xref: /openbmc/qemu/include/exec/cpu-all.h (revision 6016b7b46edb714a53a31536b30ead9c3aafaef7)
1 /*
2  * defines common to all virtual CPUs
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #ifndef CPU_ALL_H
20 #define CPU_ALL_H
21 
22 #include "exec/cpu-common.h"
23 #include "exec/memory.h"
24 #include "qemu/thread.h"
25 #include "hw/core/cpu.h"
26 #include "qemu/rcu.h"
27 
28 #define EXCP_INTERRUPT 	0x10000 /* async interruption */
29 #define EXCP_HLT        0x10001 /* hlt instruction reached */
30 #define EXCP_DEBUG      0x10002 /* cpu stopped after a breakpoint or singlestep */
31 #define EXCP_HALTED     0x10003 /* cpu is halted (waiting for external event) */
32 #define EXCP_YIELD      0x10004 /* cpu wants to yield timeslice to another */
33 #define EXCP_ATOMIC     0x10005 /* stop-the-world and emulate atomic */
34 
35 /* some important defines:
36  *
37  * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
38  * otherwise little endian.
39  *
40  * TARGET_WORDS_BIGENDIAN : same for target cpu
41  */
42 
43 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
44 #define BSWAP_NEEDED
45 #endif
46 
47 #ifdef BSWAP_NEEDED
48 
49 static inline uint16_t tswap16(uint16_t s)
50 {
51     return bswap16(s);
52 }
53 
54 static inline uint32_t tswap32(uint32_t s)
55 {
56     return bswap32(s);
57 }
58 
59 static inline uint64_t tswap64(uint64_t s)
60 {
61     return bswap64(s);
62 }
63 
64 static inline void tswap16s(uint16_t *s)
65 {
66     *s = bswap16(*s);
67 }
68 
69 static inline void tswap32s(uint32_t *s)
70 {
71     *s = bswap32(*s);
72 }
73 
74 static inline void tswap64s(uint64_t *s)
75 {
76     *s = bswap64(*s);
77 }
78 
79 #else
80 
81 static inline uint16_t tswap16(uint16_t s)
82 {
83     return s;
84 }
85 
86 static inline uint32_t tswap32(uint32_t s)
87 {
88     return s;
89 }
90 
91 static inline uint64_t tswap64(uint64_t s)
92 {
93     return s;
94 }
95 
96 static inline void tswap16s(uint16_t *s)
97 {
98 }
99 
100 static inline void tswap32s(uint32_t *s)
101 {
102 }
103 
104 static inline void tswap64s(uint64_t *s)
105 {
106 }
107 
108 #endif
109 
110 #if TARGET_LONG_SIZE == 4
111 #define tswapl(s) tswap32(s)
112 #define tswapls(s) tswap32s((uint32_t *)(s))
113 #define bswaptls(s) bswap32s(s)
114 #else
115 #define tswapl(s) tswap64(s)
116 #define tswapls(s) tswap64s((uint64_t *)(s))
117 #define bswaptls(s) bswap64s(s)
118 #endif
119 
120 /* Target-endianness CPU memory access functions. These fit into the
121  * {ld,st}{type}{sign}{size}{endian}_p naming scheme described in bswap.h.
122  */
123 #if defined(TARGET_WORDS_BIGENDIAN)
124 #define lduw_p(p) lduw_be_p(p)
125 #define ldsw_p(p) ldsw_be_p(p)
126 #define ldl_p(p) ldl_be_p(p)
127 #define ldq_p(p) ldq_be_p(p)
128 #define stw_p(p, v) stw_be_p(p, v)
129 #define stl_p(p, v) stl_be_p(p, v)
130 #define stq_p(p, v) stq_be_p(p, v)
131 #define ldn_p(p, sz) ldn_be_p(p, sz)
132 #define stn_p(p, sz, v) stn_be_p(p, sz, v)
133 #else
134 #define lduw_p(p) lduw_le_p(p)
135 #define ldsw_p(p) ldsw_le_p(p)
136 #define ldl_p(p) ldl_le_p(p)
137 #define ldq_p(p) ldq_le_p(p)
138 #define stw_p(p, v) stw_le_p(p, v)
139 #define stl_p(p, v) stl_le_p(p, v)
140 #define stq_p(p, v) stq_le_p(p, v)
141 #define ldn_p(p, sz) ldn_le_p(p, sz)
142 #define stn_p(p, sz, v) stn_le_p(p, sz, v)
143 #endif
144 
145 /* MMU memory access macros */
146 
147 #if defined(CONFIG_USER_ONLY)
148 #include "exec/user/abitypes.h"
149 
150 /* On some host systems the guest address space is reserved on the host.
