_TGT_EXT_0   0x0008
272 #define CPU_INTERRUPT_TGT_EXT_1   0x0010
273 #define CPU_INTERRUPT_TGT_EXT_2   0x0040
274 #define CPU_INTERRUPT_TGT_EXT_3   0x0200
275 #define CPU_INTERRUPT_TGT_EXT_4   0x1000
276 
277 /* Several target-specific internal interrupts.  These differ from the
278    preceding target-specific interrupts in that they are intended to
279    originate from within the cpu itself, typically in response to some
280    instruction being executed.  These, therefore, are not masked while
281    single-stepping within the debugger.  */
282 #define CPU_INTERRUPT_TGT_INT_0   0x0100
283 #define CPU_INTERRUPT_TGT_INT_1   0x0800
284 #define CPU_INTERRUPT_TGT_INT_2   0x2000
285 
286 /* First unused bit: 0x4000.  */
287 
288 /* The set of all bits that should be masked when single-stepping.  */
289 #define CPU_INTERRUPT_SSTEP_MASK \
290     (CPU_INTERRUPT_HARD          \
291      | CPU_INTERRUPT_TGT_EXT_0   \
292      | CPU_INTERRUPT_TGT_EXT_1   \
293      | CPU_INTERRUPT_TGT_EXT_2   \
294      | CPU_INTERRUPT_TGT_EXT_3   \
295      | CPU_INTERRUPT_TGT_EXT_4)
296 
297 #if !defined(CONFIG_USER_ONLY)
298 
299 /* Flags stored in the low bits of the TLB virtual address.  These are
300  * defined so that fast path ram access is all zeros.
301  * The flags all must be between TARGET_PAGE_BITS and
302  * maximum address alignment bit.
303  */
304 /* Zero if TLB entry is valid.  */
305 #define TLB_INVALID_MASK    (1 << (TARGET_PAGE_BITS - 1))
306 /* Set if TLB entry references a clean RAM page.  The iotlb entry will
307    contain the page physical address.  */
308 #define TLB_NOTDIRTY        (1 << (TARGET_PAGE_BITS - 2))
309 /* Set if TLB entry is an IO callback.  */
310 #define TLB_MMIO            (1 << (TARGET_PAGE_BITS - 3))
311 
312 /* Use this mask to check interception with an alignment mask
313  * in a TCG backend.
314  */
315 #define TLB_FLAGS_MASK  (TLB_INVALID_MASK | TLB_NOTDIRTY | TLB_MMIO)
316 
317 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf);
318 void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf);
319 #endif /* !CONFIG_USER_ONLY */
320 
321 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
322                         uint8_t *buf, int len, int is_write);
323 
324 int cpu_exec(CPUState *cpu);
325 
326 #endif /* CPU_ALL_H */
327