xref: /openbmc/qemu/include/exec/cpu-all.h (revision 56983463)
1 /*
2  * defines common to all virtual CPUs
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #ifndef CPU_ALL_H
20 #define CPU_ALL_H
21 
22 #include "qemu-common.h"
23 #include "exec/cpu-common.h"
24 #include "qemu/thread.h"
25 
26 /* some important defines:
27  *
28  * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
29  * memory accesses.
30  *
31  * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
32  * otherwise little endian.
33  *
34  * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
35  *
36  * TARGET_WORDS_BIGENDIAN : same for target cpu
37  */
38 
39 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
40 #define BSWAP_NEEDED
41 #endif
42 
43 #ifdef BSWAP_NEEDED
44 
45 static inline uint16_t tswap16(uint16_t s)
46 {
47     return bswap16(s);
48 }
49 
50 static inline uint32_t tswap32(uint32_t s)
51 {
52     return bswap32(s);
53 }
54 
55 static inline uint64_t tswap64(uint64_t s)
56 {
57     return bswap64(s);
58 }
59 
60 static inline void tswap16s(uint16_t *s)
61 {
62     *s = bswap16(*s);
63 }
64 
65 static inline void tswap32s(uint32_t *s)
66 {
67     *s = bswap32(*s);
68 }
69 
70 static inline void tswap64s(uint64_t *s)
71 {
72     *s = bswap64(*s);
73 }
74 
75 #else
76 
77 static inline uint16_t tswap16(uint16_t s)
78 {
79     return s;
80 }
81 
82 static inline uint32_t tswap32(uint32_t s)
83 {
84     return s;
85 }
86 
87 static inline uint64_t tswap64(uint64_t s)
88 {
89     return s;
90 }
91 
92 static inline void tswap16s(uint16_t *s)
93 {
94 }
95 
96 static inline void tswap32s(uint32_t *s)
97 {
98 }
99 
100 static inline void tswap64s(uint64_t *s)
101 {
102 }
103 
104 #endif
105 
106 #if TARGET_LONG_SIZE == 4
107 #define tswapl(s) tswap32(s)
108 #define tswapls(s) tswap32s((uint32_t *)(s))
109 #define bswaptls(s) bswap32s(s)
110 #else
111 #define tswapl(s) tswap64(s)
112 #define tswapls(s) tswap64s((uint64_t *)(s))
113 #define bswaptls(s) bswap64s(s)
114 #endif
115 
116 /* CPU memory access without any memory or io remapping */
117 
118 /*
119  * the generic syntax for the memory accesses is:
120  *
121  * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
122  *
123  * store: st{type}{size}{endian}_{access_type}(ptr, val)
124  *
125  * type is:
126  * (empty): integer access
127  *   f    : float access
128  *
129  * sign is:
130  * (empty): for floats or 32 bit size
131  *   u    : unsigned
132  *   s    : signed
133  *
134  * size is:
135  *   b: 8 bits
136  *   w: 16 bits
137  *   l: 32 bits
138  *   q: 64 bits
139  *
140  * endian is:
141  * (empty): target cpu endianness or 8 bit access
142  *   r    : reversed target cpu endianness (not implemented yet)
143  *   be   : big endian (not implemented yet)
144  *   le   : little endian (not implemented yet)
145  *
146  * access_type is:
147  *   raw    : host memory access
148  *   user   : user mode access using soft MMU
149  *   kernel : kernel mode access using soft MMU
150  */
151 
152 /* target-endianness CPU memory access functions */
153 #if defined(TARGET_WORDS_BIGENDIAN)
154 #define lduw_p(p) lduw_be_p(p)
155 #define ldsw_p(p) ldsw_be_p(p)
156 #define ldl_p(p) ldl_be_p(p)
157 #define ldq_p(p) ldq_be_p(p)
158 #define ldfl_p(p) ldfl_be_p(p)
159 #define ldfq_p(p) ldfq_be_p(p)
160 #define stw_p(p, v) stw_be_p(p, v)
161 #define stl_p(p, v) stl_be_p(p, v)
162 #define stq_p(p, v) stq_be_p(p, v)
163 #define stfl_p(p, v) stfl_be_p(p, v)
164 #define stfq_p(p, v) stfq_be_p(p, v)
165 #else
166 #define lduw_p(p) lduw_le_p(p)
167 #define ldsw_p(p) ldsw_le_p(p)
168 #define ldl_p(p) ldl_le_p(p)
169 #define ldq_p(p) ldq_le_p(p)
170 #define ldfl_p(p) ldfl_le_p(p)
171 #define ldfq_p(p) ldfq_le_p(p)
172 #define stw_p(p, v) stw_le_p(p, v)
173 #define stl_p(p, v) stl_le_p(p, v)
174 #define stq_p(p, v) stq_le_p(p, v)
175 #define stfl_p(p, v) stfl_le_p(p, v)
176 #define stfq_p(p, v) stfq_le_p(p, v)
177 #endif
178 
179 /* MMU memory access macros */
180 
181 #if defined(CONFIG_USER_ONLY)
182 #include <assert.h>
183 #include "exec/user/abitypes.h"
184 
185 /* On some host systems the guest address space is reserved on the host.