151  * This allows the guest address space to be offset to a convenient location.
152  */
153 extern uintptr_t guest_base;
154 extern bool have_guest_base;
155 extern unsigned long reserved_va;
156 
157 /*
158  * Limit the guest addresses as best we can.
159  *
160  * When not using -R reserved_va, we cannot really limit the guest
161  * to less address space than the host.  For 32-bit guests, this
162  * acts as a sanity check that we're not giving the guest an address
163  * that it cannot even represent.  For 64-bit guests... the address
164  * might not be what the real kernel would give, but it is at least
165  * representable in the guest.
166  *
167  * TODO: Improve address allocation to avoid this problem, and to
168  * avoid setting bits at the top of guest addresses that might need
169  * to be used for tags.
170  */
171 #define GUEST_ADDR_MAX_                                                 \
172     ((MIN_CONST(TARGET_VIRT_ADDR_SPACE_BITS, TARGET_ABI_BITS) <= 32) ?  \
173      UINT32_MAX : ~0ul)
174 #define GUEST_ADDR_MAX    (reserved_va ? reserved_va - 1 : GUEST_ADDR_MAX_)
175 
176 #else
177 
178 #include "exec/hwaddr.h"
179 
180 #define SUFFIX
181 #define ARG1         as
182 #define ARG1_DECL    AddressSpace *as
183 #define TARGET_ENDIANNESS
184 #include "exec/memory_ldst.h.inc"
185 
186 #define SUFFIX       _cached_slow
187 #define ARG1         cache
188 #define ARG1_DECL    MemoryRegionCache *cache
189 #define TARGET_ENDIANNESS
190 #include "exec/memory_ldst.h.inc"
191 
192 static inline void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
193 {
194     address_space_stl_notdirty(as, addr, val,
195                                MEMTXATTRS_UNSPECIFIED, NULL);
196 }
197 
198 #define SUFFIX
199 #define ARG1         as
200 #define ARG1_DECL    AddressSpace *as
201 #define TARGET_ENDIANNESS
202 #include "exec/memory_ldst_phys.h.inc"
203 
204 /* Inline fast path for direct RAM access.  */
205 #define ENDIANNESS
206 #include "exec/memory_ldst_cached.h.inc"
207 
208 #define SUFFIX       _cached
209 #define ARG1         cache
210 #define ARG1_DECL    MemoryRegionCache *cache
211 #define TARGET_ENDIANNESS
212 #include "exec/memory_ldst_phys.h.inc"
213 #endif
214 
215 /* page related stuff */
216 
217 #ifdef TARGET_PAGE_BITS_VARY
218 # include "exec/page-vary.h"
219 extern const TargetPageBits target_page;
220 #ifdef CONFIG_DEBUG_TCG
221 #define TARGET_PAGE_BITS   ({ assert(target_page.decided); target_page.bits; })
222 #define TARGET_PAGE_MASK   ({ assert(target_page.decided); \
223                               (target_long)target_page.mask; })
224 #else
225 #define TARGET_PAGE_BITS   target_page.bits
226 #define TARGET_PAGE_MASK   ((target_long)target_page.mask)
227 #endif
228 #define TARGET_PAGE_SIZE   (-(int)TARGET_PAGE_MASK)
229 #else
230 #define TARGET_PAGE_BITS_MIN TARGET_PAGE_BITS
231 #define TARGET_PAGE_SIZE   (1 << TARGET_PAGE_BITS)
232 #define TARGET_PAGE_MASK   ((target_long)-1 << TARGET_PAGE_BITS)
233 #endif
234 
235 #define TARGET_PAGE_ALIGN(addr) ROUND_UP((addr), TARGET_PAGE_SIZE)
236 
237 /* Using intptr_t ensures that qemu_*_page_mask is sign-extended even
238  * when intptr_t is 32-bit and we are aligning a long long.
239  */
240 extern uintptr_t qemu_host_page_size;
241 extern intptr_t qemu_host_page_mask;
242 
243 #define HOST_PAGE_ALIGN(addr) ROUND_UP((addr), qemu_host_page_size)
244 #define REAL_HOST_PAGE_ALIGN(addr) ROUND_UP((addr), qemu_real_host_page_size)
245 
246 /* same as PROT_xxx */
247 #define PAGE_READ      0x0001
248 #define PAGE_WRITE     0x0002
249 #define PAGE_EXEC      0x0004
250 #define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
251 #define PAGE_VALID     0x0008
252 /*
253  * Original state of the write flag (used when tracking self-modifying code)
254  */
255 #define PAGE_WRITE_ORG 0x0010
256 /*
257  * Invalidate the TLB entry immediately, helpful for s390x
258  * Low-Address-Protection. Used with PAGE_WRITE in tlb_set_page_with_attrs()
259  */
260 #define PAGE_WRITE_INV 0x0020
261 /* For use with page_set_flags: page is being replaced; target_data cleared. */
262 #define PAGE_RESET     0x0040
263 /* For linux-user, indicates that the page is MAP_ANON. */
264 #define PAGE_ANON      0x0080
265 
266 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
267 /* FIXME: Code that sets/uses this is broken and needs to go away.  */
268 #define PAGE_RESERVED  0x0100
269 #endif
270 /* Target-specific bits that will be used via page_get_flags().  */
271 #define PAGE_TARGET_1  0x0200
272 #define PAGE_TARGET_2  0x0400
273 
274 #if defined(CONFIG_USER_ONLY)
275 void page_dump(FILE *f);
276 
277 typedef int (*walk_memory_regions_fn)(void *, target_ulong,
278                                       target_ulong, unsigned long);
279 int walk_memory_regions(void *, walk_memory_regions_fn);
280 
281 int page_get_flags(target_ulong address);
282 void page_set_flags(target_ulong start, target_ulong end, int flags);
283 int page_check_range(target_ulong start, target_ulong len, int flags);
284 
285 /**
286  * page_alloc_target_data(address, size)
287  * @address: guest virtual address
288  * @size: size of data to allocate
289  *
290  * Allocate @size bytes of out-of-band data to associate with the
291  * guest page at @address.  If the page is not mapped, NULL will
292  * be returned.  If there is existing data associated with @address,
293  * no new memory will be allocated.
294  *
295  * The memory will be freed when the guest page is deallocated,
296  * e.g. with the munmap system call.
297  */
298 void *page_alloc_target_data(target_ulong address, size_t size);
299 
300 /**
301  * page_get_target_data(address)
302  * @address: guest virtual address
303  *
304  * Return any out-of-bound memory assocated with the guest page
305  * at @address, as per page_alloc_target_data.
306  */
307 void *page_get_target_data(target_ulong address);
308 #endif
309 
310 CPUArchState *cpu_copy(CPUArchState *env);
311 
312 /* Flags for use in ENV->INTERRUPT_PENDING.