186  * This allows the guest address space to be offset to a convenient location.
187  */
188 #if defined(CONFIG_USE_GUEST_BASE)
189 extern unsigned long guest_base;
190 extern int have_guest_base;
191 extern unsigned long reserved_va;
192 #define GUEST_BASE guest_base
193 #define RESERVED_VA reserved_va
194 #else
195 #define GUEST_BASE 0ul
196 #define RESERVED_VA 0ul
197 #endif
198 
199 /* All direct uses of g2h and h2g need to go away for usermode softmmu.  */
200 #define g2h(x) ((void *)((unsigned long)(target_ulong)(x) + GUEST_BASE))
201 
202 #if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS
203 #define h2g_valid(x) 1
204 #else
205 #define h2g_valid(x) ({ \
206     unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
207     (__guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS)) && \
208     (!RESERVED_VA || (__guest < RESERVED_VA)); \
209 })
210 #endif
211 
212 #define h2g(x) ({ \
213     unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
214     /* Check if given address fits target address space */ \
215     assert(h2g_valid(x)); \
216     (abi_ulong)__ret; \
217 })
218 
219 #define saddr(x) g2h(x)
220 #define laddr(x) g2h(x)
221 
222 #else /* !CONFIG_USER_ONLY */
223 /* NOTE: we use double casts if pointers and target_ulong have
224    different sizes */
225 #define saddr(x) (uint8_t *)(intptr_t)(x)
226 #define laddr(x) (uint8_t *)(intptr_t)(x)
227 #endif
228 
229 #define ldub_raw(p) ldub_p(laddr((p)))
230 #define ldsb_raw(p) ldsb_p(laddr((p)))
231 #define lduw_raw(p) lduw_p(laddr((p)))
232 #define ldsw_raw(p) ldsw_p(laddr((p)))
233 #define ldl_raw(p) ldl_p(laddr((p)))
234 #define ldq_raw(p) ldq_p(laddr((p)))
235 #define ldfl_raw(p) ldfl_p(laddr((p)))
236 #define ldfq_raw(p) ldfq_p(laddr((p)))
237 #define stb_raw(p, v) stb_p(saddr((p)), v)
238 #define stw_raw(p, v) stw_p(saddr((p)), v)
239 #define stl_raw(p, v) stl_p(saddr((p)), v)
240 #define stq_raw(p, v) stq_p(saddr((p)), v)
241 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
242 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
243 
244 
245 #if defined(CONFIG_USER_ONLY)
246 
247 /* if user mode, no other memory access functions */
248 #define ldub(p) ldub_raw(p)
249 #define ldsb(p) ldsb_raw(p)
250 #define lduw(p) lduw_raw(p)
251 #define ldsw(p) ldsw_raw(p)
252 #define ldl(p) ldl_raw(p)
253 #define ldq(p) ldq_raw(p)
254 #define ldfl(p) ldfl_raw(p)
255 #define ldfq(p) ldfq_raw(p)
256 #define stb(p, v) stb_raw(p, v)
257 #define stw(p, v) stw_raw(p, v)
258 #define stl(p, v) stl_raw(p, v)
259 #define stq(p, v) stq_raw(p, v)
260 #define stfl(p, v) stfl_raw(p, v)
261 #define stfq(p, v) stfq_raw(p, v)
262 
263 #define cpu_ldub_code(env1, p) ldub_raw(p)
264 #define cpu_ldsb_code(env1, p) ldsb_raw(p)
265 #define cpu_lduw_code(env1, p) lduw_raw(p)
266 #define cpu_ldsw_code(env1, p) ldsw_raw(p)
267 #define cpu_ldl_code(env1, p) ldl_raw(p)
268 #define cpu_ldq_code(env1, p) ldq_raw(p)
269 
270 #define cpu_ldub_data(env, addr) ldub_raw(addr)
271 #define cpu_lduw_data(env, addr) lduw_raw(addr)
272 #define cpu_ldsw_data(env, addr) ldsw_raw(addr)
273 #define cpu_ldl_data(env, addr) ldl_raw(addr)
274 #define cpu_ldq_data(env, addr) ldq_raw(addr)
275 
276 #define cpu_stb_data(env, addr, data) stb_raw(addr, data)
277 #define cpu_stw_data(env, addr, data) stw_raw(addr, data)