313 
314    The numbers assigned here are non-sequential in order to preserve
315    binary compatibility with the vmstate dump.  Bit 0 (0x0001) was
316    previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
317    the vmstate dump.  */
318 
319 /* External hardware interrupt pending.  This is typically used for
320    interrupts from devices.  */
321 #define CPU_INTERRUPT_HARD        0x0002
322 
323 /* Exit the current TB.  This is typically used when some system-level device
324    makes some change to the memory mapping.  E.g. the a20 line change.  */
325 #define CPU_INTERRUPT_EXITTB      0x0004
326 
327 /* Halt the CPU.  */
328 #define CPU_INTERRUPT_HALT        0x0020
329 
330 /* Debug event pending.  */
331 #define CPU_INTERRUPT_DEBUG       0x0080
332 
333 /* Reset signal.  */
334 #define CPU_INTERRUPT_RESET       0x0400
335 
336 /* Several target-specific external hardware interrupts.  Each target/cpu.h
337    should define proper names based on these defines.  */
338 #define CPU_INTERRUPT_TGT_EXT_0   0x0008
339 #define CPU_INTERRUPT_TGT_EXT_1   0x0010
340 #define CPU_INTERRUPT_TGT_EXT_2   0x0040
341 #define CPU_INTERRUPT_TGT_EXT_3   0x0200
342 #define CPU_INTERRUPT_TGT_EXT_4   0x1000
343 
344 /* Several target-specific internal interrupts.  These differ from the
345    preceding target-specific interrupts in that they are intended to
346    originate from within the cpu itself, typically in response to some
347    instruction being executed.  These, therefore, are not masked while
348    single-stepping within the debugger.  */
349 #define CPU_INTERRUPT_TGT_INT_0   0x0100
350 #define CPU_INTERRUPT_TGT_INT_1   0x0800
351 #define CPU_INTERRUPT_TGT_INT_2   0x2000
352 
353 /* First unused bit: 0x4000.  */
354 
355 /* The set of all bits that should be masked when single-stepping.  */
356 #define CPU_INTERRUPT_SSTEP_MASK \
357     (CPU_INTERRUPT_HARD          \
358      | CPU_INTERRUPT_TGT_EXT_0   \
359      | CPU_INTERRUPT_TGT_EXT_1   \
360      | CPU_INTERRUPT_TGT_EXT_2   \
361      | CPU_INTERRUPT_TGT_EXT_3   \
362      | CPU_INTERRUPT_TGT_EXT_4)
363 
364 #ifdef CONFIG_USER_ONLY
365 
366 /*
367  * Allow some level of source compatibility with softmmu.  We do not
368  * support any of the more exotic features, so only invalid pages may
369  * be signaled by probe_access_flags().
370  */
371 #define TLB_INVALID_MASK    (1 << (TARGET_PAGE_BITS_MIN - 1))
372 #define TLB_MMIO            0
373 #define TLB_WATCHPOINT      0
374 
375 #else
376 
377 /*
378  * Flags stored in the low bits of the TLB virtual address.
379  * These are defined so that fast path ram access is all zeros.
380  * The flags all must be between TARGET_PAGE_BITS and
381  * maximum address alignment bit.
382  *
383  * Use TARGET_PAGE_BITS_MIN so that these bits are constant
384  * when TARGET_PAGE_BITS_VARY is in effect.
385  */
386 /* Zero if TLB entry is valid.  */
387 #define TLB_INVALID_MASK    (1 << (TARGET_PAGE_BITS_MIN - 1))
388 /* Set if TLB entry references a clean RAM page.  The iotlb entry will
389    contain the page physical address.  */
390 #define TLB_NOTDIRTY        (1 << (TARGET_PAGE_BITS_MIN - 2))
391 /* Set if TLB entry is an IO callback.  */
392 #define TLB_MMIO            (1 << (TARGET_PAGE_BITS_MIN - 3))
393 /* Set if TLB entry contains a watchpoint.  */
394 #define TLB_WATCHPOINT      (1 << (TARGET_PAGE_BITS_MIN - 4))
395 /* Set if TLB entry requires byte swap.  */
396 #define TLB_BSWAP           (1 << (TARGET_PAGE_BITS_MIN - 5))
397 /* Set if TLB entry writes ignored.  */
398 #define TLB_DISCARD_WRITE   (1 << (TARGET_PAGE_BITS_MIN - 6))
399 
400 /* Use this mask to check interception with an alignment mask
401  * in a TCG backend.
402  */
403 #define TLB_FLAGS_MASK \
404     (TLB_INVALID_MASK | TLB_NOTDIRTY | TLB_MMIO \
405     | TLB_WATCHPOINT | TLB_BSWAP | TLB_DISCARD_WRITE)
406 
407 /**
408  * tlb_hit_page: return true if page aligned @addr is a hit against the
409  * TLB entry @tlb_addr
410  *
411  * @addr: virtual address to test (must be page aligned)
412  * @tlb_addr: TLB entry address (a CPUTLBEntry addr_read/write/code value)
413  */
414 static inline bool tlb_hit_page(target_ulong tlb_addr, target_ulong addr)
415 {
416     return addr == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK));
417 }
418 
419 /**
420  * tlb_hit: return true if @addr is a hit against the TLB entry @tlb_addr
421  *
422  * @addr: virtual address to test (need not be page aligned)
423  * @tlb_addr: TLB entry address (a CPUTLBEntry addr_read/write/code value)
424  */
425 static inline bool tlb_hit(target_ulong tlb_addr, target_ulong addr)
426 {
427     return tlb_hit_page(tlb_addr, addr & TARGET_PAGE_MASK);
428 }
429 
430 #ifdef CONFIG_TCG
431 /* accel/tcg/cpu-exec.c */
432 void dump_drift_info(GString *buf);
433 /* accel/tcg/translate-all.c */
434 void dump_exec_info(GString *buf);
435 void dump_opcount_info(GString *buf);
436 #endif /* CONFIG_TCG */
437 
438 #endif /* !CONFIG_USER_ONLY */
439 
440 /* accel/tcg/cpu-exec.c */
441 int cpu_exec(CPUState *cpu);
442 void tcg_exec_realizefn(CPUState *cpu, Error **errp);
443 void tcg_exec_unrealizefn(CPUState *cpu);
444 
445 /* Returns: 0 on success, -1 on error */
446 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
447                         void *ptr, target_ulong len, bool is_write);
448 
449 /**
450  * cpu_set_cpustate_pointers(cpu)
451  * @cpu: The cpu object
452  *
453  * Set the generic pointers in CPUState into the outer object.
454  */
455 static inline void cpu_set_cpustate_pointers(ArchCPU *cpu)
456 {
457     cpu->parent_obj.env_ptr = &cpu->env;
458     cpu->parent_obj.icount_decr_ptr = &cpu->neg.icount_decr;
459 }
460 
461 /**
462  * env_archcpu(env)
463  * @env: The architecture environment
464  *
465  * Return the ArchCPU associated with the environment.
466  */
467 static inline ArchCPU *env_archcpu(CPUArchState *env)
468 {
469     return container_of(env, ArchCPU, env);
470 }
471 
472 /**
473  * env_cpu(env)
474  * @env: The architecture environment
475  *
476  * Return the CPUState associated with the environment.
477  */
478 static inline CPUState *env_cpu(CPUArchState *env)
479 {
480     return &env_archcpu(env)->parent_obj;
481 }
482 
483 /**
484  * env_neg(env)
485  * @env: The architecture environment
486  *
487  * Return the CPUNegativeOffsetState associated with the environment.
488  */
489 static inline CPUNegativeOffsetState *env_neg(CPUArchState *env)
490 {
491     ArchCPU *arch_cpu = container_of(env, ArchCPU, env);
492     return &arch_cpu->neg;
493 }
494 
495 /**
496  * cpu_neg(cpu)
497  * @cpu: The generic CPUState
498  *
499  * Return the CPUNegativeOffsetState associated with the cpu.
500  */
501 static inline CPUNegativeOffsetState *cpu_neg(CPUState *cpu)
502 {
503     ArchCPU *arch_cpu = container_of(cpu, ArchCPU, parent_obj);
504     return &arch_cpu->neg;
505 }
506 
507 /**
508  * env_tlb(env)
509  * @env: The architecture environment
510  *
511  * Return the CPUTLB state associated with the environment.
512  */
513 static inline CPUTLB *env_tlb(CPUArchState *env)
514 {
515     return &env_neg(env)->tlb;
516 }
517 
518 #endif /* CPU_ALL_H */
519