278 #define cpu_stl_data(env, addr, data) stl_raw(addr, data)
279 #define cpu_stq_data(env, addr, data) stq_raw(addr, data)
280 
281 #define cpu_ldub_kernel(env, addr) ldub_raw(addr)
282 #define cpu_lduw_kernel(env, addr) lduw_raw(addr)
283 #define cpu_ldsw_kernel(env, addr) ldsw_raw(addr)
284 #define cpu_ldl_kernel(env, addr) ldl_raw(addr)
285 #define cpu_ldq_kernel(env, addr) ldq_raw(addr)
286 
287 #define cpu_stb_kernel(env, addr, data) stb_raw(addr, data)
288 #define cpu_stw_kernel(env, addr, data) stw_raw(addr, data)
289 #define cpu_stl_kernel(env, addr, data) stl_raw(addr, data)
290 #define cpu_stq_kernel(env, addr, data) stq_raw(addr, data)
291 
292 #define ldub_kernel(p) ldub_raw(p)
293 #define ldsb_kernel(p) ldsb_raw(p)
294 #define lduw_kernel(p) lduw_raw(p)
295 #define ldsw_kernel(p) ldsw_raw(p)
296 #define ldl_kernel(p) ldl_raw(p)
297 #define ldq_kernel(p) ldq_raw(p)
298 #define ldfl_kernel(p) ldfl_raw(p)
299 #define ldfq_kernel(p) ldfq_raw(p)
300 #define stb_kernel(p, v) stb_raw(p, v)
301 #define stw_kernel(p, v) stw_raw(p, v)
302 #define stl_kernel(p, v) stl_raw(p, v)
303 #define stq_kernel(p, v) stq_raw(p, v)
304 #define stfl_kernel(p, v) stfl_raw(p, v)
305 #define stfq_kernel(p, vt) stfq_raw(p, v)
306 
307 #define cpu_ldub_data(env, addr) ldub_raw(addr)
308 #define cpu_lduw_data(env, addr) lduw_raw(addr)
309 #define cpu_ldl_data(env, addr) ldl_raw(addr)
310 
311 #define cpu_stb_data(env, addr, data) stb_raw(addr, data)
312 #define cpu_stw_data(env, addr, data) stw_raw(addr, data)
313 #define cpu_stl_data(env, addr, data) stl_raw(addr, data)
314 #endif /* defined(CONFIG_USER_ONLY) */
315 
316 /* page related stuff */
317 
318 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
319 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
320 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
321 
322 /* ??? These should be the larger of uintptr_t and target_ulong.  */
323 extern uintptr_t qemu_real_host_page_size;
324 extern uintptr_t qemu_host_page_size;
325 extern uintptr_t qemu_host_page_mask;
326 
327 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
328 
329 /* same as PROT_xxx */
330 #define PAGE_READ      0x0001
331 #define PAGE_WRITE     0x0002
332 #define PAGE_EXEC      0x0004
333 #define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
334 #define PAGE_VALID     0x0008
335 /* original state of the write flag (used when tracking self-modifying
336    code */
337 #define PAGE_WRITE_ORG 0x0010
338 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
339 /* FIXME: Code that sets/uses this is broken and needs to go away.  */
340 #define PAGE_RESERVED  0x0020
341 #endif
342 
343 #if defined(CONFIG_USER_ONLY)
344 void page_dump(FILE *f);
345 
346 typedef int (*walk_memory_regions_fn)(void *, abi_ulong,
347                                       abi_ulong, unsigned long);
348 int walk_memory_regions(void *, walk_memory_regions_fn);
349 
350 int page_get_flags(target_ulong address);
351 void page_set_flags(target_ulong start, target_ulong end, int flags);
352 int page_check_range(target_ulong start, target_ulong len, int flags);
353 #endif
354 
355 CPUArchState *cpu_copy(CPUArchState *env);
356 
357 void QEMU_NORETURN cpu_abort(CPUArchState *env, const char *fmt, ...)
358     GCC_FMT_ATTR(2, 3);
359 
360 /* Flags for use in ENV->INTERRUPT_PENDING.
361 
362    The numbers assigned here are non-sequential in order to preserve
363    binary compatibility with the vmstate dump.  Bit 0 (0x0001) was
364    previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
365    the vmstate dump.  */
366 
367 /* External hardware interrupt pending.  This is typically used for
368    interrupts from devices.  */
369 #define CPU_INTERRUPT_HARD        0x0002
370 
371 /* Exit the current TB.  This is typically used when some system-level device
372    makes some change to the memory mapping.  E.g. the a20 line change.  */
373 #define CPU_INTERRUPT_EXITTB      0x0004
374 
375 /* Halt the CPU.  */
376 #define CPU_INTERRUPT_HALT        0x0020
377 
378 /* Debug event pending.  */
379 #define CPU_INTERRUPT_DEBUG       0x0080
380 
381 /* Several target-specific external hardware interrupts.  Each target/cpu.h
382    should define proper names based on these defines.  */
383 #define CPU_INTERRUPT_TGT_EXT_0   0x0008
384 #define CPU_INTERRUPT_TGT_EXT_1   0x0010
385 #define CPU_INTERRUPT_TGT_EXT_2   0x0040
386 #define CPU_INTERRUPT_TGT_EXT_3   0x0200
387 #define CPU_INTERRUPT_TGT_EXT_4   0x1000
388 
389 /* Several target-specific internal interrupts.  These differ from the
390    preceding target-specific interrupts in that they are intended to
391    originate from within the cpu itself, typically in response to some
392    instruction being executed.  These, therefore, are not masked while
393    single-stepping within the debugger.  */
394 #define CPU_INTERRUPT_TGT_INT_0   0x0100
395 #define CPU_INTERRUPT_TGT_INT_1   0x0400
396 #define CPU_INTERRUPT_TGT_INT_2   0x0800
397 #define CPU_INTERRUPT_TGT_INT_3   0x2000
398 
399 /* First unused bit: 0x4000.  */
400 
401 /* The set of all bits that should be masked when single-stepping.  */
402 #define CPU_INTERRUPT_SSTEP_MASK \
403     (CPU_INTERRUPT_HARD          \
404      | CPU_INTERRUPT_TGT_EXT_0   \
405      | CPU_INTERRUPT_TGT_EXT_1   \
406      | CPU_INTERRUPT_TGT_EXT_2   \
407      | CPU_INTERRUPT_TGT_EXT_3   \
408      | CPU_INTERRUPT_TGT_EXT_4)
409 
410 /* Breakpoint/watchpoint flags */
411 #define BP_MEM_READ           0x01
412 #define BP_MEM_WRITE          0x02
413 #define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
414 #define BP_STOP_BEFORE_ACCESS 0x04
415 #define BP_WATCHPOINT_HIT     0x08
416 #define BP_GDB                0x10
417 #define BP_CPU                0x20
418 
419 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
420                           CPUBreakpoint **breakpoint);
421 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags);
422 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint);
423 void cpu_breakpoint_remove_all(CPUArchState *env, int mask);
424 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
425                           int flags, CPUWatchpoint **watchpoint);
426 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr,
427                           target_ulong len, int flags);
428 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint);
429 void cpu_watchpoint_remove_all(CPUArchState *env, int mask);
430 
431 #define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
432 #define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
433 #define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
434 
435 void cpu_single_step(CPUArchState *env, int enabled);
436 
437 #if !defined(CONFIG_USER_ONLY)
438 
439 /* Return the physical page corresponding to a virtual one. Use it
440    only for debugging because no protection checks are done. Return -1
441    if no page found. */
442 hwaddr cpu_get_phys_page_debug(CPUArchState *env, target_ulong addr);
443 
444 /* memory API */
445 
446 extern ram_addr_t ram_size;
447 
448 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
449 #define RAM_PREALLOC_MASK   (1 << 0)
450 
451 typedef struct RAMBlock {
452     struct MemoryRegion *mr;
453     uint8_t *host;
454     ram_addr_t offset;
455     ram_addr_t length;
456     uint32_t flags;
457     char idstr[256];
458     /* Reads can take either the iothread or the ramlist lock.
459      * Writes must take both locks.
460      */
461     QTAILQ_ENTRY(RAMBlock) next;
462 #if defined(__linux__) && !defined(TARGET_S390X)
463     int fd;
464 #endif
465 } RAMBlock;
466 
467 typedef struct RAMList {
468     QemuMutex mutex;
469     /* Protected by the iothread lock.  */
470     uint8_t *phys_dirty;
471     RAMBlock *mru_block;
472     /* Protected by the ramlist lock.  */
473     QTAILQ_HEAD(, RAMBlock) blocks;
474     uint32_t version;
475 } RAMList;
476 extern RAMList ram_list;
477 
478 extern const char *mem_path;
479 extern int mem_prealloc;
480 
481 /* Flags stored in the low bits of the TLB virtual address.  These are
482    defined so that fast path ram access is all zeros.  */
483 /* Zero if TLB entry is valid.  */
484 #define TLB_INVALID_MASK   (1 << 3)
485 /* Set if TLB entry references a clean RAM page.  The iotlb entry will
486    contain the page physical address.  */
487 #define TLB_NOTDIRTY    (1 << 4)
488 /* Set if TLB entry is an IO callback.  */
489 #define TLB_MMIO        (1 << 5)
490 
491 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf);
492 ram_addr_t last_ram_offset(void);
493 void qemu_mutex_lock_ramlist(void);
494 void qemu_mutex_unlock_ramlist(void);
495 #endif /* !CONFIG_USER_ONLY */
496 
497 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
498                         uint8_t *buf, int len, int is_write);
499 
500 #endif /* CPU_ALL_H */
501